Skip to main content Accessibility help
×
Home
  • Print publication year: 2017
  • Online publication date: November 2017

34 - A Genomic Perspective on Wild Boar Demography and Evolution

from Part III - Conservation and Management
Ai, H., Fang, X., Yang, B., et al. (2015). Adaptation and possible ancient interspecies introgression in pigs identified by whole-genome sequencing. Nature Genetics 47: 217225.
Amaral, A. J., Megens, H. J., Crooijmans, R. P. M. A., Heuven, H. C. M. & Groenen, M. A. M. (2008). Linkage disequilibrium decay and haplotype block structure in the pig. Genetics 179: 569579.
Artois, M., Depner, K. R., Guberti, V., et al. (2002). Classical swine fever (hog cholera) in wild boar in Europe. Scientific and Technical Reviews 21: 287303.
Balick, D. J., Do, R., Cassa, C. A., Reich, D. & Sunyaev, S. R. (2015). Dominance of deleterious alleles controls the response to a population bottleneck. PLoS Genetics 11: e1005436.
Booth, W. D. (1995). Wild boar farming in the United Kingdom. IBEX Journal of Mountain Ecology 3: 245248.
Bosse, M. (2015). The hybrid nature of pig genomes: unraveling the mosaic haplotype structure in wild and commercial Sus scrofa populations. Doctoral thesis. Wageningen University. Retrieved from http://edepot.wur.nl/338856.
Bosse, M., Megens, H. J., Madsen, O., et al. (2012). Regions of homozygosity in the porcine genome: consequence of demography and the recombination landscape. PLoS Genetics 8: e1003100.
Bosse, M., Madsen, O., Megens, H. J., et al. (2014a). Hybrid origin of European commercial pigs examined by an in-depth haplotype analysis on chromosome 1. Frontiers in Genetics 5: 442.
Bosse, M., Megens, H. J., Frantz, L. A. F., et al. (2014b). Genomic analysis reveals selection for Asian genes in European pigs following human-mediated introgression. Nature Communications 5: 4392.
Bosse, M., Megens, H. J., Madsen, O., et al. (2014c). Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations. Molecular Ecology 23: 40894102.
Bosse, M., Megens, H. J., Madsen, O., (2015). Using genome-wide measures of coancestry to maintain diversity and fitness in endangered and domestic pig populations. Genome Research 25: 970981.
Cahill, S., Llimona, F. & Gràcia, J. (2003). Spacing and nocturnal activity of wild boar Sus scrofa in a Mediterranean metropolitan park. Wildlife Biology 9(Suppl. 1): 313.
Conedera, G., Ustulin, M., Barco, L., et al. (2014). Outbreak of atypical Salmonella choleraesuis in wild boars in North Eastern Italy. In Paulsen, P., Bauer, A. & Smulders, F. J. M. (eds.), Trends in game meat hygiene: from forest to fork. Wageningen: Wageningen Academic Publishers, pp. 151160.
Delibes-Mateos, M. & Delibes, A. (2013). Pets becoming established in the wild: free-living Vietnamese potbellied pigs in Spain. Animal Biodiversity and Conservation 36: 209215.
Fang, M. & Andersson, L. (2006). Mitochondrial diversity in European and Chinese pigs is consistent with population expansions that occurred prior to domestication. Proceedings of the Royal Society B 273: 18031810.
Fernández, A. I., Muñoz, M., Alves, E., et al. (2014). Recombination of the porcine X chromosome: a high density linkage map. BMC Genetics 15: 148.
Ferreira, E., Souto, L., Soares, A. M. V. M. & Fonseca, C. (2009). Genetic structure of the wild boar population in Portugal: evidence of a recent bottleneck. Mammalian Biology 74: 274285.
Fisher, R. A. (1930). The genetical theory of natural selection. Oxford: Clarendon Press.
Fonseca, C. (2004). Population dynamics and management of wild boar (Sus scrofa L.) in Central Portugal and Southeastern Poland. Doctoral thesis. University of Aveiro, Portugal.
Frantz, A. C., Zachos, F. E., Kirschning, J., et al. (2012). Genetic evidence for introgression between domestic pigs and wild boars (Sus scrofa) in Belgium and Luxembourg: a comparative approach with multiple marker systems. Biological Journal of the Linnean Society 110: 104115.
Frantz, L. A. F. (2015). Speciation and domestication in Suiformes: a genomic perspective. Doctoral thesis. Wageningen University.
Frantz, L. A. F., Schraiber, J. G., Madsen, O., et al. (2013). Genome sequencing reveals fine scale diversification and reticulation history during speciation in Sus. Genome Biology 14: R107.
Frantz, L. A. F., Madsen, O., Megens, H. J., Groenen, M. A. M. & Lohse, K. (2014). Testing models of speciation from genome sequences: divergence and asymmetric admixture in Island South-East Asian Sus species during the Plio–Pleistocene climatic fluctuations. Molecular Ecology 23: 55665574.
