Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Print publication year: 2010
  • Online publication date: June 2012

22 - Diatoms as indicators of paleoceanographic events

from Part IV - Diatoms as indicators in marine and estuarine environments


Introduction – the importance of pre-Quaternary diatoms in paleoceanography

The marine system is vast, involving a highly diverse range of habitats; from coastal lagoons, fjords, bays, and estuaries, out over the shelf to the open ocean thousands of kilometers from any landmass. The Pacific Ocean alone covers an area of nearly 170 million km2. In total, the world's oceans cover approximately two-thirds of the Earth's surface and since marine diatoms are the dominant marine primary producers, contributing about 40% of the total primary production in the modern oceans (Tréguer et al., 1995) and over 50% of organic carbon burial in marine sediments (Falkowski et al., 2004), they are key players in the marine biological carbon pump. Therefore, the study of both living and fossil marine diatoms is important for many reasons other than just their intrinsic interest – from understanding (past) marine ecological systems, through biogeochemical cycling, to links with carbon dioxide (CO2) (e.g. Harrison, 2000), and the causes and effects of rapid climate change (e.g. Pollock, 1997).

Diatoms preserved in marine sediments are commonly used to reconstruct paleoenvironments and paleoceanographic events for the Holocene and Quaternary, but they are equally as valuable for paleoceanographic reconstructions of time periods much earlier than this – in fact for as far back as their fossil record allows, i.e. the Early Cretaceous (Gersonde & Harwood, 1990; Harwood & Gersonde, 1990).

Related content

Powered by UNSILO
Abrantes, F. F. (1991). Variability of upwelling off NW Africa during the latest Quaternary: diatom evidence. Paleoceanography, 6, 431–60.
Abrantes, F. (2001). Assessing the Ethmodiscus ooze problem: new perspective from a study of an eastern equatorial Atlantic core. Deep-Sea Research I, 48, 125–35.
Abrantes, F., Lopes, C., Mix, A., & Pisias, N. (2007). Diatoms in southeast Pacific surface sediments reflect environmental properties. Quaternary Science Reviews, 26 (1–2), 155–69.
Akhmetiev, A. M. (1996). Ecological crises of the Paleogene and Neogene in extratropical Eurasia and their putative causes. Paleontological Journal, 30, 738–48.
Akhmetiev, M. A. (2007). Paleocene and Eocene floras of Russia and adjacent regions: climatic conditions of their development. Paleontological Journal, 41, 1032–9.
Akhmetiev, M. A. & Beniamovski, A. N. (2009). Paleogene floral assemblages around epicontinental seas and straits in northern central Eurasia: proxies for climatic and paleogeographic evolution. Geologica Acta, 7 (1–2), 297–309.
Alexandre, A., Meunier, J.-D., Colin, F., & Koud, J. M. (1997). Plant impact on the biogeochemical cycle of silicon and related weathering processes. Geochimica et Cosmochemica Acta, 61, 677–82.
Alhama, F., Lopez-Sanchez, J. F., Gonzalez-Fernandez, C. F., Dickens, G. R., & Barron, J. A. (1997). A rapidly deposited pennate diatom ooze in upper Miocene–lower Pliocene sediment beneath the North Pacific Polar Front. Marine Micropaleontology, 31, 177–82.
Alldredge, A. L. & Gotschalk, C. C. (1989). Direct observations of the mass flocculation of diatom blooms: characteristics, settling velocity and formation of diatom aggregates. Deep-Sea Research, 26, 159–71.
Anderson, J. B., Wellner, J. S., Bohaty, S., Manley, P. L., & Wise, S. W. Jr. (2006). Antarctic Shallow Drilling Project provides key core samples. EOS, Transactions, American Geophysical Union, 87 (39), DOI:10.1029/2006EO390003.
Andrews, G. W. (1986). Evolutionary trends in the marine diatom genus Delphineis G.W. Andrews. In Proceedings of the 9th International Diatom Symposium, ed. Round, F.E., Bristol & Königstein: Biopress Ltd. & Koeltz Scientific Books, pp. 197–206.
