Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 8
  • Print publication year: 2014
  • Online publication date: December 2014

Chapter 6 - The digestive system of ruminants, and peculiarities of (wild) cattle

from Part II - Evolution, anatomy and function

Summary

Introduction

Cattle are members of the Ruminantia, which represent the most successful group of extant large herbivores in terms of species diversity. Ruminants have a multi-chambered forestomach, similar to other foregut fermenters like kangaroo, hippos, peccaries or sloths (Langer 1988); this means that plant material is partly digested by symbiotic microbes before the whole digesta – which includes the partly digested diet and the microbes – is passed on to the lower digestive tract where the herbivore’s own enzymes further digest this mixture. Because microbial protein is a major component of this mixture, foregut fermenters produce a set of specific enzymes in their glandular stomach and small intestine that help break down microbial cells, so that their protein can be used (Pacheco et al. 2007). Functional ruminants – the phylogenetic ruminants as well as the camelids – combine simple foregut fermentation with peculiar sorting mechanisms that assure that larger digesta particles are regurgitated and re-masticated (ruminated). This process of rumination is an obligatory physiological feature, facilitates a more efficient particle size reduction (Fritz et al. 2009), higher digestive efficiencies (Foose 1982) and potentially also higher food intake levels than observed in non-ruminant foregut fermenters (Clauss et al. 2010a).

Ruminant digestive anatomy and physiology

The ruminant stomach consists of four compartments – three representing the forestomach complex, and the last representing the glandular stomach (‘abomasum’), the equivalent of the stomach of monogastric animals (Hofmann & Schnorr 1982). The three forestomach compartments are, in the sequence of the digestive process, the rumen, the reticulum and the omasum (Figure 6.1). From the outside, the rumen and the reticulum form a unit – a large fermentation chamber with several sub-compartments, including the dorsal and the ventral rumen, the dorsal and ventral rumen blindsacs, the atrium ruminis and the reticulum. The whole complex is often referred to as the reticulorumen (RR). The reticulum is the most cranial part of the RR. On the right side of the RR, the omasum is a distinct structure. In contrast to the RR, which has a consistency of the digesta it contains, the omasum is more solid to the touch, and ball- or bean-shaped. The omasum leads to the abomasum, which in turn leads to the small and then the large intestine.

