Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-cfpbc Total loading time: 0 Render date: 2024-04-23T18:02:59.666Z Has data issue: false hasContentIssue false

10 - Biological consequences for bacteria of homologous recombination

Published online by Cambridge University Press:  06 August 2009

Diarmaid Hughes
Affiliation:
Department of Cell and Molecular Biology
Tobias Norström
Affiliation:
Department of Cell and Molecular Biology
Peter Mullany
Affiliation:
University College London
Get access

Summary

The mechanisms of homologous recombination in bacteria (described in Chapter 1) are ancient and highly conserved. The basic requirement is two DNA sequences that share sequence identity over a minimum distance, typically at least 40 to 50 nucleotides (Shen and Huang, 1986; Watt et al., 1985). These identical sequences are brought together to create, and eventually resolve, a recombinant molecule, by the actions of enzymes such as RecA, RecBCD/RecF, and RuvABC, or their equivalents (Kowalczykowski et al., 1994). Homologous recombination serves several purposes in the cell. The most fundamental of these, according to current understanding, is to facilitate the completion of chromosome replication (Cox, 2001; Smith, 2001). Replication forks frequently stall or break, and homologous recombination can solve this problem using the sister homolog as a template (Kuzminov, 1995). A related problem is that after replication bacterial chromosomes are frequently entangled and require homologous recombination to disentangle them.

In addition to its housekeeping roles, homologous recombination can shuffle the order of genes in a genome by recombination between repetitive sequences. It can also facilitate the incorporation of foreign DNA, although this is also achieved by site-specific recombination (Ochman et al., 2000). Lateral DNA transfer in bacteria can alleviate the effects of Muller's ratchet (Andersson and Hughes, 1996; Muller, 1964), and provide bacteria with access to a very large gene pool potentially containing important innovative properties (Ochman et al., 2000).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2005

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Achaz, G., Coissac, E., Netter, P., and Rocha, E. P. C. (2003) Associations between inverted repeats and the structural evolution of bacterial genomes. Genetics 164, 1279–1289Google ScholarPubMed
Alokam, S., Liu, S. L., Said, K., and Sanderson, K. E. (2002) Inversions over the terminus region in Salmonella and Escherichia coli: IS200s as the sites of homologous recombination inverting the chromosome of Salmonella enterica serovar Typhi. J Bacteriol 184, 6190–6197CrossRefGoogle ScholarPubMed
Anderson, R. P., and Roth, J R. (1981) Spontaneous tandem genetic duplications in Salmonella typhimurium arise by unequal recombination between rRNA (rrn) cistrons. Proc. Natl. Acad. Sci. U S A 78, 3113–3117CrossRefGoogle ScholarPubMed
Anderson, R. P., Miller, C. G., and Roth, J. R. (1976) Tandem duplications of the histidine operon observed following generalized transduction in Salmonella typhimurium. J Mol Biol 105, 201–218CrossRefGoogle ScholarPubMed
Andersson, D. I., and Hughes, D. (1996) Muller's ratchet decreases fitness of a DNA-based microbe. Proc. Natl. Acad. Sci. U S A 93, 906–907CrossRefGoogle ScholarPubMed
