Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-16T17:32:28.545Z Has data issue: false hasContentIssue false

32 - Stem Cell Transplantation

from SECTION EIGHT - NEW APPROACHES TO THE TREATMENT OF HEMOGLOBINOPATHIES AND THALASSEMIA

Published online by Cambridge University Press:  03 May 2010

Martin H. Steinberg
Affiliation:
Boston University
Bernard G. Forget
Affiliation:
Yale University, Connecticut
Douglas R. Higgs
Affiliation:
MRC Institute of Molecular Medicine, University of Oxford
David J. Weatherall
Affiliation:
Albert Einstein College of Medicine, New York
Get access

Summary

INTRODUCTION

Homozygous β thalassemia is characterized by absent or defective β-globin chain synthesis. This defect causes imbalance in chain production and accumulation of unstable α-globin tetramers in red blood cells or their precursors, leading to intramedullary destruction, apoptosis and hemolytic anemia (chapter 17). Regular transfusions and iron chelation has, in developed countries, transformed this disease from one fatal in infancy to a chronic disease with prolonged survival. Medical treatment is expensive and requires a complex multidisciplinary approach. In underdeveloped countries, where most patients reside, thalassemia remains fatal early in life because of poor access to modern medical treatment. Curing β thalassemia by hematopoietic cell transplantation, with the cost efficiencies inherent in this approach, is therefore an attractive option.

As in β thalassemia major, the objective of hematopoietic cell transplantation for sickle cell disease is to replace recipient erythropoiesis, or to reduce its clinical impact, by the expression of donor β-globin chains. The clinical benefit of this cellular replacement is the elimination, or significant amelioration, of the clinical complications caused by polymerized sickle hemoglobin. More than a decade ago, the initial clinical trials of hematopoietic cell transplantation for sickle cell disease indicated that the replacement of donor for sickle erythropoiesis might eliminate not only the hematological manifestations of the underlying disorder, but also stabilize and even reduce the organ damage caused by recurrent vasoocclusion occlusion and hemolysis. As in malignant disorders, there is utility in assigning a risk-based approach to applying transplantation for sickle cell disease.

Type
Chapter
Information
Disorders of Hemoglobin
Genetics, Pathophysiology, and Clinical Management
, pp. 774 - 790
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Olivieri, NF, Brittenham, GM. Iron-chelating therapy and the treatment of thalassemia. Blood. 1997;89(3):739–761.Google ScholarPubMed
Giardini, C. Treatment of beta-thalassemia. Curr Opin Hematol. 1997;4(2):79–87.CrossRefGoogle ScholarPubMed
Cappellini, MD, Cohen, A, Piga, A, et al. A phase 3 study of deferasirox (ICL670), a once-daily oral iron chelator, in patients with beta-thalassemia. Blood. 2006;107(9):3455–3462.CrossRefGoogle Scholar
Bernaudin, F, Souillet, G, Vannier, JP, et al. Report of the French experience concerning 26 children transplanted for severe sickle cell disease. Bone Marrow Transplant. 1997;19(Suppl 2):112–115.Google Scholar
Vermylen, C, Cornu, G, Ferster, A, et al. Haematopoietic stem cell transplantation for sickle cell anaemia: the first 50 patients transplanted in Belgium. Bone Marrow Transplant. 1998; 22(1):1–6.CrossRefGoogle ScholarPubMed
