Skip to main content Accessibility help
  • Print publication year: 2019
  • Online publication date: January 2019

11 - A Robust t-Test

from Part II - How to Use Statistics


The t-test is a work horse of a lot of statistical analysis in HCI. There are a lot of myths about how robust it is to deviations from normality and other assumptions. However, when faced with practical data, particularly those coming from usability studies, the claims of robustness do not stand up. This chapter reevaluates the t-test as a test for an effect on the location of data. This leads to considering robust measures of location, such as trimmed or Winsorized means and associated Yuen–Welch test as a robust alternative to the traditional t-test.