Andersson, D. I., Slechta, E. S., and Roth, J. R. (1998) Evidence that gene amplification underlies adaptive mutability of the bacterial lac operon. Science 282, 1133–1135CrossRefGoogle ScholarPubMed
Barcus, V. A., Ghanekar, K., Yeo, M., Coffey, T. J., and Dowson, C. G. (1995) Genetics of high level penicillin resistance in clinical isolates of Streptococcus pneumoniae. FEMS Microbiol. Lett. 126, 299–303CrossRefGoogle ScholarPubMed
Bessen, D. E., and Hollingshead, S. K. (1994) Allelic polymorphism of emm loci provides evidence for horizontal gene spread in group A streptococci. Proc. Natl. Acad. Sci. U S A 91, 3280–3284CrossRefGoogle ScholarPubMed
Bowler, L. D., Zhang, Q.-Y., Riou, J. Y., and Spratt, B. G. (1994) Interspecies recombination between the penA genes of Neisseria meningitidis and commensal Neisseria species during the emergence of penicillin resistance in N. meningitidis: Natural events and laboratory simulation. J Bacteriol 176, 333–337CrossRefGoogle ScholarPubMed
Cairns, J., Overbaugh, J., and Miller, S. (1988) The origin of mutants. Nature 335, 142–145CrossRefGoogle ScholarPubMed
Campos, J., Fuste, M. C., Trujillo, G., Saez-Nieto, J., Vazquez, J., Loren, J. G., Vinas, M., and Spratt, B. G. (1992) Genetic diversity of penicillin-resistant Neisseria meningitidis. J. Clin. Infect. 166, 173–177CrossRefGoogle ScholarPubMed
Charlebois, R. L., and St. Jean, A. (1995) Supercoliing and map stability in the bacterial chromosome. J. Mol. Evol. 41, 15–23CrossRefGoogle ScholarPubMed
Claverys, J. P., Lefevre, J. C., and Sicard, A. M. (1980) Transformation of Streptococcus pneumoniae with S. pneumoniae-lambda phage hybrid DNA: Induction of deletions. Proc. Natl. Acad. Sci. U S A 77, 3534–3538CrossRefGoogle Scholar
Claverys, J.-P., Prudhomme, M., Mortier-Barrière, I., and Martin, B. (2000) Adaptation to the environment: Streptococcus pneumoniae, a paradigm for recombination-mediated genetic plasticity. Mol Microbiol 35, 251–259CrossRefGoogle ScholarPubMed
Coffey, T. J., Daniels, M., McDougal, L. K., Dowson, C. G., Tenover, F. C., and Spratt, B. G. (1995a) Genetic analysis of clinical isolates of streptococcus pneumoniae with high-level resistance to expanded-spectrum cephalosporins. Antimicrob. Agents Chemother. 39, 1306–1313CrossRefGoogle Scholar
Coffey, T. J., Dowson, C. G., Daniels, M., and Spratt, B. G. (1995b) Genetics and molecular biology of β-lactam-resistant pneumococci. Microb. Drug Resist. 1, 29–34CrossRefGoogle Scholar
Coffey, T. J., Enright, M. C., Daniels, M., Morana, J. K., Morana, R., Hryniewicz, W.. (1998) Recombinational exchanges at the capsular polysaccharide locus lead to frequent serotype changes among natural isolates of Streptococcus pneumoniae. Mol Microbiol 27, 73–83CrossRefGoogle ScholarPubMed
Cox, M. M. (2001) Recombinational DNA repair of damaged replication forks in Escherichia coli. Annu. Rev. Genet. 35, 53–82CrossRefGoogle ScholarPubMed
Denamur, E., Lecointre, G., Darlu, P., Tenaillon, O., Acquaviva, C., Sayada, C.. (2000) Evolutionary implications of the frequent horizontal transfer of mismatch repair genes. Cell 103, 711–721CrossRefGoogle ScholarPubMed
Deng, W., Burland, V., Plunkett, G., Boutin, A., Mayhew, G. F., Liss, P.. (2002) Genome sequence of Yersinia pestis KIM. J. Bacteriol. 184, 4601–4611CrossRefGoogle ScholarPubMed
