Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: July 2009

3 - Neurochemical effects of electrically induced seizures: Relevance to the antidepressant mechanism of electroconvulsive therapy

from Part I - Scientific and experimental bases of electroconvulsive therapy

Related content

Powered by UNSILO

References

Ahn, Y. M., Kang, U. G., Oh, S. W., et al. 2002. Region-specific phosphorylation of ATF-2, Elk-1 and c-Jun in rat hippocampus and cerebellum after electroconvulsive shock. Neurosci Lett 329: 9–12.
Altar, C. A., Laeng, P., Jurata, L. W., et al. 2004. Electroconvulsive seizures regulate gene expression of distinct neurotrophic signaling pathways. J Neurosci 24: 2667–77.
Altman, J. and Das, G. D. 1965. Autoradiographic and histological evidence of postnatal hippocampal neurogenesis in rats. J Comp Neurol 24(3): 319–35.
Angelucci, F., Aloe, L., Jiménez-Vasquez, P., and Mathé, A. A. 2003. Electroconvulsive stimuli alter nerve growth factor but not brain-derived neurotrophic factor concentrations in brains of a rat model of depression. Neuropeptides 37: 51–6.
Bijak, M., Zahorodna, A., and Tokarski, K. 2001. Opposite effects of antidepressants and corticosterone on the sensitivity of hippocampal CA1 neurons to 5-HT1A and 5-HT4 receptor activation. Naunyn Schmiedebergs Arch Pharmacol 363: 491–8.
Binder, D. K. 2007. Neurotrophins in the dentate gyrus. Prog Brain Res 163: 371–97.
Blier, P. and Bouchard, C. 1992. Effect of repeated electroconvulsive shocks on serotonergic neurons. Eur J Pharmacol 211: 365–73.
Bliss, T. V. and Collingridge, G. L. 1993. A synaptic model of memory: long-term potentiation in the hippocampus. Nature 361: 31–9.
Bolwig, T. G., Woldbye, D. P., and Mikkelsen, J. D. 1999. Electroconvulsive therapy as an anticonvulsant: a possible role of neuropeptide Y (NPY). J ECT 15: 93–101.
Bonne, O., Krausz, Y., Shapira, B., et al. 1996. Increased brain Tc-99m HMPAO uptake in depressed patients who have responded to electroconvulsive therapy. J Nucl Med 37: 1075–80.
Bowdler, J. M., Green, A. R., Minchin, M. C., and Nutt, D. J. 1983. Regional GABA concentration and [3H]-diazepam binding in rat brain following repeated electroconvulsive shock. J Neural Transm 56: 3–12.
Burnet, P. W., Sharp, T., LeCorre, S. M., and Harrison, P. J. 1999. Expression of 5-HT receptors and the 5-HT transporter in rat brain after electroconvulsive shock. Neurosci Lett 277: 79–82.
Carlezon, W. A. Jr, Duman, R. S., and Nestler, E. J. 2005. The many faces of CREB. Trends Neurosci 28: 436–45.
Chen, A. C., Shin, K. H., Duman, R. S., and Sanacora, G. 2001. ECS-induced mossy fiber sprouting and BDNF expression are attenuated by ketamine pretreatment. J ECT 17: 27–32.
Chen, J., Newton, S. S., Zeng, L., et al. 2004. Downregulation of the CCAAT-enhancer binding protein beta in deltaFosB transgenic mice and by electroconvulsive seizures. Neuropsychopharmacology 29: 23–31.
Chen, J., Zhang, Y., Kelz, M. B., et al. 2000. Induction of cyclin-dependent kinase 5 in the hippocampus by chronic electroconvulsive seizures: Role of [Delta]FosB. J Neurosci 20: 8965–71.
Christensen, D. Z., Olesen, M. V., Kristiansen, H., et al. 2006. Unaltered neuropeptide Y (NPY)-stimulated [35S]GTPgammaS binding suggests a net increase in NPY signalling after repeated electroconvulsive seizures in mice. J Neurosci Res 84: 1282–91.
