Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 10
  • Print publication year: 2010
  • Online publication date: June 2012

17 - Estuarine paleoenvironmental reconstructions using diatoms

from Part IV - Diatoms as indicators in marine and estuarine environments

Summary

Introduction

Paleoecology offers powerful techniques with which to study historical changes due to human influences in depositional environments, including estuaries and coastal wetlands. Diatoms are particularly useful in these endeavors, not only because they are preserved in the sediment record, but because they have a short reproductive rate and respond quickly to changes in nutrient availability and water-quality conditions. Diatoms are abundant in aquatic environments, generally cosmopolitan in distribution, and have a fairly well-studied taxonomy and ecology.

Paleoecological studies in estuarine and coastal environments have lagged behind paleolimnology, primarily because of the more dynamic nature and presumed invulnerability of coastal ecosystems. Estuaries are characterized by variability in salinity, sediment deposition, water currents and residence time, turbidity zones, and unique biogeochemistry of sediments. There is often mixture and transport of sediments after initial deposition, and differential silicification and preservation of diatom valves.

Historically, there has been a lack of appreciation for the magnitude and severity of human impacts on estuaries and other coastal ecosystems, and of how important these ecosystems are to human society. The demand for resources and the wastes generated as human populations grow will continue to cause cultural, economic, aesthetic, and environmental problems in coastal areas. Understanding the processes surrounding these problems is important for managing the continuing impacts of growing populations (see Costanza et al., 1997; Clark et al., 2001; Niemi et al., 2004).

References
Anderson, D. M., Glibert, P. M., & Burkholder, J. M. (2002). Harmful algal blooms and eutrophication: nutrient sources, composition and consequences. Estuaries, 25, 704–26.
Anderson, N. J. & Vos, P. (1992). Learning from the past: diatoms as palaeoecological indicators of changes in marine environments. Netherlands Journal of Aquatic Ecology, 26, 19–30.
Appleby, P. G. (2001). Chronostratigraphic techniques in recent sediments. In Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring and Chronological Techniques, ed. Last, W. M. & Smol, J. P., New York: Springer, pp. 171–203.
Armitage, A. R., Frankovich, T. A., Heck, K. L., & Fourqurean, J. W. (2005). Experimental nutrient enrichment causes complex changes in seagrass, microalgae, and macroalgae community structure in Florida Bay. Estuaries, 28, 422–34.
Balcom, N. & Howell, P. (2006). Responding to a resource disaster: American lobsters in Long Island Sound 1999–2004. Connecticut Sea Grant Publication, CTSG-06–02.
Bao, R., Alonso, A., Delgado, C., & Pagés, J. L. (2007). Identification of the main driving mechanisms in the evolution of a small coastal wetland (Traba, Galicia, NW Spain) since its origin 5700 cal yr BP. Palaeogeography, Palaeoclimatology, Palaeoecology, 247, 296–312.
Barker, P., Fontes, J.-C., Gasse, F., & Druart, J.-C. (1994). Experimental dissolution of diatom silica in concentrated salt solutions and implications for paleoenvironmental reconstruction. Limnology and Oceanography, 39, 99–110.
Battarbee, R. W., Jones, V. J., Flower, R. J., et al. (2001). Diatoms. In Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators, ed. Smol, J. P., Birks, H. J. B. & Last, W. M., Dordrecht: Kluwer Academic Publishers, pp. 155–202.
Bell, J. D. & Westoby, M. (1986). Abundance of macrofauna in dense seagrass is due to habitat preference, not predation. Oecologia, 68, 205–9.
Birks, H. J. B. (1995). Quantitative paleoenvironmetal reconstructions. In Statistical Modelling of Quaternary Science Data, Technical Guide No. 5, ed. Maddy, D. & Brew, J. S., Cambridge: Quaternary Research Association, pp. 161–236.
,Blue Ribbon Study Commission on Agricultural Waste (1996). Report to the 1995 General Assembly of North Carolina 1996 regular session, Raleigh, NC: North Carolina Legislative Research Commission.
Boesch, D. F. (2002). Challenges and opportunities for science in reducing nutrient over-enrichment of coastal ecosystems. Estuaries, 25, 886–900.
Boström, C., Bonsdorff, E., Kangas, P., & Norkko, A. (2002). Long-term changes of a brackish-water eelgrass (Zostera marina L.) community indicate effects of coastal eutrophication. Estuaries, Coastal and Shelf Science, 55, 795–804.
Boyer, E.W., Goodale, C. L., Jaworski, N. A., & Haworth, R.W. (2002). Anthropogenic nitrogen sources and relationships to riverine nitrogen export in the northeastern U.S.A. Biogeochemistry, 57, 137–69.
Brandenberger, J. M., Crecelius, E. A., & Louchouarn, P. (2008a). Historical inputs and natural recovery rates of heavy metals and organic biomarkers in Puget Sound during the 20th century. Environmental Science and Technology, 42, 6786–90.
Brandenberger, J. M., Crecelius, E. A., Louchouarn, P., et al. (2008b). Reconstructing trends in hypoxia using multiple paleoecological indicators recorded in sediment cores from Puget Sound, WA. National Oceanic and Atmospheric Administration, Pacific Northwest National Laboratory Report No. PNWD-4013.
Brewster-Wingard, G. L. & Ishman, S.E. (1999). Historical trends in salinity and substrate in central and northern Florida Bay: a paleoecological reconstruction using modern analogue data. Estuaries, 22, 369–83.