Vries, J., and Wackernagel, W. (2002) Integration of foreign DNA during natural transformation of Acinetobacter sp. by homology-facilitated illegitimate recombination. Proc. Natl. Acad. Sci. U S A 99, 2094–2099CrossRefGoogle ScholarPubMed
Dowson, C. G., Coffey, T. J., Kell, C., and Whiley, R. A. (1993) Evolution of penicillin resistance in Streptococcus pneumoniae: The role of Streptococcus mitis in the formation of a low affinity PBOP2B in S. pneumoniae. Mol Microbiol 9, 635–643CrossRefGoogle ScholarPubMed
Dowson, C. G., Coffey, T. J., and Spratt, B. G. (1994) Origin and molecular epidemiology of penicillin-binding-protein-mediated resistance to β-lactam antibiotics. Trends Microbiol. 2, 361–366CrossRefGoogle ScholarPubMed
Dvornyk, V., Vinogradova, O., and Nevo, E. (2002) Long-term microclimatic stress causes rapid adaptive radiation of kaiABC clock gene family in a cyanobacterium, Nostoc linckia, from ‘Evolution Canyons’ I and II, Israel. Proc. Natl. Acad. Sci. U S A 99, 2082–2087CrossRefGoogle Scholar
Dworkin, J., Shedd, O. L., and Blaser, M. J. (1997) Nested DNA inversion of Campylobacter fetus S-layer genes is recA dependent. J Bacteriol 179, 7523–7529CrossRefGoogle Scholar
Edlund, T., and Normark, S. (1981) Recombination between short DNA homologies causes tandem duplication. Nature 292, 269–271CrossRefGoogle ScholarPubMed
Edlund, T., Grundström, T., and Normark, S. (1979) Isolation and characterization of DNA repetitions carrying the chromosomal beta-lactamase genes of Escherichia coli K-12. Mol Gen Genet 173, 115–125CrossRefGoogle Scholar
Edwards, R. A., Olsen, G. J., and Maloy, S. R. (2002) Comparative genomics of closely related salmonellae. Trends Microbiol. 10, 94–99CrossRefGoogle ScholarPubMed
Faruki, H., and Sparling, P. F. (1986) Genetics of resistance in a non-β-lactamase-producing gonococcus with relatively high-level penicillin resistance. Antimicrob. Agents Chemother. 30, 856–860CrossRefGoogle Scholar
Fermer, C., Kristiansen, B. E., Sköld, O., and Swedberg, G. (1995) Sulphonamide resistance in Neisseria meningitidis as defined by site-directed mutagenesis could have its origin in other species. J Bacteriol 177, 4669–4675CrossRefGoogle ScholarPubMed
Frank, A. C., Amiri, H., and Andersson, S. G. (2002) Genome deterioration: Loss of repeated sequences and accumulation of junk DNA. Genetica 115, 1–12CrossRefGoogle ScholarPubMed
Fr⊘holm, L. O., Kolst⊘, A.-B., Berner, J.-M., and Caugant, D. A. (2000) Genomic rearrangements in Neisseria meningitidis strains of the ET-5 complex. Curr. Microbiol. 40, 372–379Google Scholar
Fudyk, T. C., Maclean, I. W., Simonsen, J. N., Njagi, E. N., Kimani, J., Brunham, R. C., and Plummer, F. A. (1999) Genetic diversity and mosaicism at the por locus of Neisseria gonorrhoeae. J. Bacteriol. 181, 5591–5599Google ScholarPubMed
García, E., Llull, D., Munoz, R., Mollerach, M., and López, R. (2000) Current trends in capsular polysaccharide biosynthesis of Streptococcus pneumoniae. Res. Microbiol. 151, 429–435CrossRefGoogle ScholarPubMed
González, I., Georgiou, M., Alcaide, F., Balas, D., Liñares, J., and Campa, A. G. (1998) Fluoroquinolone resistance mutations in the parC, parE, and gyrA genes of clinical isolates of viridans group streptococci. Antimicrob. Agents Chemother. 42, 2792–2798Google ScholarPubMed
Haack, K. R., and Roth, J. R. (1995) Recombination between chromosomal IS200 elements supports frequent duplication formation in Salmonella typhimurium. Genetics 141, 1245–1252Google ScholarPubMed