Collier, D. A., Stober, G., Li, T., et al. 1996. A novel functional polymorphism within the promoter of the serotonin transporter gene: Possible role in susceptibility to affective disorders. Mol Psychiatry 1: 453–60.
Cupello, A., Patrone, A., Robello, M., et al. 1993. Electric shock convulsions in the rabbit and brain cortex GABAA receptor function. Neurochem Res 18: 883–6.
Devanand, D. P., Shapira, B., Petty, F., et al. 1995. Effects of electroconvulsive therapy on plasma GABA. Convuls Ther 11: 3–13.
Donati, R. J. and Rasenick, M. M. 2003. G protein signaling and the molecular basis of antidepressant action. Life Sci 73: 1–17.
Dremencov, E., Gur, E., Lerer, B., and Newman, M. E. 2002. Effects of chronic antidepressants and electroconvulsive shock on serotonergic neurotransmission in the rat hypothalamus. Prog Neuropsychopharmacol Biol Psychiatry 26: 1029–34.
Dremencov, E., Gur, E., Lerer, B., and Newman, M. E. 2003. Effects of chronic antidepressants and electroconvulsive shock on serotonergic neurotransmission in the rat hippocampus. Prog Neuropsychopharmacol Biol Psychiatry 27: 729–39.
Duman R. S., Heninger G. R., and Nestler E. J. 1997. A molecular and cellular theory of depression. Arch Gen Psychiatry. 54: 597–606.
Gartside, S. E., Ellis, P. M., Sharp, T., and Cowen, P. J. 1992. Selective 5-HT1A and 5-HT2 receptor-mediated adrenocorticotropin release in the rat: Effect of repeated antidepressant treatments. Eur J Pharmacol 221: 27–33.
Gray, W. P. and Sundstrom, L. E. 1998. Kainic acid increases the proliferation of granule cell progenitors in the dentate gyrus of the adult rat. Brain Res 790: 52–9.
Gwinn, R. P., Kondratyev, A., and Gale, K. 2002. Time-dependent increase in basic fibroblast growth factor protein in limbic regions following electroshock seizures. Neuroscience 114: 403–9.
Hellsten, J., Wennström, M., Mohapel, P., et al. 2002. Electroconvulsive seizures increase hippocampal neurogenesis after chronic corticosterone treatment. Eur J Neurosci 16: 283–90.
Hiroi, N., Marek, G. J., Brown, J. R., et al. 1998. Essential role of the fosB gene in molecular, cellular, and behavioral actions of chronic electroconvulsive seizures. J Neurosci 18: 6952–62.
Hsieh, T. F., Simler, S., Vergnes, M., et al. 1998. BDNF restores the expression of Jun and Fos inducible transcription factors in the rat brain following repetitive electroconvulsive seizures. Exp Neurol 149: 161–74.
Ishihara, K. and Sasa, M. 2001. Potentiation of 5-HT(3) receptor functions in the hippocampal CA1 region of rats following repeated electroconvulsive shock treatments. Neurosci Lett 307: 37–40.
Ishihara, K. and Sasa, M. 2004. Failure of repeated electroconvulsive shock treatment on 5-HT4-receptor-mediated depolarization due to protein kinase A system in young rat hippocampal CA1 neurons. J Pharmacol Sci 95: 329–34.
Jacobsen, J. P. and Mørk, A. 2004. The effect of escitalopram, desipramine, electroconvulsive seizures and lithium on brain-derived neurotrophic factor mRNA and protein expression in the rat brain and the correlation to 5-HT and 5-HIAA levels. Brain Res 1024: 183–92.
Jiménez-Vasquez, P. A., Diaz-Cabiale, Z., Caberlotto, L., et al. 2007. Electroconvulsive stimuli selectively affect behavior and neuropeptide Y (NPY) and NPY Y(1) receptor gene expressions in hippocampus and hypothalamus of Flinders Sensitive Line rat model of depression. Eur Neuropsychopharmacol 17: 298–308.
Kabbani, N., Negyessy, L., Lin, R., et al. 2002. Interaction with neuronal calcium sensor NCS-1 mediates desensitization of the D2 dopamine receptor. J Neurosci 22(19): 8476–86.