Bricker, S., Longstaff, B., Dennison, W., et al. (2007). Effects of Nutrient Enrichment in the Nations' Estuaries: A Decade of Change. NOAA Coastal Ocean Program Decision Analysis Series No. 26. Silver Spring, MD: National Centers for Coastal Ocean Science.
Brush, G. S. (1989). Rates and patterns of estuarine sediment accumulation. Limnology and Oceanography, 34, 1235–46.
Buchholtz ten Brink, M. R., Mecray, E. L., & Galvin, E. L. (2000). Clostridium perfringens in Long Island Sound sediments: an urban sedimentary record. Journal of Coastal Research 16(3), 591–612.
Capriulo, G. M., Smith, G., Troy, R., et al. (2002). The planktonic food web structure of a temperate zone estuary, and its alteration due to eutrophication. Hydrobiologia, 475–476, 263–333.
Chmura, G. L., Santos, A., Pospelova, V., et al. (2004). Response of three paleo-primary production proxy measures to development of an urban estuary. Science of the Total Environment, 320, 225–43.
Clark, J. S., Carpenter, S. R., Barber, M., et al. (2001). Ecological forecasts: an emerging imperative. Science, 293, 657–60.
Clarke, A., Juggins, S., & Conley, D. (2003). A 150-year reconstruction of the history of coastal eutrophication in Roskilde Fjord, Denmark. Marine Pollution Bulletin, 46, 1615–29.
Clarke, A. L., Weckström, K., Conley, D. J., et al. (2006). Long-term trends in eutrophication and nutrients in the coastal zone. Limnology and Oceanography, 51, 385–97.
Cloern, J. E. (2001). Our evolving conceptual model of the coastal eutrophication problem. Marine Ecology Progress Series, 210, 223–53
Cohen, J. E., Small, C., Mellinger, A., et al. (1997). Estimates of coastal populations. Science, 278, 1211–12.
Conley, D. J., Kilham, S. S., & Theriot, E. (1989). Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 34, 205–13.
Conley, D. J., Likens, G. E., Buso, D. C., et al. (2008). Deforestation causes increased dissolved silicate losses in the Hubbard Brook Experimental Forest. Global Change Biology, 14, 2548–54.
Conley, D. J. & Malone, T. C. (1992). Annual cycle of dissolved silicate in Chesapeake Bay: implications for the production and fate of phytoplankton biomass. Marine Ecology Progress Series, 81, 121–8.
Conley, D. J., Paerl, H. W., Howarth, R. W., et al. (2009). Controlling eutrophication: nitrogen and phosphorus. Science, 323, 1014–15.
Conley, D. J. & Schelske, C. L. (2001). Biogenic silica. In Tracking Environmental Change Using Lake Sediments, Volume 3: Terrestrial, Algal, and Siliceous Indicators, ed. Smol, J. P., Birks, H. J. B., & Last, W. M., Dordrecht: Kluwer Academic Publishers, pp. 281–93.
Cooper, S. R. (1995a). Chesapeake Bay watershed historical land use: impact on water quality and diatom communities. Ecological Applications, 5, 703–23.
Cooper, S. R. (1995b). Diatoms in sediment cores from the mesohaline Chesapeake Bay, U. S. A. Diatom Research, 10, 39–89.
Cooper, S. R. (1995c). An abundant, small brackish water Cyclotella species in Chesapeake Bay, U.S.A. In A Century of Diatom Research in North America: A Tribute to the Distinguished Careers of Charles W. Reimer and Ruth Patrick, ed. Kociolek, J. P. & Sullivan, M. J., Champaign, IL: Koeltz Scientific Books, pp. 133–40.
Cooper, S. R. & Brush, G. S. (1991). Long-term history of Chesapeake Bay anoxia. Science, 254, 992–96.
Cooper, S. R. & Brush, G. S. (1993). A 2,500-year history of anoxia and eutrophication in Chesapeake Bay. Estuaries, 16, 617–26.
Cooper, S. R., Goman, M., & Richardson, C. J. (2008). Historical changes in water quality and vegetation in WCA-2A determined by paleoecological analyses. In The Everglades Experiments: Lessons for Ecosystem Restoration, ed. Richardson, C. J., Springer Ecological Studies, vol. 201, pp. 321–50.
Cooper, S. R., McGlothlin, S. K., Madritch, M., & Jones, D. L. (2004a). Water quality history of the Neuse and Pamlico estuaries of North Carolina using paleoecological methods. Estuaries, 27, 619–35.
Cooper, S. R., Thomas, E., & Varekamp, J. C. (2004b). Long Island Sound: diatoms from sediment cores as part of environmental and ecological change studies. Abstracts of the Ecological Society of America Mid-Atlantic Ecology Conference, Lancaster, PA, March 27, p. 6. See http://esa.org/midatlantic/conferences/Abstracts04.pdf.
Costanza, R., d'Arge, R., Groot, R., et al. (1997). The value of the world's ecosystem services and natural capital. Nature, 387, 253–60.
Cronin, T. M., Holmes, C. W., Brewster-Wingard, G. L., et al. (2001). Historical trends in epiphytal ostracodes from Florida Bay: implication for seagrass and macro-benthic algal variability. Bulletin of American Paleontology, 361, 159–97.
Culliton, T. J., Warren, M. A., Goodspeed, T. R., et al. (1990). 50 Years of Population Change along the Nation's Coasts 1960–2010. Silver Spring, MD: National Oceanic and Atmospheric Administration.
