Skip to main content Accessibility help
×
Home
  • Print publication year: 2019
  • Online publication date: July 2019

18 - Hardy–Littlewood Inequality

from Part 3 - Replacing Polydiscs by Other Balls

Summary

Littlewood’s and Bohnenblust-Hille’s inequalities (recall Chapter 6) bound certain sequence norms of the coefficients of a polynomial by a constant (not depending on the number of variables) times the supremum of the polynomial on the polydisc. A similar problem is handled here, replacing the polydisc by the unit ball of C^n with some p-norm. Optimal exponents (that depend on the degree of the polynomial and on p) are given. The proof relies on the interplay between homogeneous polynomials and multilinear mappings and an analogous inequality for multilinear mappings. This one is proved by giving a generalized mixed inequality that bounds a mixed norm of the coefficients of a matrix by the supremum on the p-balls of the associated multilinear mapping.