Walters, MC, Patience, M, Leisenring, W, Eckman, JR, Scott, JP, Mentzer, WC, et al. Bone marrow transplantation for sickle cell disease. N Engl J Med. 1996;335(6):369–376.CrossRefGoogle ScholarPubMed
Walters, MC, Storb, R, Patience, M, et al. Impact of bone marrow transplantation for symptomatic sickle cell disease: an interim report. Blood. 2000;95(6):1918–1924.Google Scholar
Giardini, C. Ethical issue of bone marrow transplantation for thalassemia. Bone Marrow Transplant. 1995;15(5):657–8.Google ScholarPubMed
Thomas, ED, Buckner, CD, Sanders, JE, Papayannopoulou, T, Borgna-Pignatti, C, Stefano, P, et al. Marrow transplantation for thalassaemia. Lancet. 1982 Jul 31;2(8292):227–9.CrossRefGoogle ScholarPubMed
Lucarelli, G, Polchi, P, Izzi, T, Manna, M, Agostinelli, F, Delfini, C, et al. Allogeneic marrow transplantation for thalassemia. Exp Hematol. 1984 Sep;12(8):676–81.Google ScholarPubMed
Lucarelli, G, Polchi, P, Galimberti, M, et al. Marrow transplantation for thalassaemia following busulphan and cyclophosphamide. Lancet. 1985;1(8442):1355–1357.CrossRefGoogle ScholarPubMed
Lucarelli, G, Galimberti, M, Polchi, P, et al. Marrow transplantation in patients with advanced thalassemia. N Engl J Med. 1987;316(17):1050–1055.CrossRefGoogle ScholarPubMed
Lucarelli, G, Galimberti, M, Polchi, P, et al. Bone marrow transplantation in patients with thalassemia. N Engl J Med. 1990;322(7):417–421.CrossRefGoogle ScholarPubMed
Lucarelli, G, Galimberti, M, Polchi, P, et al. Bone marrow transplantation in thalassemia. Hematol Oncol Clin North Am. 1991;5(3):549–556.CrossRefGoogle ScholarPubMed
Angelucci, E, Baronciani, D, Lucarelli, G, et al. Needle liver biopsy in thalassaemia: analyses of diagnostic accuracy and safety in 1184 consecutive biopsies. Br J Haematol. 1995;89(4): 757–761.CrossRefGoogle ScholarPubMed
Schrier, SL, Angelucci, E. New strategies in the treatment of the thalassemias. Annu Rev Med. 2005;56:157–171.CrossRefGoogle ScholarPubMed
Lucarelli, G, Clift, RA, Galimberti, M, et al. Marrow transplantation for patients with thalassemia: results in class 3 patients. Blood. 1996;87(5):2082–2088.Google ScholarPubMed
Lucarelli, G, Clift, RA, Galimberti, M, et al. Bone marrow transplantation in adult thalassemic patients. Blood. 1999;93(4):1164–1167.Google ScholarPubMed
Sodani, P, Gaziev, D, Polchi, P, et al. New approach for bone marrow transplantation in patients with class 3 thalassemia aged younger than 17 years. Blood. 2004;104(4):1201–1203.CrossRefGoogle ScholarPubMed
Locatelli, F, Rocha, V, Reed, W, et al. Related umbilical cord blood transplantation in patients with thalassemia and sickle cell disease. Blood. 2003;101(6):2137–2143.CrossRefGoogle ScholarPubMed
Lawson, SE, Roberts, IA, Amrolia, P, Dokal, I, Szydlo, R, Darbyshire, PJ. Bone marrow transplantation for beta-thalassaemia major: the UK experience in two paediatric centres. Br J Haematol. 2003;120(2):289–295.CrossRefGoogle ScholarPubMed
Delfini, C, Donati, M, Marchionni, D, et al. HLA compatibility for patients with thalassemia: implications for bone marrow transplantation. Int J Cell Cloning. 1986;4(4):274–278.CrossRefGoogle ScholarPubMed
Gaziev, D, Galimberti, M, Lucarelli, G, et al. Bone marrow transplantation from alternative donors for thalassemia: HLA-phenotypically identical relative and HLA-nonidentical sibling or parent transplants. Bone Marrow Transplant. 2000;25(8):815–821.CrossRefGoogle ScholarPubMed
Sullivan, KM, Anasetti, C, Horowitz, M, et al. Unrelated and HLA-nonidentical related donor marrow transplantation for thalassemia and leukemia. A combined report from the Seattle Marrow Transplant Team and the International Bone Marrow Transplant Registry. Ann NY Acad Sci. 1998;850:312–324.CrossRefGoogle ScholarPubMed