Hacker, J., and Kaper, J. B. (2000) Pathogenicity islands and the evolution of microbes. Annu. Rev. Microbiol. 54, 641–679CrossRefGoogle ScholarPubMed
Hakenbeck, R. (1995) Target-mediated resistance to β-lactam antibiotics. Biochem. Pharmacol. 50, 1121–1127CrossRefGoogle ScholarPubMed
Hakenbeck, R. (2000) Transformation in Streptococcus pneumoniae: Mosaic genes and the regulation of competence. Res. Microbiol. 151, 453–456CrossRefGoogle ScholarPubMed
Hakenbeck, R., König, A., Kern, I., Linden, M., Keck, W., Billot-Klein, D.. (1998) Acquisition of five high-Mr penicillin-binding protein variants during transfer of high-level β-lactam resistance from Streptococcus mitis to Streptococcus pneumoniae. J Bacteriol 180, 1831–1840Google ScholarPubMed
Hakenbeck, R., Balmelle, N., Weber, B., Gardes, C., Keck, W., and Saizieu, A. (2001) Mosaic genes and mosaic chromosomes: Intra- and interspecies genomic variation of streptococcus pneumoniae. Infect. Immun. 69, 2477–2486CrossRefGoogle ScholarPubMed
Håverstein, L. S., Hakenbeck, R., and Gaustad, P. (1997) Natural competence in the genus Streptococcus: Evidence that streptococci can change pherotype by interspecies recombinational exchanges. J Bacteriol 179, 6589–6594CrossRefGoogle Scholar
Henderson, I. R., Owen, P., and Nataro, J. P. (1999) Molecular switches – The ON and OFF of bacterial phase variation. Mol Microbiol 33, 919–932CrossRefGoogle ScholarPubMed
Hendrickson, H., Slechta, E. S., Bergthorsson, U., Andersson, D. I., and Roth, J. R. (2002) Evidence that ‘directed’ adaptive mutation and general hypermutability result from growth with a selected gene amplification. Proc. Natl. Acad. Sci. U S A 99, 2164–2169CrossRefGoogle ScholarPubMed
Hill, C. W., and Harnish, B. W. (1982) Transposition of a chromosomal segment bounded by redundant rRNA genes into other rRNA genes in Escherichia coli. J Bacteriol 149, 449–457Google ScholarPubMed
Hobbs, M. M., Seiler, A., Achtman, M., and Cannon, J. G. (1994) Microevolution within a clonal population of pathogenic bacteria: Recombination, gene duplication and horizontal genetic exchange in the opa gene family of Neisseria meningitidis. Mol Microbiol 12, 171–180CrossRefGoogle ScholarPubMed
Hobbs, M. M, Malorny, B., Prasad, P., Morelli, G., Kusecek, B., Heckels, J. E.. (1998) Recombinational reassortment among opa genes from ET-37 complex Neisseria meningitidis isolates of diverse geographical origins. Microbiology 144, 157–166CrossRefGoogle ScholarPubMed
Hoiseth, S. K., Moxon, E. R., and Silver, R. P. (1986) Genes involved in Haemophilus influenzae type b capsule expression are part of an 18-kilobase tandem duplication. Proc. Natl. Acad. Sci. U S A 83, 1106–1110CrossRefGoogle ScholarPubMed
Hughes, D. (1999) Impact of homologous recombination on genome organization and stability. In Charlebois, R. L., ed. Organization of the prokaryotic genome, pp. 109–128. Washington, DC: American Society for MicrobiologyCrossRefGoogle Scholar
Hughes, D. (2000a). Co-evolution of the tuf genes links gene conversion with the generation of chromosomal inversions. J Mol Biol 297, 355–364CrossRefGoogle Scholar
Hughes, D. (2000b) Evaluating genome dynamics: The constraints on rearrangements within bacterial genomes. Genomebiology 1, 0006.1–0006.8Google Scholar