References
Abbas, F., Picot, D., Merlet, J., et al. (2013). A typical browser, the roe deer, may consume substantial quantities of grasses in open landscapes. European Journal of Wildlife Research 59: 69–75.
Baumont, R. & Deswysen, A. G. (1991). Mélange et propulsion du contenu du réticulo-rumen. Reproduction Nutrition Development 31: 335–359.
Bayer, W. (1990). Use of native browse by Fulani cattle in central Nigeria. Agroforestry Systems 12: 217–228.
Bekhuis, P. D. B. M., De Jong, C. B. & Prins, H. H. T. (2008). Diet selection and density estimates of forest buffalo in Campo-Ma’an National Park, Cameroon. African Journal of Ecology 46: 668–675.
Bowman, D. M. J. S., Murphy, B. P. & McMahon, C. R. (2010). Using carbon isotope analysis of the diet of two introduced Australian megaherbivores to understand Pleistocene megafaunal extinctions. Journal of Biogeography 37: 499–505.
Chetri, M. (2006). Diet analysis of gaur (Bos gaurus) by micro-histological analysis of fecal samples in Parsa Wildlife Reserve, Nepal. Our Nature 4: 20–28.
Clauss, M. (2004). The potential interplay of posture, digestive anatomy, ingesta density and gravity in mammalian herbivores, or why sloths do not rest hanging upside down. Mammal Review 34: 241–245.
Clauss, M., Frey, R., Kiefer, B., et al. (2003a). The maximum attainable body size of herbivorous mammals: morphophysiological constraints on foregut, and adaptations of hindgut fermenters. Oecologia 136: 14–27.
Clauss, M., Lechner-Doll, M. & Streich, W. J. (2003b). Ruminant diversification as an adaptation to the physicomechanical characteristics of forage: a reevaluation of an old debate and a new hypothesis. Oikos 102: 253–262.
Clauss, M., Lechner-Doll, M. & Streich, W. J. (2004). Differences in the range of faecal dry matter content between feeding types of captive wild ruminants. Acta Theriologica 49: 259–267.
Clauss, M., Hofmann, R. R., Hummel, J., et al. (2006a). The macroscopic anatomy of the omasum of free-ranging moose (Alces alces) and muskoxen (Ovibos moschatus) and a comparison of the omasal laminal surface area in 34 ruminant species. Journal of Zoology 270: 346–358.
Clauss, M., Hummel, J. & Streich, W. J. (2006b). The dissociation of the fluid and particle phase in the forestomach as a physiological characteristic of large grazing ruminants: an evaluation of available, comparable ruminant passage data. European Journal of Wildlife Research 52: 88–98.
Clauss, M., Kaiser, T. & Hummel, J. (2008) The morphophysiological adaptations of browsing and grazing mammals. In The Ecology of Browsing and Grazing, pp. 47–88. Eds. Gordon, I. J. & Prins, H. H. T. Heidelberg: Springer.
Clauss, M., Fritz, J., Bayer, D., et al. (2009a). Physical characteristics of rumen contents in two small ruminants of different feeding type, the mouflon (Ovis ammon musimon) and the roe deer (Capreolus capreolus). Zoology 112: 195–205.
Clauss, M., Fritz, J., Bayer, D., et al. (2009b). Physical characteristics of rumen contents in four large ruminants of different feeding type, the addax (Addax nasomaculatus), bison (Bison bison), red deer (Cervus elaphus) and moose (Alces alces). Comparative Biochemistry and Physiology A 152: 398–406.
Clauss, M., Hofmann, R. R., Fickel, J., Streich, W. J. & Hummel, J. (2009c). The intraruminal papillation gradient in wild ruminants of different feeding types: implications for rumen physiology. Journal of Morphology 270: 929–942.
Clauss, M., Hume, I. D. & Hummel, J. (2010a). Evolutionary adaptations of ruminants and their potential relevance for modern production systems. Animal 4: 979–992.
Clauss, M., Hofmann, R. R., Streich, W. J., Fickel, J. & Hummel, J. (2010b). Convergence in the macroscopic anatomy of the reticulum in wild ruminant species of different feeding types and a new resulting hypothesis on reticular function. Journal of Zoology 281: 26–38.
Clauss, M., Lechner, I., Barboza, P., et al. (2011a). The effect of size and density on the mean retention time of particles in the reticulorumen of cattle (Bos primigenius f. taurus), muskoxen (Ovibos moschatus) and moose (Alces alces). British Journal of Nutrition 105: 634–644.