Frantz, L. A., Schraiber, J. G., Madsen, O., et al. (2015a). Evidence of long-term gene flow and selection during domestication from analyses of Eurasian wild and domestic pig genomes. Nature Genetics 47: 11411148.
Frantz, L. A., Madsen, O., Megens, H. J., et al. (2015b). Evolution of Tibetan wild boars. Nature Genetics 47: 188189.
Frantz, L., Meijaard, E., Gongora, J., et al. (2016). The revolution of Suidae. Annual Review of Animal Biosciences 4: 6185.
Fu, Y. X. & Li, W. H. (1993). Statistical tests of neutrality of mutations. Genetics 133: 693709.
Funk, S. M., Verma, S. K., Larson, G., et al. (2007). The pygmy hog is a unique genus: 19th century taxonomists got it right first time round. Molecular Phylogenetics and Evolution 45: 427436.
Garza, J. C. & Williamson, E. G. (2001). Detection of reduction in population size using data from microsatellite loci. Molecular Ecology 10: 305318.
Gattepaille, L. M., Jakobsson, M. & Blum, M. G. (2013). Inferring population size changes with sequence and SNP data: lessons from human bottlenecks. Heredity 110: 409419.
Ghigi, A. (1911). Ricerche faunistiche e sistematiche sui mammiferi d'Italia che formano oggetto di caccia. Natura 2: 289337.
Giuffra, E., Kijas, J.M., Amarger, V., et al. (2000). The origin of the domestic pig: independent domestication and subsequent introgression. Genetics 154: 17851791.
Goedbloed, D. J., Megens, H. J., Van Hooft, P., et al. (2013a). Genome-wide single nucleotide polymorphism analysis reveals recent genetic introgression from domestic pigs into Northwest European wild boar populations. Molecular Ecology 22: 856866.
Goedbloed, D. J., van Hooft, P., Megens, H. J., et al. (2013b). Reintroductions and genetic introgression from domestic pigs have shaped the genetic population structure of Northwest European wild boar. BMC Genetics 14: 43.
Goedbloed, D. J., van Hooft, P., Lutz, W., et al. (2015). Increased Mycoplasma hyopneumoniae disease prevalence in domestic hybrids among free-living wild boar. Ecohealth 12: 571579.
Gortázar, C., Vicente, J., Fierro, Y., et al. (2002). Natural Aujeszky's disease in a Spanish wild boar population. Annals of the New York Academy of Science 969: 210212.
Goulding, M. (2011). Native or alien? The case of the wild boar in Britain. In Rotherham, I. D. & Lambert, R. A. (eds.), Invasive and introduced plants and animals. Human perceptions, attitudes and approaches to management. Abingdon: Earthscan from Routledge, pp. 289300.
Groenen, M. A. M., Archibald, A. L., Uenishi, H., et al. (2012). Analyses of pig genomes provide insight into porcine demography and evolution. Nature 491: 393398.
Groves, C. P. & Grubb, P. (2011). Ungulate taxonomy. Baltimore, MD: Johns Hopkins University Press.
Hajji, G. E. M. & Zachos, F. E. (2011). Mitochondrial and nuclear DNA analyses reveal pronounced genetic structuring in Tunisian wild boar Sus scrofa. European Journal of Wildlife Research 57: 449456.
Harris, S. & Yalden, D. W. (2008). Mammals of the British Isles: handbook. London: Mammal Society.
Herrero-Medrano, J. M., Megens, H. J., Groenen, M. A., et al. (2013). Conservation genomic analysis of domestic and wild pig populations from the Iberian Peninsula. BMC Genetics 14: 106.
Hoelzel, R. A. (1999). Impact of population bottlenecks on genetic variation and the importance of life-history; a case study of the northern elephant seal. Biological Journal of the Linnean Society 68: 2339.
Iacolina, L., Scandura, M., Goedbloed, D. J., et al. (2016). Genomic diversity and differentiation of a managed island wild boar population. Heredity 116: 6067.
Knight, J. (2003). Wild boar. In Waiting for wolves in Japan: an anthropological study of people–wildlife relations. New York, NY: Oxford University Press.
Jordt, A. M., Lange, M., Kramer-Schadt, S., et al. (2015). Spatio-temporal modeling of the invasive potential of wild boar – a conflict-prone species-using multi-source citizen science data. Preventive Veterinary Medicine 124: 3444.
Larson, G., Dobney, K., Albarella, U., et al. (2005). Worldwide phylogeography of wild boar reveals multiple centers of pig domestication. Science 307: 16181621.
Larson, G., Albarella, U., Dobney, K., et al. (2007). Ancient DNA, pig domestication, and the spread of the Neolithic into Europe. Proceedings of the National Academy of Sciences of the USA 104: 1527615281.