Humbert, O., Prudhomme, M., Hakenbeck, R., Dowson, C. G., and Claverys, J. P. (1995) Homeologous recombination and mismatch repair during transformation in Streptococcus pneumoniae: Saturation of the Hex mismatch repair system. Proc. Natl. Acad. Sci. U S A 92, 9052–9056CrossRefGoogle ScholarPubMed
Jessop, A. P., and Clugston, C. (1985) Amplification of the ArgF region in strain HfrP4X of E. coli K-12. Mol Gen Genet 201, 347–350CrossRefGoogle ScholarPubMed
Kato-Maeda, M., Rhee, J. T., Gingeras, T. R., Salmon, H., Drenkow, J., Smittipat, N., and Small, P. M. (2001) Comparing genomes within the species Mycobacterium tuberculosis. Genome Res. 11, 547–554CrossRefGoogle ScholarPubMed
Kehoe, M. A., Kapur, V., Whatmore, A. M., and Musser, J. M. (1996) Horizontal gene transfer among group A streptococci: Implications for pathogenesis and epidemiology. Trends Microbiol. 4, 436–443CrossRefGoogle Scholar
Kowalczykowski, S. C., Dixon, D. A., Eggleston, A. K., Lauder, S. D., and Rehauer, W. M. (1994) Biochemistry of homologous recombination in Escherichia coli. Microbiol. Rev. 58, 401–465Google ScholarPubMed
Kriz, P., Giorgini, D., Musilek, M., Larribe, M., and Taha, M.-K. (1999) Microevolution through DNA exchange among strains of Neisseria meningitidis isolated during an outbreak in the Czech Republic. Res. Microbiol. 150, 273–280CrossRefGoogle ScholarPubMed
Kusano, K., Sakagami, K., Yokochi, T., Naito, T., Tokinaga, Y., Ueda, E., and Kobayashi, I. (1997) A new type if illegitimate recombination is dependent on restriction and homologous interaction. J Bacteriol 179, 5380–5390CrossRefGoogle ScholarPubMed
Kuzminov, A. (1995) Collapse and repair of replication forks. Mol Microbiol 16, 373–384CrossRefGoogle ScholarPubMed
Lachenauer, C. S., Creti, R., Michel, J. L., and Madoff, L. C. (2000) Mosaicism in the alpha-like protein genes of group B streptococci. Proc. Natl. Acad. Sci. U S A 97, 9630–9635CrossRefGoogle ScholarPubMed
Lawrence, J. G., and Ochman, H. (1998) Molecular archaeology of the Escherichia coli genome. Proc. Natl. Acad. Sci. U S A 95, 9413–9417CrossRefGoogle ScholarPubMed
Lawrence, J. G., and Roth, J. R. (1996) Selfish operons: Horizontal transfer may drive the evolution of gene clusters. Genetics 143, 1843–1860Google ScholarPubMed
Li, J., Kasper, D. L., Ausubel, F. M., Rosner, B., and Michel, J. L. (1997) Inactivation of the α C protein antigen gene, bca, by a novel shuttle/suicide vector results in attenuation of virulence and immunity in group B Streptococcus. Proc. Natl. Acad. Sci. U S A 94, 13251–13256CrossRefGoogle Scholar
Lin, R. J., Capage, M., and Hill, C. W. (1984) A repetitive DNA sequence, rhs, responsible for duplications within the Escherichia coli K-12 chromosome. J Mol Biol 177, 1–18CrossRefGoogle ScholarPubMed
Liu, B., and Alberts, B. M. (1995) Head-on collision between a DNA replication apparatus and RNA polymerase transcription complex. Science 267, 1131–1136CrossRefGoogle ScholarPubMed
Liu, S.-L., and Sanderson, K. E. (1995a) Rearrangements in the genome of the bacterium Salmonella typhi. Proc. Natl. Acad. Sci. U S A 92, 1018–1022CrossRefGoogle Scholar
Liu, S.-L., and Sanderson, K. E. (1995b) I-CeuI reveals conservation of the genome of independent strains of Salmonella typhimurium. J Bacteriol 177, 3355–3357CrossRefGoogle Scholar
Liu, S.-L., and Sanderson, K. E. (1995c) The chromosome of Salmonella paratyphi A is inverted by recombination between rrnH and rrnG. J Bacteriol 177, 6585–6592CrossRefGoogle Scholar