Clauss, M., Müller, K., Fickel, J., Streich, W. J., Hatt, J. M. & Südekum, K.-H. (2011b). Macroecology of the host determines microecology of endobionts: protozoal faunas vary with wild ruminant feeding type and body mass. Journal of Zoology 283: 169–185.
Codron, D. & Clauss, M. (2010). Rumen physiology constrains diet niche: linking digestive physiology and food selection across wild ruminant species. Canadian Journal of Zoology 88: 1129–1138.
Connor, J. M., Bohman, V. R., Lesperance, A. L. & Kinsinger, F. E. (1963). Nutritive evaluation of summer range forage with cattle. Journal of Animal Science 22: 961–969.
Demment, M. W. (1982). The scaling of ruminoreticulum size with body weight in East African ungulates. African Journal of Ecology 20: 43–47.
Foose, T. J. (1982) Trophic strategies of ruminant versus nonruminant ungulates. PhD thesis. University of Chicago.
Franz, R., Soliva, C. R., Kreuzer, M., Steuer, P., Hummel, J. & Clauss, M. (2010). Methane production and body mass in ruminants and equids. Evolutionary Ecology Research 12: 727–738.
Franz, R., Soliva, C. R., Kreuzer, M., Hummel, J. & Clauss, M. (2011). Methane in rabbits (Oryctolagus cuniculus) and guinea pigs (Cavia porcellus) on a hay-only diet: implications for the scaling of methane procution with body mass in nonruminant mammalian herbivores. Comparative Biochemistry and Physiology A 158: 177–181.
Fritz, J., Hummel, J., Kienzle, E., Arnold, C., Nunn, C. & Clauss, M. (2009). Comparative chewing efficiency in mammalian herbivores. Oikos 118: 1623–1632.
Gebczynska, Z., Gebczynski, M. & Martynowicz, E. (1991). Food eaten by the free-living European bison in Bialowieza Forest. Acta Theriologica 36: 307–313.
Hofmann, R. R. (1968). Comparison of the rumen and omasum structure in East African game ruminants in relation to their feeding habits. Symposium of the Zoological Society of London 21: 179–194.
Hofmann, R. R. (1969). Zur Topographie und Morphologie des Wiederkäuermagens im Hinblick auf seine Funktion (nach vergleichenden Untersuchungen an Material ostafrikanischer Wildarten). Zentralblatt für Veterinärmedizin 10 (Suppl): 1–180.
Hofmann, R. R. (1973). The Ruminant Stomach. Nairobi: East African Literature Bureau.
Hofmann, R. R. (1985). Digestive physiology of deer: their morphophysiological specialisation and adaptation. Royal Society of New Zealand Bulletin 22: 393–407.
Hofmann, R. R. (1988) Morphophysiological evolutionary adaptations of the ruminant digestive system. In Aspects of Digestive Physiology in Ruminants, pp. 1–20. Eds. Dobson, A. & Dobson, M. J.Ithaca, NY: Cornell University Press.
Hofmann, R. R. (1989). Evolutionary steps of ecophysiological adaptation and diversification of ruminants: a comparative view of their digestive system. Oecologia 78: 443–457.
Hofmann, R. R. (2000). Functional and comparative digestive system anatomy of Arctic ungulates. Rangifer 20: 71–81.
Hofmann, R. R. & Schnorr, B. (1982). Die funktionelle Morphologie des Wiederkäuer-Magens. Stuttgart: Ferdinand Enke.
Hofmann, R. R. & Stewart, D. R. M. (1972). Grazer or browser: a classification based on the stomach-structure and feeding habit of East African ruminants. Mammalia 36: 226–240.
Hofmann, R. R., Streich, W. J., Fickel, J., Hummel, J. & Clauss, M. (2008). Convergent evolution in feeding types: salivary gland mass differences in wild ruminant species. Journal of Morphology 269: 240–257.
Holechek, J. L., Vavra, M., Skovlin, J. & Krueger, W. C. (1982). Cattle diets in the Blue Mountains of Oregon II: forests. Journal of Range Management 35: 239–242.
Hummel, J., Südekum, K.-H., Streich, W. J. & Clauss, M. (2006). Forage fermentation patterns and their implications for herbivore ingesta retention times. Functional Ecology 20: 989–1002.
Hummel, J., Steuer, P., Südekum, K.-H., et al. (2008). Fluid and particle retention in the digestive tract of the addax antelope (Addax nasomaculatus): adaptations of a grazing desert ruminant. Comparative Biochemistry and Physiology A 149: 142–149.