Li, M., Tian, S., Jin, L., et al. (2013). Genomic analyses identify distinct patterns of selection in domesticated pigs and Tibetan wild boars. Nature Genetics 45: 14311438.
Manunza, A., Zidi, A., Yeghoyan, S., et al. (2013). A high throughput genotyping approach reveals distinctive autosomal genetic signatures for European and Near Eastern wild boar. PLoS ONE 8: e55891.
Manunza, A., Amills, M., Noce, A., et al. (2016). Romanian wild boars and Mangalitza pigs have a European ancestry and their genomes harbour genetic signatures compatible with past population bottlenecks. Scientific Reports 6: 29913.
Massei, G. & Genov, P. (2004). The environmental impact of wild boar. Galemys 16: 135145.
Matiuti, M., Bogdan, A.T., Crainiceanu, E. & Matiuti, C. (2010). Research regarding the hybrids resulted from the domestic pig and the wild boar. Scientific Papers in Animal Science and Biotechnologies 43: 188191.
McDevitt, A. D., Carden, R. F., Coscia, I. & Frantz, A. C. (2013). Are wild boars roaming Ireland once more? European Journal of Wildlife Research 59(5): 761764.
Megens, H. J., Crooijmans, R. P. M. A., San Cristobal, M., et al. (2008). Biodiversity of pig breeds from China and Europe estimated from pooled DNA samples: differences in microsatellite variation between two areas of domestication. Genetics, Selection, Evolution 40: 103128.
Murakami, K., Yoshikawa, S., Konishi, S., et al. (2014). Evaluation of genetic introgression from domesticated pigs into the Ryukyu wild boar population on Iriomote Island in Japan. Animal Genetics 45: 517523.
Oliver, W. & Leus, K. (2008). Sus scrofa. The IUCN Red List of Threatened Species 2008: e.T41775A10559847. http://dx.doi.org/10.2305/IUCN.UK.2008.RLTS.T41775A 10559847.en.
Ottoni, C., Flink, L. G., Evin, A., et al. (2013). Pig domestication and human-mediated dispersal in western Eurasia revealed through ancient DNA and geometric morphometrics. Molecular Biology and Evolution 30: 824832.
Porter, V. (1993). Pigs: a handbook to the breeds of the world. New York, NY: Cornell University Press.
Ramírez, O., Ojeda, A., Tomàs, A., et al. (2009). Integrating Y-chromosome, mitochondrial, and autosomal data to analyze the origin of pig breeds. Molecular Biology and Evolution 26: 20612072.
Ramos, A. M., Crooijmans, R. P., Affara, N. A., et al. (2009). Design of a high density SNP genotyping assay in the pig using SNPs identified and characterized by next generation sequencing technology. PLoS ONE 4: e6524.
Risco, D., Fernández-Llario, P., Cuesta, J. M., et al. (2013). Fatal outbreak of systemic pasteurellosis in a wild boar (Sus scrofa) population from southwest Spain. Journal of Veterinary Diagnostic Investigation 25: 791794.
Rosvold, J. & Andersen, R. (2008). Wild boar in Norway – is climate a limiting factor? NTNU Vitenskapsmuseet Rapport Zoologiske Serie 1: 123.
Rubin, C. J., Megens, H. J., Martinez Barrio, A., et al. (2012). Strong signatures of selection in the domestic pig genome. Proceedings of the National Academy of Sciences of the USA 109: 1952919536.
Scandura, M., Iacolina, L., Crestanello, B., et al. (2008). Ancient vs. recent processes as factors shaping the genetic variation of the European wild boar: are the effects of the last glaciation still detectable? Molecular Ecology 17: 174517462.
Scandura, M., Iacolina, L. & Apollonio, M. (2011). Genetic diversity in the European wild boar Sus scrofa: phylogeography, population structure and wild × domestic hybridization. Mammalian Reviews 41: 125137.
Slatkin, M. (2008). Linkage disequilibrium – understanding the evolutionary past and mapping the medical future. Nature Reviews in Genetics 9: 477485.
Tajima, F. (1989). Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics 123: 585595.
Vernesi, C., Crestanello, B., Pecchioli, E., et al. (2003). The genetic impact of demographic decline and reintroduction in the wild boar (Sus scrofa): a microsatellite analysis. Molecular Ecology 12: 585595.
Vitti, J. J., Grossman, S. R. & Sabeti, P. C. (2013). Detecting natural selection in genomic data. Annual Reviews in Genetics 47: 97120.
White, S. (2011). From globalized pig breeds to capitalist pigs: a study in animal cultures and evolutionary history. Environmental History 16: 94120.
Wilkinson, S., Lu, Z. H., Megens, H. J., et al. (2013). Signatures of diversifying selection in European pig breeds. PLoS Genetics 9: e1003453.
Yalden, D. (1999). The history of British mammals. London: Poyser Natural History.