Cummins, S. P., Roberts, D. E., Ajani, P., & Underwood, A. J. (2004). Comparisons of assemblages of phytoplankton between open water and seagrass habitats in a shallow coastal lagoon. Marine and Freshwater Research, 55, 447–56.
Daehnick, A. E., Sullivan, M. J., & Moncreiff, C. A. (1992). Primary production of the sand microflora in seagrass beds of Mississippi Sound. Botanica Marina, 35, 131–9.
Day, J. W. Jr., & Yanez-Arancibia, A. (1982). Ecology of coastal ecosystems in the Southern Gulf of Mexico: the Terminos Lagoon region. CIENC. InterAmericana, 22, 11–26.
Day, J. W. Jr., Hall, C. A. S., Kemp, W. M., & Yanez-Arancibia, A. (1989). Estuarine Ecology. New York, NY: John Wiley & Sons.
Dortch, Q. & Whitledge, T. E. (1992). Does nitrogen or silicon limit phytoplankton production in the Mississippi River plume and nearby regions? Continental Shelf Research, 12, 1293–309.
Dugmore, A. J. & Newton, A. J. (1992). Thin tephra layers in peat revealed by X-radiography. Journal of Archaeological Science, 19, 163–70.
Dyer, K. R. (1995). Sediment transport processes in estuaries. In Geomorphology and Sedimentology of Estuaries. Developments in Sedimentology 53, ed. Perillo, G. M. E., Amsterdam: Elsevier Science Publishers, pp. 423–49.
Ellegaard, M., Clarke, A., Rauss, N., et al. (2006). Multi-proxy evidence of long-term changes in ecosystem structure in a Danish marine estuary, linked to increased nutrient loading. Estuarine, Coastal and Shelf Science, 68, 567–78.
Farella, N., Lucotte, M., Louchouarn, P., & Roulet, M. (2001). Deforestation modifying terrestrial organic transport in the Rio Tapajos, Brazilian Amazon. Organic Geochemistry, 32, 1443–58.
Fluin, J., Gell, P., Haynes, D., Tibby, J., & Hancock, G. (2007). Paleolimnological evidence for the independent evolution of neighboring terminal lakes, the Murray Darling Basin, Australia. Hydrobiologia, 591, 117–34.
Fourqurean, J. W., Boyer, J. N., Durako, M. J., Hefty, L. N., & Peterson, B. J. (2003). Forecasting responses of seagrass distributions to changing water quality using monitoring data. Ecological Applications, 13, 474–89.
Frankovich, J. W. & Fourqurean, J. W. (1997). Seagrass epiphyte loads along a nutrient availability gradient, Florida Bay, USA. Marine Ecology Progress Series, 159, 37–50.
Frankovich, T. A., Gaiser, E. E., Zieman, J. C., & Wachnicka, A. H. (2006). Spatial and temporal distributions of epiphytic diatoms growing on Thalassia testudinum Banks ex König: relationships to water quality. Hydrobiologia, 569, 259–71.
Gaiser, E. (2008). Periphyton as an indicator of restoration in the Everglades. Ecological Indicators, DOI:10.1016/j.ecolind.2008.08.004.
Gaiser, E. E., Wachnicka, A., Ruiz, P., Tobias, F. A., & Ross, M. S. (2005). Diatom indicators of ecosystem change in coastal wetlands. In Estuarine Indicators, ed. Bortone, S., Boca Raton, FL: CRC Press, pp. 127–44.
Gaiser, E. E., Zafiris, A., Ruiz, P. L., Tobias, F. A. C. & Ross, M. S. (2006). Tracking rates of ecotone migration due to salt-water encroachment using fossil mollusks in coastal south Florida. Hydrobiologia, 569, 237–57.
Gasse, F., Juggins, S., & BenKhelifa, L. (1995). Diatom-based transfer functions for inferring past hydrochemical characteristics of African lakes. Palaeogeography, Palaeoclimatology, Palaeoecology, 117, 31–54.
Gehrels, W. R., Roe, H. M., & Charman, D. J. (2001). Foraminifera, testate amoebae and diatoms as sea-level indicators in UK saltmarshes: a quantitative multiproxy approach. Journal of Quaternary Science, 163, 201–20.
Gell, P., Bulpin, S., Wallbrink, P., Bickford, S., & Hancock, G. (2005). Tareena Billabong – a paleolimnological history of an everchanging wetland, Chowilla Floodplain, lower Murray–Darling Basin. Marine and Freshwater Research, 56, 441–56.
Gell, P., Tibby, J., Little, F., Baldwin, D. & Hancock, G. (2007). The impact of regulation and salinisation on floodplain lakes: the lower River Murray, Australia. Hydrobiologia, 591, 135–46.
Glew, J. R., Smol, J. P., & Last, W. M. (2001). Sediment core collection and extrusion. In Tracking Environmental Change Using Lake Sediments, Volume 1: Basin Analysis, Coring and Chronological Techniques, ed. Last, W. M. & Smol, J. P., New York: Springer, pp. 73–105.
Gross, M., Coleman, R., & MacDowell, R. (1988). Aquatic productivity and the evolution of diadromous fish migration. Science, 239, 1291–3.
Hassan, G. S., Espinosa, M. A., & Isla, F. I. (2007). Dead diatom assemblages in surface sediments from a low impacted estuary: the Quequén Salado River, Argentina. Hydrobiologia, 579, 257–70.
