Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-18T01:03:49.508Z Has data issue: false hasContentIssue false

SECTION THREE - α THALASSEMIA

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

At all stages of development, human hemoglobin is made up of two α-like and two β-like globin chains. In embryonic life the ζ and ε genes are fully active, producing embryonic hemoglobin (ζ2 ε2). Between 6 and 8 weeks of gestation there is a switch in expression so that the α- and γ-globin genes become fully expressed, producing fetal hemoglobin (α2γ2). Finally, at around the time of birth there is a further switch from γ- to β-globin expression so that in adult red cells HbA (α2β2) predominates.

In α thalassemia, the synthesis of α-globin chains is downregulated so that in fetal life there is anemia and the excess γ-globin chains form soluble tetramers (γ4) called Hb Bart's. In adult life, α thalassemia also causes anemia but, because by this time the γ to β switch is complete, the excess non–α chains assemble into β4 tetramers, called HbH. The degree of anemia and the amounts of the abnormal hemoglobins (Bart's and H) produced broadly reflect the degree to which α-globin synthesis has been downregulated.

We now know that normal individuals have four α-globin genes, arranged as linked pairs of genes at the tip of each copy of chromosome 16, written in shorthand as αα/αα. α Thalassemia most commonly results from the deletion of one (-α) or both (--) α genes from chromosome 16. Carriers of α thalassemia (-α/αα and --/αα) have mild hypochromic microcytic anemia and may produce detectable amounts of Hb Bart's at birth.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 239 - 240
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×