Kang, I., Miller, L. G., Moises, J., and Bazan, N. G. 1991. GABAA receptor mRNAs are increased after electroconvulsive shock. Psychopharmacol Bull 27: 359–63.
Kato, A., Fukazawa, Y., Ozawa, F., et al. 2003. Activation of ERK cascade promotes accumulation of Vesl-1S/Homer-1a immunoreactivity at synapses. Brain Res Mol Brain Res 118: 33–44.
Kety, S. 1974. Effects of repeated electroconvulsive shock on brain catecholamines. In Psychobiology of convulsive therapy (eds. Fink, M., Kety, S., McGaugh, J. W. T. A.). Washington, DC: Winston and Sons.
Kondratyev, A., Ved, R., and Gale, K. 2002. The effects of repeated minimal electroconvulsive shock exposure on levels of mRNA encoding fibroblast growth factor-2 and nerve growth factor in limbic regions. Neuroscience 114: 411–16.
Lammers, C. H., Diaz, J., Schwartz, J. C., and Sokoloff, P. 2000. Selective increase of dopamine D3 receptor gene expression as a common effect of chronic antidepressant treatments. Mol Psychiatry 5: 378–88.
Lamont, S. R., Paulls, A., and Stewart, C. A. 2001. Repeated electroconvulsive stimulation, but not antidepressant drugs, induces mossy fibre sprouting in the rat hippocampus. Brain Res 893: 53–8.
Larsen, M. H., Olesen, M., Woldbye, D. P., et al. 2005. Regulation of activity-regulated cytoskeleton protein (Arc) mRNA after acute and chronic electroconvulsive stimulation in the rat. Brain Res 1064: 161–5.
Lerer, B. 1987. Neurochemical and other neurobiological consequences of ECT: Implications for the pathogenesis and treatment of affective disorders. In Psychopharmacology: The third generation of progress (ed. Meltzer, H.). New York: Raven Press.
Li, B., Suemaru, K., Cui, R., and Araki, H. 2007. Repeated electroconvulsive stimuli have long-lasting effects on hippocampal BDNF and decrease immobility time in the rat forced swim test. Life Sci 80: 1539–43.
Lloyd, K. G., Thuret, F., and Pilc, A. 1985. Upregulation of gamma-aminobutyric acid (GABA) B binding sites in rat frontal cortex: A common action of repeated administration of different classes of antidepressants and electroshock. J Pharmacol Exp Ther 235: 191–9.
Madsen, T. M., Treschow, A., Bengzon, J., et al. 2000. Increased neurogenesis in a model of electroconvulsive therapy. Biol Psychiatry 47: 1043–9.
Malberg, J. E., Duman, R. S. 2003. Cell proliferation in adult hippocampus is decreased by inescapable stress: reversal by fluoxetine treatment. Neuropsychopharmacology 28: 1562–71.
Malberg, J. E., Eisch, A. J., Nestler, E. J., and Duman, R. S. 2000. Chronic antidepressant treatment increases neurogenesis in adult rat hippocampus. J Neurosci 20: 9104–10.
Mann, J. J. 1998. Neurobiological correlates of the antidepressant action of electroconvulsive therapy. J ECT 14: 172–80.
Marano, C. M., Phatak, P., Vemulapalli, U. R., et al. 2007. Increased plasma concentration of brain-derived neurotrophic factor with electroconvulsive therapy: A pilot study in patients with major depression. J Clin Psychiatry 68: 512–17.
Mathé, A. A. 1999. Neuropeptides and electroconvulsive treatment. J ECT 15: 60–75.
Mathé, A. A., Husum, H., El Khoury, A., et al. 2007. Search for biological correlates of depression and mechanisms of action of antidepressant treatment modalities. Do neuropeptides play a role? Physiol Behav 92: 226–31.
Meduna, L. 1936. New methods of medical treatment of schizophrenia. Arch Neurol Psychiat 35: 361–3.
Mikkelsen, J. D. and Woldbye, D. P. 2006. Accumulated increase in neuropeptide Y and somatostatin gene expression of the rat in response to repeated electroconvulsive stimulation. J Psychiatr Res 40: 153–9.