Hein, M. K., Winsborough, B. M., & Sullivan, M. J. (2008). Bacillariophyta (Diatoms) of the Bahamas. Iconographia Diatomologica, 19, 1–300.
Helz, G. R., Sinex, S. A., Ferri, K. L., & Nichols, M. (1985). Processes controlling Fe, Mn and Zn in sediments of northern Chesapeake Bay. Estuarine, Coastal and Shelf Science, 21, 1–16.
Hemphill-Haley, E. (1995). Diatom evidence for earthquake-induced subsidence and tsunami 300 yr ago in southern coastal Washington. GSA Bulletin, 107, 367–78.
Hendey, N. I. (1964). An introductory account of the smaller algae of British coastal waters. Fishery Investigations Series IV. Part V. Bacillariophyceae (Diatoms). London, UK: Her Majesty's Stationery Office.
Hendey, N. I. (1976). The species diversity index of some in-shore diatom communities and its use in assessing the degree of pollution insult on parts of the north Coast of Cornwall. Nova Hedwigia, 54, 355–78.
Hennessee, E. L., Blakeslee, P. J., & Hill, J. M. (1986). The distributions of organic carbon and sulfur in surficial sediments of the Maryland portion of Chesapeake Bay. Journal of Sedimentary Petrology, 56, 674–83.
Hill, J. M., Halka, R. D., Conkwright, R. D., Koczot, K., & Park, J. (1992). Geologically constrained shallow gas in sediments of Chesapeake Bay: distribution and effects on bulk sediment properties. Continental Shelf Research, 12, 1219–29.
Holmer, M., Duarte, C. M., & Marba, N. (2003). Sulfur cycling and seagrass (Posidonia oceanica) status in carbonate sediments. Biogeochemistry, 66, 223–39.
Horton, B. P., Corbett, R., Culver, S. J., Edwards, R. J., & Hillier, C. (2006). Modern saltmarsh diatom distributions of the Outer Banks, North Carolina, and the development of a transfer function for high resolution reconstructions of sea level. Estuarine Coastal and Shelf Science, 69, 381–94.
Horton, B. P., Zong, Y., Hillier, C., & Engelhart, S. (2007). Diatoms from Indonesian mangroves and their suitability as sea-level indicators for tropical environments. Marine Micropaleontology, 63, 155–68.
Houel, S., Louchouarn, P., Lucotte, M., Canuel, R., & Ghaleb, B. (2006). Translocation of soil organic matter following reservoir impoundment in boreal systems: implications for in situ productivity. Limnology and Oceanography, 51(3), 1497–513.
Hustedt, F. (1927–30). Die Kieselalgen Deutschlands, Österreichs und der Schweiz (three volumes). In Rabenhorst's Kryptogamen-Flora von Deutschland, Öterreich und der Schweiz. Band 7. Leipzig: Akademische Verlagsgesellschaft.
Hustedt, F. (1953). Die Systematik der Diatomeen in Ihren Beziehungen zur Geologie und Ökologie nebst einer Revision des Halobien-Systems. Svensk Botanisk Tidskrift, 47, 509–19.
Hustedt, F. (1955). Marine Littoral Diatoms of Beaufort, North Carolina. Durham, NC: Duke University Press.
Hustedt, F. (1957). Die Diatomeenflora des Fluss-Systems der Weser im Gebiet der Hansestadt Bremen. Abhandlungen des Naturwissenschaftlichen Vereins zu Bremen, 34, 181–440.
Huvane, J. K. & Cooper, S. R. (2001). Diatoms as indicators of environmental change in sediment cores from Northeastern Florida Bay. Bulletins of American Paleontology, 361, 145–58.
Jackson, J. B. C., Kirby, M. X., Berger, W. H., et al. (2001). Historical overfishing and the recent collapse of coastal ecosystems. Science, 293, 629–38.
Jiang, H. (1996). Diatoms from the surface sediments of the Skagerrak and the Kattegat and their relationship to the spatial changes of environmental variables. Journal of Biogeography, 23, 129–37.
Jickells, T. D. (1998). Nutrient biogeochemistry of the coastal zone. Science, 281, 217–22.
Juggins, S. (1992). Diatoms in the Thames Estuary, England: ecology, paleoecology, and salinity transfer function. Bibliotheca Diatomologica, 25, 1–216.
Kemp, W. M., Boynton, W. R., Adolf, J. E., et al. (2005). Eutrophication of Chesapeake Bay: historical trends and ecological interactions. Marine Ecology Progress Series, 303, 1–29.
Kennett, D. M. & Hargraves, P. E. (1984). Subtidal benthic diatoms from a stratified estuarine basin. Botanica Marina, 27, 169–83.
Kennett, D. M. & Hargraves, P. E. (1985). Benthic diatoms and sulfide fluctuations: upper basin of Pettaquamscutt River, Rhode Island. Estuarine, Coastal and Shelf Science, 21, 577–86.
Kennish, M. J. (1992). Ecology of Estuaries: Anthropogenic Effects. Marine Science Series. Boca Raton, FL: CRC Press, Inc.
Kistner, D. A. & Pettigrew, N. R. (2001). A variable turbidity maximum in the Kennebec estuary, Maine. Estuaries, 24, 680–7.
Koch, M. S., Schopmeyer, S., Kyhn-Hansen, C. & Madden, C. J. (2007). Synergistic effects of high temperature and sulfide on tropical seagrass. Journal of Experimental Marine Biology and Ecology, 341, 91–101.