Andrews, G. W. & Stoelzel, V. A. (1982). Morphology and evolutionary significance of Perissonoë, a new marine diatom genus. In Proceedings of the 7th International Diatom Symposium, ed. Mann, D.G., Königstein: Koeltz Scientific Books, pp. 225–40.
Armand, L. K. & Leventer, A. (2010). Palaeo sea ice distribution and reconstruction derived from the geological record. In:Sea Ice An Introduction to its: Physics, Chemistry and Biology, 2nd Edition, ed. Thomas, D. N. & Dieckmann, G. S., Oxford: Wiley-Blackwell, pp. 469–530.
Backman, J. & Moran, K. (2009). Expanding the Cenozoic paleoceanographic record in the central Arctic Ocean: IODP Expedition 302: synthesis. Central European Journal of Geosciences, 1, 157–75, DOI:10.2478/v10085–009-0015–6.
Backman, J., Moran, K., McInroy, D. B., Mayer, L. A., & the Expedition 302 Scientists (2006). Proceedings of the Integrated Ocean Drilling Program, 302: Edinburgh (Integrated Ocean Drilling Program Management International, Inc.). doi:10.2204/iodp.proc.302.2006.
Baldauf, J. G. & Barron, J. A. (1990). Evolution of biosiliceous sedimentation patterns – Eocene through Quaternary: paleoceanographic response to polar cooling. In Geological History of the Polar Oceans: Arctic versus Antarctic, ed. Bleil, U, J. & Thiede, J., Dordrecht: Kluwer Academic Publishers, pp. 575–607.
Barker, P. F., Filippelli, G. M., Florindo, F., Martin, E. E., & Scher, H. D. (2007). Onset and role of the Antarctic Circumpolar Current. Deep-Sea Research II, 54, 2388–98.
Barrett, P. J. & Ricci, C. A. (eds.) (2000). Studies from the Cape Roberts Project, Ross Sea, Antarctica, Scientific Results of CRP-2/2A, Parts I and II. Terra Antartica, 7, 211–665.
Barron, J. A. (1985a). Diatom biostratigraphy of the CESAR 6 core, Alpha Ridge. Geological Survey of Canada, Paper 84–22, Report 10, 137–48.
Barron, J. A. (1985b). Miocene to Holocene planktic diatoms. In Plankton Stratigraphy, Volume 2, ed. Bolli, H. M., Saunders, J. B., & Perch-Nielsen, K., Cambridge: Cambridge University Press, pp. 763–809.
Barron, J. A. (1993). Diatoms. In Fossil Prokaryotes and Protists, ed. Lipps, J. H., Boston: Blackwell Scientific Publishers, pp. 155–67.
Barron, J. A. (2003). Appearance and extinction of planktonic diatoms during the past 18 m.y. in the Pacific and Southern oceans. Diatom Research, 18, 203–24.
Barron, J. A. & Baldauf, J. G. (1989). Tertiary cooling steps and paleoproductivity as reflected by diatoms and biosiliceous sediments. In Productivity of the Oceans: Present and Past, ed. Berger, W. H., Smetacek, V. S., & Wefer, G., New York, NY: John Wiley, pp. 341–54.
Barron, J. A. & Baldauf, J. G. (1995). Cenozoic marine diatom biostratigraphy and applications to paleoclimatology and paleoceanography. In Siliceous Microfossils, ed. Blome, C. D., Whalen, P. M., & , K. M. Reed, The Paleontological Society Short Course 8, pp. 107–18.
Barron, J. A. & Mahood, A. D. (1993). Exceptionally well-preserved early Oligocene diatoms from glacial sediments of Prydz Bay, East Antarctica. Micropaleontology, 39, 29–45.
Belt, S. T., Allard, W. G., Massé, G., Robert, J.-M., & Rowland, S. J. (2000). Highly branched isoprenoids (HBIs): identification of the most common and abundant sedimentary isomers. Geochimica et Cosmochimica Acta, 64, 3839–51.
Belt, S. T., Massé, G., Rowland, S. J., et al. (2007). A novel chemical fossil of palaeo sea ice: IP25. Organic Geochemistry, 38, 16–27.
