Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-24T17:53:47.985Z Has data issue: false hasContentIssue false

2 - On the efficiency of energy transformations in cells and animals

Published online by Cambridge University Press:  03 October 2009

Robert W. Blake
Affiliation:
University of British Columbia, Vancouver
Get access

Summary

INTRODUCTION

Biologists study energy transformations in cells and organisms at various hierarchical levels, from biochemical pathway processing through to ecological energetics. The approaches employed to understand them are diverse and field dependent. The methods and approaches commonly used to study energy transformations in mitochondria are not those employed in animal locomotion. Assessments of the effectiveness and performance of energy transformations are often based on efficiency criteria. Arguably, many of the issues concerning the formulation, application and interpretation of efficiency values are of a general nature.

This paper explores six arbitrarily defined themes concerning efficiency. These themes (influence of the choice of formalism on numerical values, dangers associated with commonly expected results, interpreting high and low values, reconciling physiological and mechanical findings, the relevance of laboratory results to field situations, and scaling) are discussed with examples. Some remarks regarding evolutionary perspectives are made in a concluding section.

Numerical results may reflect the choice of formalism and its associated assumptions

Medawar and Medawar (1983, pp. 66–67) argue that the importance of definitions in biology is highly exaggerated, and that biology can proceed without the regard for clear definitions that is essential in mathematics. It may be that tight definitions are not required and/or possible in some areas of biology. However, the definitions and contexts of biological efficiency criteria must be clear. Numerical results reflect the nature of underlying theory. Examples from biochemistry and biomechanics illustrate this below. The context of the application is also important. A given efficiency parameter may refer to a stage of a process, an overall process, or a series of processes. An example from muscle physiology is used to illustrate this point.

There are a number of methods for assessing the efficiency of biochemical pathway processing.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 1992

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×