Kolka, R. K. & Thompson, J. A. (2006). Wetland geomorphology, soils and formative processes. In Ecology of Freshwater and Estuarine Wetlands, ed. Batzer, D. P. & Sharitz, R. R., Los Angeles, CA: University of California Press, pp. 7–41.
Köster, D., Racca, J. M. J., & Pienitz, R. (2004). Diatom-based inference models and reconstructions revisited: methods and transformations. Journal of Paleolimnology, 32, 233–45.
Köster, D., Lichter, J., Lea, P. D. & Nurse, A. (2007). Historical eutrophication in a river–estuary complex in mid-coast Maine. Ecological Applications, 17, 765–78.
Krammer, K. & Lange-Bertalot, H. (1986–1991). Bacillariophyceae. In Süßwasserflora von Mitteleuropa Band 2/1–4, ed. Ettl, H., Heynig, H., & Mollenhauer, D., Stuttgart: Fischer.
Kucera, M., Rosell-Melé, A., Schneider, R., Waelbroeck, C., & Weinelt, M. (2005). Multiproxy approach for the reconstruction of the glacial ocean surface (MARGO). Quaternary Science Review, 24, 813–19.
Kuylenstierna, M. (1990). Benthic algal vegetation in the Nordre Älv Estuary (Swedish west coast), 2 volumes. Ph.D. thesis, University of Göteborg, Göteborg, Sweden.
Laws, R. A. (1988). Diatoms (Bacillariophyceae) from surface sediments in the San Francisco Bay estuary. Proceedings of the California Academy of Sciences, 45, 133–254.
Lee, A. H. M. & Liu, J. H. (2002). Marine water quality in Hong Kong in 2001. Environmental Protection Department, The Government of the Hong Kong Special Administrative Region. Report Number EPD/TR1/02.
Louchouarn, P., Lucotte, M., & Farella, N. (1999). Historical and geographical variations of sources and transport of terrigenous organic matter within a large-scale coastal environment. Organic Geochemistry, 30, 675–99.
McIntire, C. D. & Overton, W. S. (1971). Distributional patterns in assemblages of attached diatoms from Yaquina Estuary, Oregon. Ecology, 52, 758–77.
Malmgren, B. A., Kucera, M., Nyberg, J., & Waelbroeck, C. (2001). Comparison of statistical and artificial neural network techniques for estimating past sea surface temperatures from planktonic foraminifer census data. Paleoceanography, 16, 520–30.
Malmgren, B. A. & Nordlund, U. (1997). Application of artificial neural networks to paleoceanographic data. Palaeogeography, Palaeoclimatology, Palaeoecology, 136, 359–73.
Mann, K. H. (2000). Ecology of Coastal Waters: With Implications for Management, 2nd edition, Malden, MA: Blackwell Science, Inc.
Mitsch, W. J. & Gosselink, J. G. (1986). Wetlands. New York: Van Nostrand Reinhold.
Moncreiff, C. A. & Sullivan, M. J. (2001). Trophic importance of epiphytic algae in subtropical seagrass beds: evidence from multiple stable isotope analyses. Marine Ecology Progress Series, 215, 93–106.
Moncreiff, C. A., Sullivan, M. J. & Daehnick, A. E. (1992). Primary production dynamics in seagrass beds of Mississippi Sound: the contributions of seagrass, epiphytic algae, sand, microflora and phytoplankton. Marine Ecology Progress Series, 87, 161–71.
Moser, K. A., MacDonald, G. M., & Smol, J. P. (1996). Applications of freshwater diatoms to geographical research. Progress in Physical Geography, 20, 21–52.
Muylaert, K. & Sabbe, K. (1996). The diatom genus Thalassiosira (Bacillariophyta) in the estuaries of the Schelde (Belgium/the Netherlands) and the Elbe (Germany). Botanica Marina, 39, 103–15.
Newton, J. (2007). Hood Canal, WA: the complex factors causing low dissolved oxygen events require ongoing research, monitoring, and modeling. In Effects of Nutrient Enrichment in the Nations' Estuaries: A Decade of Change, ed. Bricker, S., Longstaff, B., Dennison, W., et al., NOAA Coastal Ocean Program Decision Analysis Series No. 26, Silver Spring, MD: National Centers for Coastal Ocean Science, pp. 95–8.
Niemi, G., Wardrop, D., Brooks, R., et al. (2004). Rationale for a new generation of indicators for coastal waters. Environmental Health Perspectives, 112, 979–86.
Nixon, S. W. (1995). Coastal marine eutrophication: a definition, social causes, and future concerns. Ophelia, 41, 199–219.
Palmer, C. M. (1969). A composite rating of algae tolerating organic pollution. Journal of Phycology, 5, 78–82.
Parsons, M. L. (1998). Salt marsh sedimentary record of the landfall of Hurricane Andrew on the Louisiana coast: diatoms and other paleoindicators. Journal of Coastal Research, 14, 939–50.
Parsons, M. L., Dortch, Q., & Turner, R. E. (2002). Sedimentological evidence of an increase in Pseudo-nitzschia (Bacillariophyceae) abundance in response to coastal eutrophication. Limnology and Oceanography, 47, 551–8.
Parsons, M. L., Dortch, Q., Turner, R. E., & Rabalais, N. R. (2006). Reconstructing the development of eutrophication in Louisiana salt marshes. Limnology and Oceanography, 51, 534–44.