Berger, W. H. (2007). Cenozoic cooling, Antarctic nutrient pump, and the evolution of whales. Deep-Sea Research II, 54, 2399–421.
Berggren, W. A. (2002). Paleogene of the eastern Alps. PALAIOS, 17, 631–2.
Bigelow, P. R. & Alexander, C. G. (2000). Diatoms on the cirri of tropical barnacles. Journal of the Marine Biological Association of the United Kingdom, 80, 737–8.
Boden, P. & Backman, J. (1996). A laminated sediment sequence from the northern north Atlantic Ocean and its climatic record. Geology, 24, 507–10.
Bramlette, M. N. (1946). The Monterey Formation of California and the origin of its siliceous rocks. United States Geological Survey Professional Paper, 212.
Brand, L. R., Esperante, R., Chadwick, A. V., Poma Porras, O., & Alomía, M. (2004). Fossil whale preservation implies high diatom accumulation rate in the Miocene–Pliocene Pisco Formation of Peru. Geology, 32, 165–8.
Brun, J. & Tempère, J. (1889). Diatomées fossiles du Japon. Espèces Marines et Nouvelles des Calcaires Argileux de Sendai et de Yedo. Mémoires de la Société de Physique et d'Histoire Naturelle de Genève, 30 (9): 1--75.
Brzezinski, M., Phillip, D., Chavez, P., Frederich, G., & Dugdale, R. (1997). Silica production in the Monterey, California, upwelling system. Limnology and Oceanography, 42, 1694–705.
Burns, V. M., & Burns, R. G. (1978). Authigenic todorokite and phillipsite inside deep-sea manganese nodules. American Mineralogist, 63, 827–31.
Cervato, C. & Burckle, L. (2003). Pattern of first and last appearance in diatoms: oceanic circulation and the position of the Polar fronts during the Cenozoic. Paleoceanography, 18, 1055, DOI:10.1029/2002PA000805.
Chambers, P. M. (1996). Late Cretaceous and Palaeocene marine diatom floras. Unpublished Ph. D thesis, University College London.
Chang, K.-H. & Park, S.-O. (2008). Early Cretaceous tectonism and diatoms in Korea. Acta Geologica Sinica, 82 (6), 5–61.
Chapman, F. (1906). On concretionary nodules with plant-remains found in the Old Bed of the Yarra at S. Melbourne; and their resemblance to the calcareous nodules known as ‘coal-balls’. Geological Magazine, 5th Series, 3, 553–6.
Chin, K., Bloch, J., Sweet, A., et al. (2008). Life in a temperate polar sea: a unique taphonomic window on the structure of a Late Cretaceous Arctic marine ecosystem. Proceedings of the Royal Society B-Biological Sciences, 275, 2675–85.
Clarke, J. A., Ksepka, D. T., Stucchi, M., et al. (2007). Paleogene equatorial penguins challenge the proposed relationship between biogeography, diversity, and Cenozoic climate change. Proceedings of the National Academy of Sciences of the USA, 104, 11545–50.
Coale, K. H., Johnson, K. S., Fitzwater, S. E., et al. (1996). A massive phytoplankton bloom induced by an ecosystem-scale iron fertilization experiment in the equatorial Pacific Ocean. Nature, 383, 495–501.
Cody, R. D., Levy, R., & Harwood, D. M. (2008). Thinking outside the zone: high-resolution quantitative diatom biochronology for the Antarctic Neogene. Palaeogeography, Palaeoclimatology, Palaeoecology, 260 (1–2), 92–121.
Cortese, G., Gersonde, R., Hillenbrand, C.-D., & Kuhn, G. (2004). Opal sedimentation shifts in the world ocean over the last 15 Myr. Earth and Planetary Science Letters, 224, 509–27.
Croll, D. A. & Holmes, R. W. (1982). A note on the occurrence of diatoms on the feathers of diving seabirds. The Auk, 99, 765–6.