Liu, S.-L., and Sanderson, K. E. (1996) Highly plastic chromosomal organization in Salmonella typhi. Proc. Natl. Acad. Sci. U S A 93, 10303–10308CrossRefGoogle ScholarPubMed
Liu, S.-L., and Sanderson, K. E. (1998) Homologous recombination between rrn operons rearranges the chromosome in host-specialized species of Salmonella. FEMS Microbiol. Lett. 164, 275–281.sCrossRefGoogle ScholarPubMed
Mahan, M. J., and Roth, J. R. (1988) Reciprocality of recombination events that rearrange the chromosome. Genetics 120, 23–35Google ScholarPubMed
Maiden, M. C. J. (1998) Horizontal genetic exchange, evolution, and spread of antibiotic resistance in bacteria. Clin. Infect. Dis. 27(Suppl 1), S12–S20CrossRefGoogle ScholarPubMed
Matic, I., Taddei, F., and Radman, M. (1996) Genetic barriers among bacteria. Trends Microbiol. 4, 69–72CrossRefGoogle ScholarPubMed
Meisel, L., Segall, A., and Roth, J. R. (1994) Construction of chromosomal rearrangements in Salmonella by transduction: Inversions of nonpermissive segments are not lethal. Genetics 137, 919–932Google Scholar
Muller, H. J. (1964) The relation of recombination to mutational advance. Mutat. Res. 1, 2–9CrossRefGoogle Scholar
Nakagawa, I., Kurokawa, K., Yamashita, A., Nakata, M., Tomiyasu, Y., Okahashi, N., Kawabata, S.. (2003) Genome sequence of an M3 strain on Streptococcus pyogenes reveals a large-scale genomic rearrangement in invasive strains and new insights into phage evolution. Genome Res. 13, 1042–1055CrossRefGoogle ScholarPubMed
Ochman, H., Lawrence, J. G., and Groisman, E. A. (2000) Lateral gene transfer and the nature of bacterial innovation. Nature 405, 299–304CrossRefGoogle ScholarPubMed
Oggioni, M. R., Dowson, C. G., Maynard Smith, J., Provvedi, R., and Pozzi, G. (1996) The tetracycline resistance gene tet(M) exhibits mosaic structure. Plasmid 35, 156–163CrossRefGoogle ScholarPubMed
Parkhill, J., Wren, B. W., Thomson, N. R., Titball, R. W., Holden, M. T., Prentice, M. B.. (2001) Genome sequence of Yersinia pestis, the causative agent of plague. Nature 413, 523–527CrossRefGoogle ScholarPubMed
Podbielski, A., Krebs, B., and Kaufhold, A. (1994) Genetic variability of the emm locus of the large vir regulon of group A streptococci: Potential intra- and intergenomic recombination events. Mol Gen Genet 243, 691–698Google Scholar
Prince, V. E., and Pickett, F. B. (2002) Splitting pairs: The diverging fates of duplicating genes. Nature Rev. Genet. 3, 827–837CrossRefGoogle Scholar
Prudhomme, M., Libante, V., and Claverys, J.-P. (2002) Homologous recombination at the border: Insertion-deletions and the trapping of foreign DNA in Streptococcus pneumoniae. Proc. Natl. Acad. Sci. U S A 99, 2100–2105CrossRefGoogle ScholarPubMed
Rådström, P., Fermer, C., Kristiansen, B.-E., Jenkins, A., and Sköld, O. (1992) Transformational exchanges in the dihydropterate synthase gene of Nesiieria meningitidis: A novel mechanism for the acquisition of sulfonamide resistance. J Bacteriol 174, 6386–6393CrossRefGoogle Scholar
Rebello, J.-E., François, V., and Louarn, J.-M. (1988) Detection and possible role of two large nondivisible zones on the Escherichia coli chromosome. Proc. Natl. Acad. Sci. U S A 85, 9391–9395CrossRefGoogle Scholar
Riehle, M. M., Bennett, A. F., and Long, A. D. (2001) Genetic architecture of thermal adaptation in Escherichia coli. Proc. Natl. Acad. Sci. U S A 98, 525–530CrossRefGoogle ScholarPubMed
