Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2015
  • Online publication date: August 2015

1 - CMOS technology scaling and its implications

[1] Moore, G. E., “Cramming more components onto integrated circuits,” Electronics, vol. 38, no. 8, 1965.
[2] Russell, R. M., “The CRAY-1 computer system,” Communications of the ACM, vol. 21, no. 1, 1978.
[3] Horowitz, M., “Computing's energy problem: (and what we can do about it),” in IEEE International Solid-State Circuits Conference Digest of Technical Papers, pp. 10–14, 2014.
[4]Wikipedia. Transistor count [online]. Available at: http://en.wikipedia.org/wiki/Transistor_count.
[5] Dennard, R. H., Gaensslen, F. H., Hwa-Nien, Y., Rideout, V. Leo, Bassous, E., and LeBlanc, A. R., “Design of ion-implanted MOSFET's with very small physical dimensions,” IEEE Journal of Solid-State Circuits, vol. SC-9, no. 5, 1974.
[6] Razavi, B., Design of Analog CMOS Integrated Circuits. McGraw-Hill, 2002.
[7] Jan, C.-H., Agostinelli, M., Deshpande, H.et al., “RF CMOS technology scaling in high-k/metal gate era for RF SoC (system-on-chip) applications,” in IEEE International Electron Devices Meeting Digest of Technical Papers, pp. 27.2.1–27.2.4, 2010.
[8] Lee, S., Johnson, J., Greene, B.et al., “Advanced modeling and optimization of high performance 32nm HKMG SOI CMOS for RF/analog SoC applications,” in IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 135–136, 2012.
[9] Jan, C.-H., Bai, P., Biswas, S.et al., “A 45nm low power system-on-chip technology with dual gate (logic and I/O) high-k/metal gate strained silicon transistors,” in IEEE International Electron Devices Meeting Digest of Technical Papers, pp. 637–640, 2008.
[10] Post, I., Akbar, M., Curello, G.et al., “A 65nm CMOS SOC technology featuring strained silicon transistors for RF applications,” in IEEE International Electron Devices Meeting Digest of Technical Papers, pp. 1–3, 2006.
[11] Plouchart, J.-O., Kim, J., Gross, J., Trzcinski, R., and Kun, W., “Scalability of SOI CMOS technology and circuit to millimeter wave performance,” in Proceedings of IEEE Compound Semiconductor Integrated Circuit Symposium, 2005.
[12] Kuhn, K., Basco, R., Becher, D.et al., “A comparison of state-of-the-art NMOS and SiGe HBT devices for analog/mixed-signal/RF circuit applications,” in IEEE Symposium on VLSI Technology Digest of Technical Papers, pp. 224–225, 2004.
[13]International Technology Roadmap for Semiconductors [online]. Available at: http://public.itrs.net.
[14] Wong, B. P., Mittel, A., Cao, Y., and Starr, G., Nano-CMOS Circuit and Physical Design. Wiley-Interscience, 2005.
[15] Iwai, H., “Roadmap for 22nm and beyond,” Microelectronic Engineering, vol. 86, no. 7–9, July, 2009.
[16] Richman, P., “Modulation of space-charge-limited current flow in insulated-gate field-effect tetrodes,” IEEE Transactions on Electron Devices, vol. ED-16, no. 9, Sep., 1969.
[17] Troutman, R. R., “VLSI limitations from drain-induced barrier lowering,” IEEE Transactions on Electron Devices, vol. ED-26, no. 4, Sep., 1979.
[18] Fiegna, C., Iwai, H., Wada, T., Saito, M., Sangiorgi, E., and Ricco, B., “Scaling the MOS transistor below 0.1μm: methodology, device structures, and technology requirements,” IEEE Transactions on Electron Devices, vol. 41, no. 6, Sep., 1994.
[19] Doyle, B. S., Datta, S., Doczy, M.et al., “High performance fully-depleted tri-gate CMOS transistors,” IEEE Electron Device Letters, vol. 24, no. 4, Apr., 2003.
[20] Singh, N., Agarwal, A., Bera, L. K.et al., “High-performance fully depleted silicon nanowire (diameter ≤ 5nm) gate-all-around CMOS devices,” IEEE Electron Device Letters, vol. 27, no. 5, May, 2006.
[21] Marchi, M.De, Sacchetto, D., Frache, S.et al., “Polarity control in double-gate, gate-all-around vertically stacked silicon nanowire FETs,” in IEEE International Electron Devices Meeting Digest of Technical Papers, pp. 8.4.1–8.4.4, 2012.
[22] Meyerson, B. S., “Innovation: the future of silicon technology,” Semico Conference, 2004.