Hummel, J., Südekum, K.-H., Bayer, D., et al. (2009). Physical characteristics of reticuloruminal contents of cattle in relation to forage type and time after feeding. Journal of Animal Physiology and Animal Nutrition 93: 209–220.
Landman, M. & Kerley, G. I. H. (2001). Dietary shifts: do grazers become browsers in the Thicket Biome?Koedoe 44: 31–36.
Langer, P. (1988). The Mammalian Herbivore Stomach. Stuttgart and New York: Gustav Fischer Verlag.
Larter, N. C. & Gates, C. C. (1991). Diet and habitat selection of wood bison in relation to seasonal changes in forage quantity and quality. Canadian Journal of Zoology 69: 2677–2685.
Lauper, M., Lechner, I., Barboza, P., et al. (2013). Rumination of different-sized particles in muskoxen (Ovibos moschatus) and moose (Alces alces) on grass and browse diets, and implications for rumination in different ruminant feeding types. Mammalian Biology 78: 142–152.
Lechner, I., Barboza, P., Collins, W., et al.(2010). Differential passage of fluids and different-sized particles in fistulated oxen (Bos primigenius f. taurus), muskoxen (Ovibos moschatus), reindeer (Rangifer tarandus) and moose (Alces alces): rumen particle size discrimination is independent from contents stratification. Comparative Biochemistry and Physiology A 155: 211–222.
Lechner-Doll, M., Kaske, M. & Engelhardt, W. V. (1991) Factors affecting the mean retention time of particles in the forestomach of ruminants and camelids. In Physiological Aspects of Digestion and Metabolism in Ruminants, pp. 455–482. Eds. Tsuda, T., Sasaki, Y. & Kawashima, R.San Diego, CA: Academic Press.
Machatschek, M. (2002). Laubgeschichten: Gebrauchswissen einer alten Baumwirtschaft, Speise- und Futterlaubkultur. Vienna: Böhlau.
Maekawa, M., Beauchemin, K. A. & Christensen, D. A. (2002). Effect of concentrate level and feeding management on chewing activities, saliva production, and ruminal pH of lactating dairy cows. Journal of Dairy Science 85: 1165–1175.
Mortolaa, J. P. & Lanthier, C. (2005). Breathing frequency in ruminants: a comparative analysis with non-ruminant mammals. Respiratory Physiology & Neurobiology 145: 265–277
Noe-Nygaard, N., Price, T. D. & Hede, S. U. (2005). Diet of aurochs and early cattle in southern Scandinavia: evidence from 15N and 13C stable isotopes. Journal of Archaeological Science 32: 855–871.
Pacheco, M. A., Concepción, J. L., Rangel, J. D., Ruiz, M. C., Michelangeli, F. & Domínguez-Bello, M. G. (2007). Stomach lysozymes of the three-toed sloth (Bradypus variegatus), an arboreal folivore from the Neotropics. Comparative Biochemistry and Physiology A 147: 808–819.
Pérez-Barberìa, F. J., Elston, D. A., Gordon, I. J. & Illius, A. W. (2004). The evolution of phylogenetic differences in the efficiency of digestion in ruminants. Proceedings of the Royal Society B 271: 1081–1090.
Pujaningsih, R. I., Sutrisno, C. I., Supriondho, Y., et al. (2009). Diet composition of anoa (Bubalus spp.) studied using direct observation and dung analysis method in their habitat. Journal of the Indonesian Tropical Animal Agriculture 34: 223–228.
Rivals, F., Solounias, N. & Mihlbachler, M. C. (2007). Evidence for geographic variation in the diets of late Pleistocene and early Holocene Bison in North America, and differences from the diets of recent Bison. Quaternary Research 68: 338–346.
Schulz, E. & Kaiser, T. M. (2007). Feeding strategy of the Urus Bos primigenius from the Holocene of Denmark. Courier Forschungsinstitut Senckenberg 259: 155–164.
Sutherland, T. M. (1988) Particle separation in the forestomach of sheep. In Aspects of Digestive Physiology in Ruminants, pp. 43–73. Eds. Dobson, A. & Dobson, M. J.Ithaca, NY: Cornell University Press.
Thilenius, J. F. & Hungerford, K. E. (1967). Browse use by cattle and deer in northern Idaho. Journal of Wildlife Management 31: 141–145.
Van Wieren, S. E. (1996) Digestive strategies in ruminants and nonruminants, Thesis Landbouw, University of Wageningen.
Woodall, P. F. & Skinner, J. D. (1993). Dimensions of the intestine, diet and faecal water loss in some African antelope. Journal of Zoology 229: 457–471.