Patrick, R. (1973). Use of algae, especially diatoms, in the assessment of water quality. American Society for Testing and Materials, Special Technical Publication, 528.
Patten, B. C. (1962). Species diversity in net plankton of Raritan Bay. Journal of Marine Research, 20, 57–75.
Peragallo, H. & Peragallo, M. (1897–1908). Diatomées marines de France et des districts maritimes voisins. Grez-sur-Loing: Micrographie-Editeur.
Perillo, G. M. E. (1995). Geomorphology and sedimentology of estuaries. In Geomorphology and Sedimentology of Estuaries: Developments in Sedimentology 53, ed. Perillo, G. M. E., Amsterdam: Elsevier Science Publishers, pp. 1–16.
Pinckney, J. L. & Micheli, F. (1998). Microalgae on seagrass mimics: does epiphyte community structure differ from live seagrasses? Journal of Experimental Marine Biology and Ecology, 221, 59–70.
Pritchard, D. W. (1967). Observations of circulation in coastal plain estuaries. In Estuaries, ed. G. H. Lauff, American Association for the Advancement of Science Publication No. 83, pp. 37–44.
Puckett, L. J. (1995). Identifying the major sources of nutrient water pollution. Environmental Science & Technology, 29, 408–14.
Puškaric, S., Berger, G. W., & Jorissen, F. J. (1990). Successive appearance of subfossil phytoplankton species in Holocene sediments of the northern Adriatic and its relation to the increased eutrophication pressure. Estuarine, Coastal and Shelf Science, 31, 177–87.
Pyle, L., Cooper, S. R., & Huvane, J. K. (1998). Diatom paleoecology of Pass Key core 37, Everglades National Park, Florida Bay. U. S. Geological Survey Open-File Report 98–522.
Quinn, H. A., Tolson, J. P., Klein, C. J., Orlando, S. P., & Alexander, C. E. (1989). Strategic Assessment of Near Coastal Waters: Susceptibility of East Coast Estuaries to Nutrient Discharges, Albemarle/Pamlico Sound to Biscayne Bay. Rockville, MD: National Oceanic and Atmospheric Agency.
Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., et al. (2007a). Hypoxia in the northern Gulf of Mexico: does the science support the plan to reduce, mitigate, and control hypoxia? Estuaries and Coasts, 30 (5), 753–72.
Rabalais, N. N., Turner, R. E., Sen Gupta, B. K., Platon, E., & Parsons, M. L. (2007b). Sediments tell the history of eutrophication and hypoxia in the northern Gulf of Mexico. Ecological Applications, 17 (5), S129–S143.
Racca, J. M. J., Gregory-Eaves, I., Pienitz, R., & Prairie, Y. T. (2004). Tailoring paleolimnological transfer functions. Canadian Journal of Fisheries and Aquatic Sciences, 61, 2440–54.
Racca, J. M. J., Philibert, A., Racca, R., & Prairie, Y. T. (2001). A comparison between diatom-based pH inference models using artificial neural networks (ANNO) weighted averaging (WA) and weighted averaging partial least squares (WA-PLS) regressions. Journal of Paleolimnology, 26, 411–22.
Riggs, S. R., Bray, J. T., Powers, E. R., et al. (1991). Heavy metals in organic-rich muds of the Neuse River estuarine system. Albemarle–Pamlico Estuarine Study Report No. 90–07, Raleigh, NC: Albemarle-Pamlico National Estuary Program.
Riggs, S. R., Powers, E. R., Bray, J. T., et al. (1989). Heavy metal pollutants in organic-rich muds of the Pamlico River estuarine system: their concentration, distribution, and effects upon benthic environments and water quality. Albemarle Pamlico Estuarine Study Report 89–06, Raleigh, NC: Albemarle-Pamlico National Estuary Program.
Riggs, S. R., York, L. L., Wehmiller, J. F., & Snyder, S. W. (1992). Depositional patterns resulting from high-frequency Quaternary sea-level fluctuations in northeastern North Carolina. SEPM Special Publication, 48, 141–53.
Ross, M. S., Gaiser, E. E., Meeder, J. F., & Lewin, M. T. (2001). Multi-taxon analysis of the “white zone”, a common ecotonal feature of South Florida coastal wetlands. In The Everglades, Florida Bay, and Coral Reefs of the Florida Keys, ed. Porter, J. & Porter, K., Boca Raton, FL: CRC Press, pp. 205–38.
Ruiz-Halpern, S., Macko, S., & Fourqurean, J. W. (2008). The effects of manipulation of sedimentary iron and organic matter on sediment biogeochemistry and seagrasses in a subtropical carbonate environment. Biogeochemistry, 87, 113–26.
Ryves, D. B., Clarke, A. L., Appleby, P. G., et al. (2004). Reconstructing the salinity and environment of the Limfjord and Vejlerne Nature Reserve, Denmark, using a diatom model for brackish lakes and fjords. Canadian Journal of Fisheries and Aquatic Science, 61, 1988–2006.
Sanford, L. P. (1992). New sedimentation, resuspension, and burial. Limnology and Oceanography, 37, 1164–78.
Saunders, K. M., McMinn, A., Roberts, D., Hodgson, D., & Heijnis, H. (2007). Recent human-induced salinity changes in Ramsar-listed Orielton Lagoon, south-east Tasmania, Australia: a new approach for coastal lagoon conservation and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 51–70.