Nasa, G, Argiolu, F, Giardini, C, et al. Unrelated bone marrow transplantation for beta-thalassemia patients: The experience of the Italian Bone Marrow Transplant Group. Ann NY Acad Sci. 2005;1054:186–195.CrossRefGoogle ScholarPubMed
Baronciani, D, Angelucci, E, Agostinelli, F, et al. Bone marrow transplantation in a thalassemia patient with congenital heart disease. Bone Marrow Transplant. 1996;17(1):119–120.Google Scholar
Zurlo, MG, Stefano, P, Borgna-Pignatti, C, et al. Survival and causes of death in thalassaemia major. Lancet. 1989; 2(8653):27–30.CrossRefGoogle ScholarPubMed
Modell, B, Khan, M, Darlison, M. Survival in beta-thalassaemia major in the UK: data from the UK Thalassaemia Register. Lancet. 2000;355(9220):2051–2052.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C, Rugolotto, S, Stefano, P, et al. Survival and complications in patients with thalassemia major treated with transfusion and deferoxamine. Haematologica. 2004;89(10):1187–1193.Google ScholarPubMed
Borgna-Pignatti, C, Cappellini, MD, Stefano, P, et al. Cardiac morbidity and mortality in deferoxamine- or deferipronetreated patients with thalassemia major. Blood. 2006;107(9):3733–3737.CrossRefGoogle ScholarPubMed
Splendiani, GTC, Mazzarella, V, Casciani, CU, et al. Deferoxamine in thalassemia major. N Engl J Med. 1995;332:270–273.Google ScholarPubMed
Andreani, M, Nesci, S, Lucarelli, G, et al. Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplant. 2000;25(4):401–404.CrossRefGoogle ScholarPubMed
Gaziev, D, Polchi, P, Galimberti, M, et al. Graft-versus-host disease after bone marrow transplantation for thalassemia: an analysis of incidence and risk factors. Transplantation. 1997;63(6):854–860.CrossRefGoogle ScholarPubMed
Baronciani, D, Angelucci, E, Polchi, P, et al. An unusual marrow transplant complication: cardiac myxoma. Bone Marrow Transplant. 1998;21(8):825–827.CrossRefGoogle ScholarPubMed
Erer, B, Angelucci, E, Muretto, P, et al. Kaposi's sarcoma after allogeneic bone marrow transplantation. Bone Marrow Transplant. 1997;19(6):629–631.CrossRefGoogle ScholarPubMed
Borgna-Pignatti, C, Rugolotto, S, Stefano, P, et al. Survival and disease complications in thalassemia major. Ann NY Acad Sci. 1998;850:227–231.CrossRefGoogle ScholarPubMed
Das Gupta, A, Nair, L, Shah, A, Barbhaya, SA. Association of hematologic malignancies with hemoglobinopathies. Am J Hematol. 1988;28(2):130–131.CrossRefGoogle ScholarPubMed
Miniero, R, Pastore, G, Saracco, P, Terracini, B. Homozygous beta thalassemia and cancer. Haematologica. 1985;70(1):78–79.Google ScholarPubMed
Curtis, RE, Rowlings, PA, Deeg, HJ, et al. Solid cancers after bone marrow transplantation. N Engl J Med. 1997;336(13):897–904.CrossRefGoogle ScholarPubMed
Niederau, C, Fischer, R, Sonnenberg, A, Stremmel, W, Trampisch, HJ, Strohmeyer, G. Survival and causes of death in cirrhotic and in noncirrhotic patients with primary hemochromatosis. N Engl J Med. 1985;313(20):1256–1262.CrossRefGoogle ScholarPubMed
Angelucci, E, Muretto, P, Nicolucci, A, et al. Effects of iron overload and hepatitis C virus positivity in determining progression of liver fibrosis in thalassemia following bone marrow transplantation. Blood. 2002;100(1):17–21.CrossRefGoogle ScholarPubMed