[23] Kang, L., Lee, B. H., Qi, W.-J.et al., “Electrical characteristics of highly reliable ultrathin hafnium oxide gate dielectric,” IEEE Electron Device Letters, vol. 21, no. 4, 2000.
[24] Singh, V., “Litho and design: Moore close than Ever,” in ACM Proceedings of International Symposium on Physical Design, pp. 149–150, 2011.
[25] Lin, B. J., “The k3 coefficient in nonparaxial λ/NA scaling equations for resolution, depth of focus, and immersion lithography,” J. Micro/Nanolith. MEMS MOEMS, vol. 1, no. 1, pp. 7–12, Apr., 2002.
[26] Pforr, R., Wong, A., Ronse, K., and Hove, L.van den, “Feature biasing versus feature-assisted lithography – a comparison of proximity correction methods for 0.5*(λ/NA) lithography,” Proceedings of SPIE 2440, Optical/Laser Microlithography, vol. VIII, p. 150, May, 1995.
[27] Levenson, M. D., Viswanathan, N. S., and Simpson, R. A., “Improving resolution in photolithography with a phase-shifting mask,” IEEE Transactions on Electron Devices, vol. ED-23, no. 12, 1982.
[28] Ebihara, T.i, Levenson, M. D., Liu, W.et al., “Beyond k1=0.25 lithography: 70-nm L/S patterning using KrF scanners,” Proceedings of SPIE 5256, 23rd Annual BACUS Symposium on Photomask Technology, Dec., 2003.
[29] Banqiu, W. and Kumar, A., “Extreme ultraviolet lithography: a review,” Journal of Vacuum Science & Technology B, vol. 25, no. 6, pp. 1743–1761, 2007.
[30] Vieu, C., Carcenac, F., Pepin, A.et al., “Electron beam lithography: resolution limits and applications,” Elsevier Applied Surface Science, vol. 164, no. 1–4, pp. 111–117, 2000.
[31] Pelgrom, M. J. M., Duinmaijer, A. C. J., and Welbers, A. P. G., “Matching properties of MOS transistors,” IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433–1439, 1989.
[32] Mizuno, T., Okamura, J.-i., and Toriumi, A., “Experimental study of threshold voltage fluctuation due to statistical variation of channel dopant number in MOSFETs,” IEEE Transactions on Electron Devices, vol. 41, no. 11, 1994.
[33] Thompson, S., Anand, N., Armstrong, M.et al., “A 90nm logic technology featuring 50nm strained silicon channel transistors, 7 layers of Cu interconnects, low k ILD, and 1μm2 SRAM cell,” in IEEE International Electron Devices Meeting Digest of Technical Papers, pp. 3.2.1–3.2.4, 2002.
[34] Hook, T. B., Brown, J., Cottrell, P.et al., “Lateral ion implant straggle and mask proximity effect,” IEEE Transactions on Electron Devices, vol. 50, no. 9, 2003.
[35] Hsu, F.-C. and Chiu, K.-Y., “A comparative study of tunneling, substrate hot-electron and channel hot-electron injection induced degradation in thin-gate MOSFETs,” in IEEE International Electron Devices Meeting Digest of Technical Papers, pp. 96–99, 1984.
[36] Degraeve, R., Groeseneken, G., Bellens, R.et al., “New insights in the relation between electron trap generation and the statistical properties of oxide breakdown,” IEEE Transactions on Electron Devices, vol. 45, no. 4, Apr., 1998.
[37] Alam, M. A. and Mahapatra, S., “A comprehensive model of PMOS NBTI degradation,” Microelectronics Reliability, vol. 45, pp. 71–81, 2005.
[38] Reisinger, H., “NBTI: recent findings and controversial topics,” IEEE International Reliability Physics Symposium (IRPS), 2011.
[39] Ralls, K. S., Skocpol, W. J., Jackel, L. D.et al., “Discrete resistance switching in submicrometer silicon inversion layers: individual interface traps and low-frequency (1/f?) noise,” Physical Review Letters, vol. 52, no. 3, pp. 228–231, 1984.
[40] Hung, K. K., Ko, P. K., Hu, Chenming, and Cheng, Yiu Chung, “Random telegraph noise of deep-submicrometer MOSFETs,” IEEE Transactions on Electron Devices, vol. 11, no. 2, Feb., 1990.
[41] Uren, M. J., Day, D. J., and Kirton, M. J., “1/f and random telegraph noise in silicon metal-oxide-semiconductor field-effect transistors,” Applied Physics Letters, vol. 47, no. 11, Dec., 1985.