Robinson, W. G., Old, L. A., Shah, D. S., and Russell, R. R. (2003) Chromosomal insertions and deletions in Streptococcus mutans. Caries Res. 37, 148–156CrossRefGoogle ScholarPubMed
Römling, U., Schmidt, K. D., and Tümmler, B. (1997) Large genome rearrangements discovered by the detailed analysis of 21 Pseudomonas aeruginosa clone C isolates found in environment and disease habitats. J Mol Biol 271, 386–404CrossRefGoogle ScholarPubMed
Rosenberg, S. M. (2001) Evolving responsively: Adaptive mutation. Nat. Rev. Genet. 2, 504–515CrossRefGoogle ScholarPubMed
Scheirer, K. E., and Higgins, N. P. (2001) Transcription induces a supercoil domain barrier in bacteriophage Mu. Biochimie 83, 155–159CrossRefGoogle ScholarPubMed
Schmid, M. B., and Roth, J. R. (1983) Selection and endpoint distribution of bacterial inversion mutations. Genetics 105, 539–557Google ScholarPubMed
Schmid, M. B., and Roth, J. R. (1987) Gene location affects expression level in Salmonella typhimurium. J Bacteriol 169, 2872–2875CrossRefGoogle ScholarPubMed
Schneider, D., Duperchy, E., Coursange, E., Lenski, R. E., and Blot, M. (2000) Long-term experimental evolution in Escherichia coli. IX. Characterization of insertion sequence-mediated mutations and rearrangements. Genetics 156, 477–488Google ScholarPubMed
Segall, A. M., and Roth, J. R. (1989) Recombination between homologies in direct and inverse orientation in the chromosome of Salmonella typhimurium: Intervals which are nonpermissive for inversion formation. Genetics 122, 737–747Google ScholarPubMed
Segall, A. M., Mahan, M. J., and Roth, J. R. (1988) Rearrangement of the bacterial chromosome: Forbidden inversions. Science 241, 1314–1318CrossRefGoogle ScholarPubMed
Seifert, H. S. (1996) Questions about gonococcal pilus and phase-antigenic variation. Mol Microbiol 21, 433–440CrossRefGoogle ScholarPubMed
Serkin, C. D., and Seifert, H. S. (1998) Frequency of pilin antigenic variation in Neisseria gonorrhoeae. J Bacteriol 180, 1955–1958Google ScholarPubMed
Shen, P., and Huang, H. V. (1986) Homologous recombination in Escherichia coli: Dependence on substrate length and homology. Genetics 112, 441–457Google ScholarPubMed
Shyamala, V., Schneider, E., and Ames, G. F. (1990) Tandem chromosomal duplications: Role of REP sequences in the recombination event at the joint-point. EMBO J. 9, 939–946Google Scholar
Sibold, C., Henrichsen, J., König, A., Martin, C., Chalkley, L., and Hakenbeck, R. (1994) Mosaic pbpX genes of major clones of penicillin-resistant streptococcus pneumoniae have evolved from pbpX genes of a penicillin-sensitive Streptococcus oralis. Mol Microbiol 12, 1013–1023CrossRefGoogle ScholarPubMed
Slechta, E. S., Bunny, K. L., Kugelberg, E., Kofoid, E., Andersson, D. I., and Roth, J. R. (2003) Adaptive mutation: General mutagenesis is not a programmed response to stress but results from rare amplification of dinB with lac. Proc. Natl. Acad. Sci. U S A 100, 12847–12852CrossRefGoogle Scholar
Smith, G. R. (2001) Homologous recombination near and far from DNA breaks: Alternative roles and contrasting views. Annu. Rev. Genet. 35, 243–274CrossRefGoogle Scholar
Sonti, R. V., and Roth, J. R. (1989) Role of gene duplications in the adaptation of Salmonella typhimurium to growth on limiting carbon sources. Genetics 123, 19–28Google ScholarPubMed