Angelucci, E, Muretto, P, Lucarelli, G, et al. Phlebotomy to reduce iron overload in patients cured of thalassemia by bone marrow transplantation. Italian Cooperative Group for Phlebotomy Treatment of Transplanted Thalassemia Patients. Blood. 1997;90(3):994–998.Google Scholar
Muretto, P, Angelucci, E, Lucarelli, G. Reversibility of cirrhosis in patients cured of thalassemia by bone marrow transplantation. Ann Intern Med. 2002;136(9):667–672.CrossRefGoogle ScholarPubMed
Giardini, C, Galimberti, M, Lucarelli, G, et al. Desferrioxamine therapy accelerates clearance of iron deposits after bone marrow transplantation for thalassaemia. Br J Haematol. 1995;89(4):868–873.CrossRefGoogle ScholarPubMed
Angelucci, E, Muretto, P, Lucarelli, G, et al. Treatment of iron overload in the “ex-thalassemic”. Report from the phlebotomy program. Ann NY Acad Sci. 1998;850:288–293.CrossRefGoogle ScholarPubMed
Giardini, C, Galimberti, M, Lucarelli, G, et al. Alpha-interferon treatment of chronic hepatitis C after bone marrow transplantation for homozygous beta-thalassemia. Bone Marrow Transplant. 1997;20(9):767–772.CrossRefGoogle ScholarPubMed
Sanctis, V, Eleftheriou, A, Malaventura, C. Prevalence of endocrine complications and short stature in patients with thalassaemia major: a multicenter study by the Thalassaemia International Federation (TIF). Pediatr Endocrinol Rev. 2004;2(Suppl 2):249–255.Google Scholar
Raiola, G, Galati, MC, Sanctis, V, et al. Growth and puberty in thalassemia major. J Pediatr Endocrinol Metab. 2003;16(Suppl 2):259–266.Google ScholarPubMed
Sanctis, V. Growth and puberty and its management in thalassaemia. Horm Res. 2002;58(Suppl 1):72–79.Google ScholarPubMed
Borgna-Pignatti, C, Marradi, P, Rugolotto, S, Marcolongo, A. Successful pregnancy after bone marrow transplantation for thalassaemia. Bone Marrow Transplant. 1996;18(1):235–236.Google ScholarPubMed
Hoppe, CC, Walters, MC. Bone marrow transplantation in sickle cell anemia. Curr Opin Oncol. 2001;13(2):85–90.CrossRefGoogle ScholarPubMed
Nietert, PJ, Abboud, MR, Silverstein, MD, Jackson, SM. Bone marrow transplantation versus periodic prophylactic blood transfusion in sickle cell patients at high risk of ischemic stroke: a decision analysis. Blood. 2000;95(10):3057–3064.Google ScholarPubMed
Nietert, PJ, Silverstein, MD, Abboud, MR. Sickle cell anaemia: epidemiology and cost of illness. Pharmacoeconomics. 2002; 20(6):357–366.CrossRefGoogle ScholarPubMed
Wayne, AS, Schoenike, SE, Pegelow, CH. Financial analysis of chronic transfusion for stroke prevention in sickle cell disease. Blood. 2000;96(7):2369–2372.Google ScholarPubMed
Woods, K, Karrison, T, Koshy, M, Patel, A, Friedmann, P, Cassel, C. Hospital utilization patterns and costs for adult sickle cell patients in Illinois. Public Health Rep. 1997;112(1):44–51.Google ScholarPubMed
Atkins, RC, Walters, MC. Haematopoietic cell transplantation in the treatment of sickle cell disease. Expert Opin Biol Ther. 2003;3(8):1215–1224.CrossRefGoogle ScholarPubMed
Cornu, G, Vermylen, C, Ferster, A, et al. Hematopoietic stem cell transplantation in sickle cell anemia. Arch Pediatr. 1999;6(Suppl 2):345s–347s.CrossRefGoogle ScholarPubMed
Mentzer, WC. Bone marrow transplantation for hemoglobinopathies. Curr Opin Hematol. 2000;7(2):95–100.CrossRefGoogle ScholarPubMed
Panepinto, JA, Walters, MC, Carreras, J, et al. Matched-related donor transplantation for sickle cell disease: report from the Center for International Blood and Transplant Research. Br J Haematol. 2007;137(5):479–485.CrossRefGoogle ScholarPubMed