Sawai, Y., Horton, B. P., & Nagumo, T. (2004). The development of a diatom-based transfer function along the Pacific coast of eastern Hokkaido, northern Japan – an aid in paleoseismic studies of the Kuril subduction zone. Quaternary Science Reviews, 23, 2467–83.
Schelske, C. L. (1999). Diatoms as mediators of biogeochemical silica depletion in the Laurentian Great Lakes. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., New York, NY: Cambridge University Press, pp. 73–84.
Schubel, J. R. (1968). Turbidity maximum of the northern Chesapeake Bay. Science, 161, 1013–15.
Shaffer, G. P. & Sullivan, M. J. (1988). Water column productivity attributable to displaced benthic diatoms in well-mixed shallow estuaries. Journal of Phycology, 24, 132–40.
Simonsen, R. (1962). Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der Westlichen Ostsee. Internationale Revue der gesamten Hydrobiologie, 1, 1–144.
Slate, J. E. & Stevenson, R. J. (2000). Recent and abrupt environmental change in the Florida Everglades indicated from siliceous microfossils. Wetlands, 20, 346–56.
Smol, J. P. (2008). Pollution of Lakes and Rivers: a Paleoenvironmental Perspective, Malden, MA: Blackwell Publishing, vol. 2.
Snoeijs, P. (1993). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press.
Snoeijs, P. & Balashova, N. (1998). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 5.
Snoeijs, P. & Kasperoviĉienė, J. (1996). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 4.
Snoeijs, P. & Potapova, M. (1995). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 3.
Snoeijs, P. & Vilbaste, S. (1994). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 2.
Stacey, P. E. (2007). Long Island Sound, CT & NY: point source reductions lessened hypoxia in 1990s. In Effects of Nutrient Enrichment in the Nations' Estuaries: a Decade of Change, NOAA Coastal Ocean Program Decision Analysis Series No. 26, ed. Bricker, S., Longstaff, B., Dennison, W., et al., Silver Spring, MD: National Centers for Coastal Ocean Science, pp. 101–103.
Stachura-Suchoples, K. (2001). Bioindicative values of dominant diatom species from the Gulf of Gdansk, southern Baltic Sea, Poland, In Lange-Bertalot-Festschrift, ed. Jahn, R., Kociolek, J. P., Witkowski, A., & Compere, P., Gantner: Ruggell, pp. 477–90.
Stanley, D. W. (1992). Historical Trends: Water Quality and Fisheries, Albemarle-Pamlico Sounds, with Emphasis on the Pamlico River Estuary. University of North Carolina Sea Grant Publication UNC-SG-92–04.
Stockner, J. G. & Benson, W. W. (1967). The succession of diatom assemblages in the recent sediments of Lake Washington. Limnology and Oceanography, 12, 513–32.
Sullivan, M. J. (1982). Distribution of edaphic diatoms in a Mississippi salt marsh: a canonical correlation analysis. Journal of Phycology, 18, 130–3.
Sullivan, M. J. & Currin, C. A. (2000). Community structure and functional dynamics of benthic microalgae in salt marshes. In Concepts and Controversies in Tidal Marsh Ecology, ed. Weinstein, M. P. & Kreeger, D. A., Dordrecht: Kluwer Academic Publishers, pp. 81–106.
Sullivan, M. J. & Moncreiff, C. A. (1988). Primary production of edaphic algal communities in a Mississippi salt marsh. Journal of Phycology, 24, 49–58.
Swart, P. K., Healy, G. F., Dodge, R. E., et al. (1996). The stable oxygen and carbon isotopic record from a coral growing in Florida Bay: a 160-year record of climatic and anthropogenic influence. Palaeogeography, Palaeoclimatology, Palaeoecology, 123, 219–37.
Sylvestre, F., Beck-Eichler, B., Duleba, W., & Debenay, J.-P. (2001). Modern benthic diatom distribution in a hypersaline coastal lagoon: the Lagoa de Araruama (R. J.), Brazil. Hydrobiologia, 443, 213–31.
Sylvestre, F., Guiral, D., & Debenay, J. P. (2004). Modern diatom distribution in mangrove swamps from the Kaw Estuary (French Guiana). Marine Geology, 208, 281–93.
Taffs, K. H., Farago, L. J., Heijnis, H., & Jacobsen, G. (2008). A diatom-based Holocene record of human impact from a coastal environment: Tuckean Swamp, eastern Australia. Journal of Paleolimnology, 39, 71–82.
Braak, C. J., Juggins, S., Birks, H. J. B., & Voet, H. (1993). Weighted averaging partial least squares regression (WA-PLS): definition and comparison with other methods for species environment calibration. In Multivariate Environmental Statistics, ed. Patil, G. R. & Rao, C. R., Amsterdam: North-Holland, pp. 525–60.
Thomas, E., Abramson, I., Varekamp, J. C., & Buchhotz ten Brink, M. R. (2004a). Eutrophication of Long Island Sound as traced by benthic foraminifera. Sixth Biennual Long Island Sound Research Conference Proceedings, pp. 87–91.
Thomas, E., Cooper, S., Sangiorgi, F., et al. (2004b). The eutrophication of Western Long Island Sound. Geological Society of America Abstracts, 36(5), 493.
Tibby, J., Gell, P. A., Fluin, J., & Sluiter, I. R. K. (2007). Diatom–salinity relationships in wetlands: assessing the influence of salinity variability on the development of inference models. Hydrobiologia, 591, 207–18.
Tomas, C. R. (1997). Identifying Marine Phytoplankton, San Diego, CA: Academic Press.