Spratt, B. G. (1988) Hybrid penicillin-binding proteins in penicillin-resistant strains of Neisseria gonorrhoeae. Nature 332, 173–176CrossRefGoogle ScholarPubMed
Spratt, B. G., Zhang, Q.-Y., Jones, D. M., Hutchison, A., Brannigan, J. A., and Dowson, C. G. (1989) Recruitment of a penicillin-binding protein gene from Neisseria flavescens during the emergence of penicillin-resistance in Neisseria meningitidis. Proc. Natl. Acad. Sci. U S A 86, 8988–8992CrossRefGoogle ScholarPubMed
Spratt, B. G., Bowler, L. D., Zhang, Q.-Y., Zhou, J., and Smith, J. M. (1992) Role of interspecies transfer of chromosomal genes in the evolution of penicillin resistance in pathogenic and commensal Neisseria species. J. Mol. Evol. 34, 115–125CrossRefGoogle ScholarPubMed
Stibitz, S., and Yang, M.-S. (1999) Genomic plasticity in natural populations of Bordetella pertussis. J Bacteriol 181, 5512–5515Google ScholarPubMed
Straus, D. S. (1975) Selection for a large genetic duplication in Salmonella typhimurium. Genetics 80, 227–237Google ScholarPubMed
Tamas, I., Klasson, L., Canbäck, B., Näslund, A. K., Eriksson, A-S., Wernegreen, J. J.. (2001) 50 Million years of genomic stasis in endosymbiotic bacteria. Science 296, 2376–2379CrossRefGoogle Scholar
Tepfer, D., Garcia-Gonzales, R., Mansouri, H., Seruga, M., Message, B., Leach, F., and Perica, M. C. (2003) Homology-dependent DNA transfer from plants to a soil bacterium under laboratory conditions: Implications in evolution and horizontal gene transfer. Transgenic Res. 12, 425–437CrossRefGoogle ScholarPubMed
Teyssier, C., Marchandin, H., Siméon De Bouchberg, M., Ramuz, M., and Jumas-Bilak, E. (2003) Atypical 16S rRNA gene copies in Ochrobactrum intermedium strains reveal a large genomic rearrangement by recombination between rrn copies. J Bacteriol 185, 2901–2909CrossRefGoogle ScholarPubMed
Townsend, S. M., Kramer, N. E., Edwards, R., Baker, S., Hamlin, N., Simmonds, M.. (2001) Salmonella enterica serovar Typhi possesses a unique repertoire of fimbrial gene sequences. Infect. Immun. 69, 2894–2901CrossRefGoogle ScholarPubMed
Tu, Z.-C., Ray, K. C., Thompson, S. A., and Blaser, M. J. (2001) Campylobacter fetus uses multiple loci for DNA inversion within the 5′ conserved regions of sap homologues. J Bacteriol 183, 6654–6661CrossRefGoogle Scholar
Vinella, D., Cashel, M., and D'ari, R. (2000) Selected amplification of the cell division genes ftsQ-ftsA-ftsZ in Escherichia coli. Genetics 156, 1483–1492Google ScholarPubMed
Watt, V. M., Ingles, C. J., Urdea, M. S., and Rutter, W. J. (1985) Homology requirements for recombination in Escherichia coli. Proc. Natl. Acad. Sci. U S A 82, 4768–4772CrossRefGoogle ScholarPubMed
Whatmore, A. M., and Kehoe, M. A. (1994) Horizontal gene transfer in the evolution of group A streptococcal emm-like genes: Gene mosaics and variation in Vir regulons. Mol. Microbiol. 11, 363–374CrossRefGoogle Scholar
Yanai, I., Camacho, C. J., and DeLisi, C. (2000) Predictions of gene family distributions in microbial genomes: Evolution by gene duplication and modification. Phys. Rev. Lett. 85, 2641–2644CrossRefGoogle ScholarPubMed
Zhang, Q.-Y., Jones, D. M., Saez-Nieto, J. A., Perez-Trallero, E., and Spratt, B. G. (1990) Genetic diversity of penicillin-binding protein 2 genes of penicillin-resistant strains of Neisseria meningitidis revealed by fingerprinting of amplified DNA. Antimicrob. Agents Chemother. 34, 1523–1528CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×