Bernaudin, F, Socie, G, Kuentz, M, et al. Long-term results of related, myeloablative stem cell transplantation to cure sickle cell disease. Blood. 2007;110(7):2749–2756.CrossRefGoogle ScholarPubMed
Horan, JT, Liesveld, JL, Fenton, P, Blumberg, N, Walters, MC. Hematopoietic stem cell transplantation for multiply transfused patients with sickle cell disease and thalassemia after low-dose total body irradiation, fludarabine, and rabbit anti-thymocyte globulin. Bone Marrow Transplant. 2005;35(2):171–177.CrossRefGoogle ScholarPubMed
Andreani, M, Nesci, S, Lucarelli, G, et al. Long-term survival of ex-thalassemic patients with persistent mixed chimerism after bone marrow transplantation. Bone Marrow Transplant. 2000;25(4):401–404.CrossRefGoogle ScholarPubMed
Walters, MC, Patience, M, Leisenring, W, et al. Stable mixed hematopoietic chimerism after bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant. 2001;7(12):665–673.CrossRefGoogle ScholarPubMed
Iannone, R, Casella, JF, Fuchs, EJ, et al. Results of minimally toxic nonmyeloablative transplantation in patients with sickle cell anemia and beta-thalassemia. Biol Blood Marrow Transplant. 2003;9(8):519–528.CrossRefGoogle ScholarPubMed
Krishnamurti, L, Venkataramanan, R, Wu, C. A pilot study of hematopoietic transplantation for sickle cell disease following a nonmyeloablative conditioning regimen. Proceedings of the 27th Meeting of the National Sickle Cell Disease Program. 2004:172.Google Scholar
Krishnamurti, L, Wu, C, Baker, S, Goyal, R, Yeager, AM, Wagner, JE. Hematopoietic stem cell transplantation from a matched sibling donor for high risk patients with sickle cell disease using a reduced intensity conditioning regimen is well tolerated and can lead to long term stable engraftment. Proceedings of the 28th Meeting of the National Sickle Cell Disease Program. 2005:21.Google Scholar
Besien, K, Bartholomew, A, Stock, W, et al. Fludarabine-based conditioning for allogeneic transplantation in adults with sickle cell disease. Bone Marrow Transplant. 2000;26(4):445–449.CrossRefGoogle ScholarPubMed
Schleuning, M, Stoetzer, O, Waterhouse, C, Schlemmer, M, Ledderose, G, Kolb, HJ. Hematopoietic stem cell transplantation after reduced-intensity conditioning as treatment of sickle cell disease. Exp Hematol. 2002;30(1):7–10.CrossRefGoogle ScholarPubMed
Walters, M, Woolfrey, A, Torok-Storb, B, et al. Enrichment of donor erythroid cells after non-myeloablative bone marrow transplantation (BMT) for sickle cell anemia (sickle cell anemia). Blood. 2001;98(11):490a.Google Scholar
Wu, CJ, Gladwin, MT, Krishnamurti, L, et al. Mixed chimerism following nonmyeloablative stem cell transplantation for sickle cell disease prevents intravascular hemolysis and restores endothelial function. Blood. 2004;104(11):467a.Google Scholar
Shenoy, S, Grossman, WJ, DiPersio, J, et al. A novel reduced-intensity stem cell transplant regimen for nonmalignant disorders. Bone Marrow Transplant. 2005;35(4):345–352.CrossRefGoogle ScholarPubMed
Hernigou, P, Bernaudin, F, Reinert, P, Kuentz, M, Vernant, JP. Bone-marrow transplantation in sickle-cell disease. Effect on osteonecrosis: a case report with a four-year follow-up. J Bone Joint Surg Am. 1997;79(11):1726–1730.CrossRefGoogle ScholarPubMed
Ferster, A, Bujan, W, Corazza, F, et al. Bone marrow transplantation corrects the splenic reticuloendothelial dysfunction in sickle cell anemia. Blood. 1993;81(4):1102–1105.Google ScholarPubMed
Walters, MC, Sullivan, KM, Bernaudin, F, et al. Neurologic complications after allogeneic marrow transplantation for sickle cell anemia. Blood. 1995;85(4):879–884.Google ScholarPubMed