Trainer, V. L., Adams, N. G., Bill, B. D., et al. (2000). Domoic acid production near California coastal upwelling zones, June 1998. Limnology and Oceanography, 45, 1818–33.
Tréguer, P., Nelson, D. M., Bennekom, A. J., et al. (1995). The silica balance in the world ocean: a reestimate. Science, 268, 375–9.
Valiela, I., McClelland, J., Hauxwell, J., et al. (1997). Macroalgal blooms in shallow estuaries: controls and ecophysiological and ecosystem consequences. Limnology and Oceanography, 42, 1105–18.
Cappellen, P., Dixit, S., & Beusekom, J. (2002). Biogenic silica dissolution in the oceans: reconciling experimental and field-based dissolution rates. Global Biogeochemical Cycles, 16(4), DOI:10.1029/2001GB001431.
Dam, H. (1982). On the use of measures of structure and diversity in applied diatom ecology. Nova Hedwigia, 73, 97–115.
Varekamp, J. C., Thomas, E., Altabet, M., Cooper, S. R., & Brinkhuis, H. (2010). Environmental Change in Long Island Sound in the Recent Past: Eutrophication and Climate Change, Hartford, CT: CT Department of Environmental Protection.
Varekamp, J. C., Thomas, E., Lugolobi, F., & Buchholtz ten Brink, M. R. (2004). The paleo-environmental history of Long Island Sound as traced by organic carbon, biogenic silica and stable isotope/trace element studies in sediment cores. Sixth Biennual Long Island Sound Research Conference Proceedings, Groton, CT: Connecticut Sea Grant, pp. 109–13.
Verleyen, E., Hodgson, D. A., Leavitt, P. R., Sabbe, K., & Vyverman, W. (2004). Quantifying habitat-specific diatom production: a critical assessment using morphological and biogeochemical markers in Antarctic marine and lake sediments. Limnology and Oceanography, 49, 1528–39.
Vos, P. C. & Wolf, H. (1993). Diatoms as a tool for reconstructing sedimentary environments in coastal wetlands: methodological aspects. Hydrobiologia, 269, 285–96.
Wachnicka, A. (2009). Diatom-based paleoecological evidence of combined effects of anthropogenic and climatic impacts on salinity, nutrient levels and vegetation cover in Florida Bay and Biscayne Bay, USA. Unpublished Ph.D. thesis, Florida International University, Miami, FL.
Wachnicka, A. & Gaiser, E. E. (2007). Characterization of Amphora and Seminavis from South Florida. Diatom Research, 22, 387–455.
Washington, H. G. (1984). Diversity, biotic, and similarity indices: a review with special relevance to aquatic ecosystems. Water Research, 18, 653–94.
Weckström, K. (2006). Assessing recent eutrophication in coastal waters of the Gulf of Finland (Baltic Sea) using subfossil diatoms. Journal of Paleolimnology, 35(3), 571–92.
Weckström, K. & Juggins, S. (2005). Coastal diatom–environment relationships from the Gulf of Finland, Baltic Sea. Journal of Phycology, 42, 21–35.
Weckström, K., Juggins, S., & Korhola, A. (2004). Quantifying background nutrient concentrations in coastal waters: a case study from an urban embayment of the Baltic Sea. Ambio, 33, 324–7.
Wendker, S. (1990). Untersuchungen zur subfossilen und rezenten Diatomeenflora des Schlei-Ästuars (Ostsee). In Bibliotheca Diatomologica, 20, 1–268 (with eight plates).
Wilderman, C. C. (1986). Techniques and results of an investigation into the autecology of some major species of diatoms from the Severn River Estuary, Chesapeake Bay, Maryland, U.S.A. In Proceedings of the 8th International Diatom Symposium, ed. Ricard, M., Königstein: Koeltz Scientific Books, pp. 631–43.
Willard, D. A., Weimer, L. M., & Riegel, W. L. (2001). Pollen assemblages as paleoenvironmental proxies in the Florida Everglades. Review of Palaeobotany and Palynology, 113, 213–35.
Witkowski, A., Lange-Bertalot, H., & Metzeltin, D. (2000). Diatom Flora of Marine Coasts I, ed. Lange-Bertalot, H., Königstein: Koeltz Scientific Books.
,World Resources Institute, United Nations Environment Programme, United Nations Development Programme and The World Bank. (1996). World Resources: a Guide to the Global Environment 1996–97. New York, NY: Oxford University Press.
Xu, Y., Jaffé, R., Wachnicka, A., & Gaiser, E. E. (2006). Occurrence of C25 highly branched isoprenoids (HBIs) in Florida Bay: paleoenvironmental indicators of diatom-derived organic matter inputs. Organic Geochemistry, 37, 847–59.
Zimmerman, A. R. & Canuel, E. A. (2000). A geochemical record of eutrophication and anoxia in Chesapeake Bay sediments: anthropogenic influence on organic matter composition. Marine Chemistry, 69,117–37.
Zimmerman, A. R. & Canuel, E. A. (2002). Sediment geochemical records of eutrophication in the mesohaline Chesapeake Bay. Limnology and Oceanography, 47, 1084–93.
Zong, Y., Lloyd, J. M., Leng, M. J., Yim, W. W.-S., & Huang, G. (2006). Reconstruction of Holocene history from the Pearl River Estuary, southern China, using diatoms and carbon isotope ratios. The Holocene, 16, 251–63.