Cushing, D. H. (1971). Upwelling and the production of fish. In Advances in Marine Biology, ed. Russell, F.S. & Yonge, M., London: Academic Press Inc., vol. 9, pp. 255–334.
Darwin, C. (1846). An account of the fine dust which falls on vessels in the Atlantic Ocean. Quarterly Journal of the Geological Society (London), 2, 26–30.
Davies, A., Kemp, A. E. S., & Pike, J. (2009). Late Cretaceous seasonal ocean variability from the Arctic. Nature, 460, 254–9.
DeConto, R., Pollard, D., & Harwood, D. (2007). Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography, 22, PA3214, DOI:10.1029/2006PA001350.
DeConto, R. M., Pollard, D., Wilson, P. A., et al. (2008). Thresholds for Cenozoic bipolar glaciation. Nature, 455, 652–6.
Rocha, C. L. (2006). Opal-based proxies of paleoenvironmental conditions. Global Biogeochemical Cycles, 20, GB4S09, DOI:10.1029/2005GB002664.
Rocha, C. L., Brzezinski, M. A., DeNiro, M. J., & Shemesh, A. (1998). Silicon-isotope composition of diatoms as an indicator of past oceanic change. Nature, 395, 680–3.
Dickens, G. & Barron, J. A. (1997). A rapidly deposited pennate diatom ooze in upper Miocene-lower Pliocene sediment beneath the North Pacific Polar Front. Marine Micropaleontology, 31, 177–82.
Diekmann, B., Fälker, M., & Kuhn, G. (2003). Environmental history of the south-eastern South Atlantic since the middle Miocene: evidence from the sedimentological records of ODP sites 1088 and 1092. Sedimentology, 50, 511–29.
Diester-Haass, L. & Zahn, R. (2001). Paleoproductivity increase at the Eocene-Oligocene climatic transition: ODP/DSDP sites 763 and 592. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 153–70.
Dore, J. E., Letelier, R. M., Church, M. J., Lukas, R., & Karl, D. M. (2008). Summer phytoplankton blooms in the oligotrophic North Pacific Subtropical Gyre: historical perspective and recent observations. Progress in Oceanography, 76, 2–38.
Dupont, L. M., Donner, B., Vidal, L., Pérez, E. M., & Wefer, G. (2005). Linking desert evolution and coastal upwelling: Pliocene climate change in Namibia. Geology, 33, 461–4.
Dzinoridze, R. N., Jousé, A. P., Koroleva-Golikova, G. S., et al. (1978). Diatom and radiolarian Cenozoic stratigraphy, Norwegian Basin; DSDP Leg 38. Initial Reports of the Deep Sea Drilling Project, 38–39–40–41 Supplement, 289–427.
Edwards, A. R. (1991). The Oamaru Diatomite. New Zealand Geological Survey Paleontological Bulletin, 64, 1–260.
Ehrenberg, C. H. (1844). Untersuchungen über die kleinsten Lebensformen im Quellenlande des Euphrats und Araxes, so wie über eine an neuen Formen sehr reiche, marine Tripelbildung von den Bermuda-Inseln. Bericht über die zur Bekanntmachung geeigneten Verhandlungen der der Königlichen Preussischen Akademie. Berlin: Akademie der Wissenschaften, pp. 253–75.
Ehrlich, A. & Moshkovitz, S. (1982). On the occurrence of Eocene marine diatoms in Israel. Acta Geologica Academiae Scientiarum Hungaricae, 25, 23–37.
Eldrett, J. S., Greenwood, D. R., Harding, I. C., & Huber, M. (2009). Increased seasonality through the Eocene to Oligocene transition in northern high latitudes. Nature, 459, 969–73.
Eldrett, J. S., Harding, I. C., Wilson, P. A., Butler, E., & Roberts, A. P. (2007). Continental ice in Greenland during the Eocene and Oligocene. Nature, 466, 176–9.
,Expedition 318 Scientists (2010). Wilkes Land glacial history: Cenozoic East Antarctic Ice Sheet evolution from Wilkes Land margin sediments. IODP Preliminary Report, 318. DOI:10.2204/
Falkowski, P. G., Katz, M. E., Knoll, A. H., et al. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305, 354–60.