Mongeau, R., Blier, P., and de Montigny, C. 1997. The serotonergic and noradrenergic systems of the hippocampus: Their interactions and the effects of antidepressant treatments. Brain Res Brain Res Rev 23: 145–95.
Moretti, A., Gorini, A., and Villa, R. F. 2003. Affective disorders, antidepressant drugs and brain metabolism. Mol Psychiatry 8: 773–85.
Neumaier, J. F., Sexton, T. J., Yracheta, J., et al. 2001. Localization of 5-HT(7) receptors in rat brain by immunocytochemistry, in situ hybridization, and agonist stimulated cFos expression. J Chem Neuroanat 21: 63–73.
Newman, M. E., Gur, E., Shapira, B., and Lerer, B. 1998. Neurochemical mechanisms of action of ECS: Evidence from in vivo studies. J ECT 14: 153–71.
Newton, S. S., Collier, E. F., Bennett, A. H., et al. 2004. Regulation of growth factor receptor bound 2 by electroconvulsive seizure. Brain Res Mol Brain Res 129: 185–8.
Newton, S. S., Collier, E. F., Hunsberger, J., et al. 2003. Gene profile of electroconvulsive seizures: Induction of neurotrophic and angiogenic factors. J Neurosci 23: 10841–51.
Nibuya, M., Morinobu, S., and Duman, R. S. 1995. Regulation of BDNF and trkB mRNA in rat brain by chronic electroconvulsive seizure and antidepressant drug treatments. J Neurosci 15: 7539–47.
Nishioka, G., Yamada, M., Kudo, K., et al. 2003. Induction of kf-1 after repeated electroconvulsive treatment and chronic antidepressant treatment in rat frontal cortex and hippocampus. J Neural Transm 110: 277–85.
Nobler, M. S., Teneback, C. C., Nahas, Z., et al. 2000. Structural and functional neuroimaging of electroconvulsive therapy and transcranial magnetic stimulation. Depress Anxiety 12: 144–56.
Perera, T. D., Coplan, J. D., Lisanby, S. H., et al. 2007. Antidepressant-induced neurogenesis in the hippocampus of adult nonhuman primates. J Neurosci 27: 4894–901.
Pitra, P., Tokarski, K., Grzegorzewska, M., and Hess, G. 2007. Effects of repetitive administration of tianeptine, zinc hydroaspartate and electroconvulsive shock on the reactivity of 5-HT(7) receptors in rat hippocampus. Pharmacol Rep 59: 627–35.
Ploski, J. E., Newton, S. S., and Duman, R. S. 2006. Electroconvulsive seizure-induced gene expression profile of the hippocampus dentate gyrus granule cell layer. J Neurochem 99: 1122–32.
Rosa, D. V., Souza, R. P., Souza, B. R., et al. 2007. NCS-1 expression in rat brain after electroconvulsive stimulation. Neurochem Res 32: 81–5.
Sackeim, H. A., Devanand, D. P., and Nobler, M. S. 1995. Electroconvulsive therapy. In Psychopharmacology: The third generation of progress (eds. Bloom, F. E. and Kupfer, D. J.). New York: Raven Press.
Sairanen, M., Lucas, G., Ernfors, P., et al. 2005. Brain-derived neurotrophic factor and antidepressant drugs have different but coordinated effects on neuronal turnover, proliferation, and survival in the adult dentate gyrus. J Neurosci 25: 1089–94.
Santarelli, L., Saxe, M., Gross, C., et al. 2003. Requirement of hippocampal neurogenesis for the behavioral effects of antidepressants. Science 301: 805–9.
Scott, B. W., Wojtowicz, J. M., and Burnham, W. M. 2000. Neurogenesis in the dentate gyrus of the rat following electroconvulsive shock seizures. Exp Neurol 165: 231–6.
Serretti, A., Kato, M., De Ronchi, D., and Kinoshita, T. 2007. Meta-analysis of serotonin transporter gene promoter polymorphism (5-HTTLPR) association with selective serotonin reuptake inhibitor efficacy in depressed patients. Mol Psychiatry 12: 247–57.