Ferster, A, Christophe, C, Dan, B, Devalck, C, Sariban, E. Neurologic complications after bone marrow transplantation for sickle cell anemia. Blood. 1995;86(1):408–409.Google ScholarPubMed
Abboud, MR, Jackson, SM, Barredo, J, Holden, KR, Cure, J, Laver, J. Neurologic complications following bone marrow transplantation for sickle cell disease. Bone Marrow Transplant. 1996;17(3):405–407.Google ScholarPubMed
Woodard, P, Helton, KJ, Khan, RB, et al. Brain parenchymal damage after haematopoietic stem cell transplantation for severe sickle cell disease. Br J Haematol. 2005;129(4):550–552.CrossRefGoogle ScholarPubMed
Singhal, A, Davies, P, Sahota, A, Thomas, PW, Serjeant, GR. Resting metabolic rate in homozygous sickle cell disease. Am J Clin Nutr. 1993;57(1):32–34.CrossRefGoogle ScholarPubMed
Wang, WC, Morales, KH, Scher, CD, et al. Effect of long-term transfusion on growth in children with sickle cell anemia: results of the STOP trial. J Pediatr. 2005;147(2):244–247.CrossRefGoogle ScholarPubMed
Eggleston, B, Patience, M, Edwards, S, et al. Effect of myeloablative bone marrow transplantation on growth in children with sickle cell anemia: results of the multicenter study of Hematopoietic Cell Transplantation for Sickle Cell Anemia. Br J Haematol. 2007;136(4):673–676.CrossRefGoogle Scholar
Wagner, JE, Kernan, NA, Steinbuch, M, Broxmeyer, HE, Gluckman, E. Allogeneic sibling umbilical-cord-blood transplantation in children with malignant and non-malignant disease. Lancet. 1995;346:214–219.CrossRefGoogle ScholarPubMed
Rocha, V, Wagner, JE, Sobocinski, KA, Klein, JP, Zhang, MJ, Horowitz, MM, et al. Graft-versus-host disease in children who have received a cord-blood or bone marrow transplant from an HLA-identical sibling. Eurocord and International Bone Marrow Transplant Registry Working Committee on Alternative Donor and Stem Cell Sources. N Engl J Med. 2000;342(25):1846–1854.CrossRefGoogle ScholarPubMed
Walters, MC, Quirolo, L, Trachtenberg, ET, et al. Sibling donor cord blood transplantation for thalassemia major: experience of the sibling donor cord blood program. Ann NY Acad Sci. 2005;1054:206–213.CrossRefGoogle ScholarPubMed
Adamkiewicz, TV, Mehta, PS, Boyer, MW, et al. Transplantation of unrelated placental blood cells in children with high-risk sickle cell disease. Bone Marrow Transplant. 2004;34(5):405–411.CrossRefGoogle ScholarPubMed
Mentzer, WC, Heller, S, Pearle, PR, Hackney, E, Vichinsky, E. Availability of related donors for bone marrow transplantation in sickle cell anemia. Am J Pediatr Hematol Oncol. 1994;16(1):27–29.Google ScholarPubMed
Walters, MC, Patience, M, Leisenring, W, et al. Barriers to bone marrow transplantation for sickle cell anemia. Biol Blood Marrow Transplant. 1996;2(2):100–104.Google ScholarPubMed
Krishnamurti, L, Abel, S, Maiers, M, Flesch, S. Availability of unrelated donors for hematopoietic stem cell transplantation for hemoglobinopathies. Bone Marrow Transplant. 2003;31(7):547–550.CrossRefGoogle ScholarPubMed
Maiers, M, Flesch, S. Unrelated donor hematopoietic stem cell transplantation for hemoglobinopathies facilitated by NMDP. National Marrow Donor Program: Minneapolis. 2002.Google Scholar
Adamkiewicz, TV, Boyer, MW, Bray, R, Haight, A, Yeager, AM. Identification of unrelated cord blood units for hematopoietic stem cell transplantation in children with sickle cell disease. J Pediatr Hematol Oncol. 2006;28(1):29–32.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×