Fenner, J. (1985). Late Cretaceous to Oligocene planktic diatoms. In Plankton Stratigraphy, vol. 2, ed. Bolli, H. M., Saunders, J. B., & Perch-Nielsen, K., Cambridge: Cambridge University Press, pp. 713–62.
Fenner, J. (1991). Taxonomy, stratigraphy, and paleoceanographic implications of Paleocene diatoms. Proceedings of the Ocean Drilling Program, Scientific Results, 114, 123–54.
Fenner, J. (1994). Diatoms of the Fur Formation, their taxonomy and biostratigraphic interpretation. Results from the Harre borehole, Denmark. Aarhus Geoscience, 1, 99–163.
Folger, D. W., Burckle, L. H., & Heezen, B. C. (1967). Opal phytoliths in a North Atlantic dust fall. Science, 155 (3767), 1243–4.
Fordyce, R. E. (1980). Whale evolution and Oligocene Southern Ocean environments. Palaeogeography, Palaeoclimatology, Palaeoecology, 31, 319–36.
Fourtanier, E. (1991). Paleocene and Eocene diatom biostratigraphy of eastern Indian Ocean Site 752, ODP Leg 121. Proceedings of the Ocean Drilling Program, Scientific Results, 121, 171–87.
Fourtanier, E. & Oscarson, R. (1994). Ultrastructure of some interesting and stratigraphically significant diatom taxa from the upper Paleocene to lower Eocene sediments of ODP Site 752, eastern Indian Ocean. Proceedings of the 11th International Diatom Symposium, ed. J. P. Kociolek, Memoirs of the California Academy of Sciences, no. 17, 399–410.
Gaarder, K. R., & Hasle, G. R. (1962). On the assumed symbiosis between diatoms and coccolithophorids in Brenneckella. Nytt Magasin for Botanikk, 9, 145–9.
Galeotti, S., Brinkhuis, H., & Huber, M. (2004). Record of post-K-T boundary millennial-scale cooling from the western Tethys: a smoking gun for the impact-winter hypothesis? Geology, 32, 529–32.
Gardner, J. V. & Burckle, L. H. (1975). Upper Pleistocene Ethmodiscus rex oozes from the eastern equatorial Atlantic. Micropaleontology, 21 (2), 236–42.
Gersonde, R. & Harwood, D. M. (1990). Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea). Part 1. Vegetative cells. Proceedings of the Ocean Drilling Program, Scientific Results, 113, 403–25.
Gingerich, P. D., Wells, N. A., Russell, D. E., & Shah, S. M. I. (1983). Origin of whales in epicontinental remnant seas: new evidence from the early Eocene of Pakistan. Science, 220, 403–6.
Girard, V., Saint Martin, S., Saint Martin, J.-P., et al. (2009). Exceptional preservation of marine diatoms in upper Albian amber. Geology, 37, 83–6.
Girard, V., Schmidt, A. R., Saint Martin, S., et al. (2008). Evidence for marine microfossils from amber. Proceedings of the National Academy of Sciences of the USA, 105 (45), 17426–9.
Gladenkov, A. (1999). A new lower Oligocene zone for the North Pacific diatom scale. In Proceedings of the Fourteenth International Diatom Symposium, ed. Mayama, S., Idei, M., & Koizumi, I., Königstein: Koeltz Scientific Books, pp. 581–90.
Gombos, A. M. (1980). The early history of the diatom family Asterolampraceae. Bacillaria, 3, 227–72.
Gombos, A. M. (1982). Early and middle Eocene diatom evolutionary events. Bacillaria, 5, 225–42.
Gombos, A. M. (1983). Middle Eocene diatoms from the South Atlantic. Initial Reports of the Deep Sea Drilling Project, 71, 565–81.
Gombos, A. M. (1984). Late Paleocene diatoms in the Cape Basin. Initial Reports of the Deep Sea Drilling Project, 73, 495–511.
Gombos, A. M. (1987). Middle Eocene diatoms from the North Atlantic, Deep Sea Drilling Project Site 605. Initial Reports of the Deep Sea Drilling Project, 93, 793–9.