Shapira, B., Lerer, B., Kindler, S., et al. 1992. Enhanced serotonergic responsivity following electroconvulsive therapy in patients with major depression. Br J Psychiatry 160: 223–9.
Shen, H., Numachi, Y., Yoshida, S., et al. 2001. Electroconvulsive shock regulates serotonin transporter mRNA expression in rat raphe nucleus. Psychiatry Clin Neurosci 55: 75–7.
Stewart, C., Jeffery, K., and Reid, I. 1994. LTP-like synaptic efficacy changes following electroconvulsive stimulation. Neuroreport 5: 1041–4.
Strome, E. M., Clark, C. M., Zis, A. P., and Doudet, D. J. 2005. Electroconvulsive shock decreases binding to 5-HT2 receptors in nonhuman primates: an in vivo positron emission tomography study with [18F]setoperone. Biol Psychiatry 57(9): 1004–10.
Strome, E. M., Zis, A. P., and Doudet, D. J. 2007. Electroconvulsive shock enhances striatal dopamine D1 and D3 receptor binding and improves motor performance in 6-OHDA-lesioned rats. J Psychiatry Neurosci 32: 193–202.
Takahashi, K., Yamada, M., Ohata, H., et al. 2005. Expression of Ndrg2 in the rat frontal cortex after antidepressant and electroconvulsive treatment. Int J Neuropsychopharmacol 8: 381–9.
Tanaka, S., Yamada, M., Kitahara, S., et al. 2006. Induction of neuroserpin expression in rat frontal cortex after chronic antidepressant treatment and electroconvulsive treatment. Nihon Shinkei Seishin Yakurigaku Zasshi 26: 51–6.
Tanis, K. Q., Duman, R. S., and Newton, S. S. 2007. CREB binding and activity in brain: Regional specificity and induction by electroconvulsive seizure. Biol Psychiatry [Epub ahead of print].
Tsankova, N. M., Kumar, A., and Nestler, E. J. 2004. Histone modifications at gene promoter regions in rat hippocampus after acute and chronic electroconvulsive seizures. J Neurosci 24: 5603–10.
Vaidya, V. A., Siuciak, J. A., Du, F., and Duman, R. S. 1999. Hippocampal mossy fiber sprouting induced by chronic electroconvulsive seizures. Neuroscience 89: 157–66.
van Praag, H. M. 1977. Depression and schizophrenia: A contribution on their chemical pathologies. New York: Spectrum, p. 119.
Wielosz, M., Stelmasiak, M., Ossowska, G., and Kleinrok, Z. 1985. Effects of electroconvulsive shock on central GABA-ergic mechanisms. Pol J Pharmacol Pharm 37: 113–22.
Winston, S. M., Hayward, M. D., Nestler, E. J., and Duman, R. S. 1990. Chronic electroconvulsive seizures down-regulate expression of the immediate-early genes c-fos and c-jun in rat cerebral cortex. J Neurochem 54: 1920–5.
Yamada, M., Iwabuchi, T., Takahashi, K., et al. 2005. Identification and expression of frizzled-3 protein in rat frontal cortex after antidepressant and electroconvulsive treatment. J Pharmacol Sci 99: 239–46.
Yamada, M., Takahashi, K., Tsunoda, M., et al. 2002. Differential expression of VAMP2/synaptobrevin-2 after antidepressant and electroconvulsive treatment in rat frontal cortex. Pharmacogenomics J 2: 377–82.
Yoon, S. C., Ahn, Y. M., Jun, S. J., et al. 2005. Region-specific phosphorylation of ERK5-MEF2C in the rat frontal cortex and hippocampus after electroconvulsive shock. Prog Neuropsychopharmacol Biol Psychiatry 29: 749–53.
Zetterström, T. S., Pei, Q., and Grahame-Smith, D. G. 1998. Repeated electroconvulsive shock extends the duration of enhanced gene expression for BDNF in rat brain compared with a single administration. Brain Res Mol Brain Res 57: 106–10.
Zis, A. P., Nomikos, G. G., Brown, E. E., et al. 1992. Neurochemical effects of electrically and chemically induced seizures: An in vivo microdialysis study in the rat hippocampus. Neuropsychopharmacology 7: 189–95.