Greville, R. K. (1859). Descriptions of Diatomaceae observed in Californian Guano. Quarterly Journal of Microscopical Science, 7, 155–66.
Greville, R. K. (1861). Descriptions of new and rare diatoms. Series I. Transactions of the Microscopical Society of London, New Series, 9, 39–45.
Greville, R. K. (1863). Descriptions of new and rare diatoms. Series IX. Transactions of the Microscopical Society of London, New Series, 11, 63–76.
Grigorov, I., Pearce, R. B., & Kemp, A. E. S. (2002). Southern Ocean laminated diatom ooze: mat deposits and potential for palaeo-flux studies, ODP Leg 177, Site 1093. Deep-Sea Research II: Topical Studies in Oceanography, 49, 3391–407.
Hajós, M. & Stradner, H. (1975). Late Cretaceous Archaeomonadaceae, Diatomaceae, and Silicoflagellatae from the South Pacific Ocean, Deep Sea Drilling Project, Leg 29, Site 275. Initial Reports of the Deep Sea Drilling Project, 29, 913–1009.
Hanna, G. D. (1932). The diatoms of Sharktooth Hill, Kern County, California. Proceedings of the California Academy of Sciences, Ser. 4, 20, 161–263.
Harper, M. A. (1999). Diatoms as markers of atmospheric transport. In The Diatoms: Applications for the Environmental and Earth Sciences, ed. Stoermer, E. F. & Smol, J. P., Cambridge: Cambridge University Press, pp. 429–35.
Harrison, K. G. (2000). Role of increased marine silica input on paleo-pCO2. Paleoceanography, 15 (3), 292–8.
Harwood, D. M. (1988). Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy of Seymour Island, eastern Antarctic Peninsula. Geological Society of America, Memoirs, 169, 55–129.
Harwood, D. M. & Bohaty, S. M. (2000). Marine diatom assemblages from Eocene and younger erratics, McMurdo Sound, Antarctica. Antarctic Research Series 76, 73–98.
Harwood, D. M. & Bohaty, S. M. (2001). Early Oligocene siliceous microfossil biostratigraphy of Cape Roberts Project Core CRP-3, Victoria Land Basin, Antarctica. Terra Antartica, 8, 315–38.
Harwood, D. & Bohaty, S. M. (2007). Late Miocene sea-ice diatoms indicate a cold polar East Antarctic ice sheet event. Geophysical Research Abstracts, 9, 08078.
Harwood, D. M. & Gersonde, R. (1990). Lower Cretaceous diatoms from ODP Leg 113 Site 693 (Weddell Sea) part 2, resting spores, chrysophycean cysts, and endoskeletal dinoflagellates, and notes on the origin of diatoms. Proceedings of the Ocean Drilling Program, Scientific Results, 113, 403–25.
Harwood, D. M., Nikolaev, V. A., & Winter, D. M. (2007). Cretaceous records of diatom evolution, radiation and expansion. In Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms, ed. S. Starratt Paleontological Society Short Course 13, Knoxville, TN: Paleontological Society, pp. 33–59.
Harwood, D. M., Scherer, R. P., & Webb, P.-N. (1989). Multiple Miocene marine productivity events in West Antarctica as recorded in upper Miocene sediments beneath the Ross Ice Shelf (Site J-9). Marine Micropaleontology, 15, 91–115.
Hein, J. R., Scholl, D. W., Barron, J. A., Jones, M. G., & Miller, J. (1978). Diagenesis of late Cenozoic diatomaceous deposits and formation of the bottom simulating reflector in the southern Bering Sea. Sedimentology, 25, 155–81.
Holmes, R. W. (1985). The morphology of diatoms epizoic on cetaceans and their transfer from Cocconeis to two genera, Bennettella and Epipellis. British Phycological Journal, 20, 43–57.
Homann, M. (1991). Die Diatomeen der Fur-Formation (Alttertiär, Limfjord/Dänemark). Geologisches Jahrbuch Reihe A, 123, 3–285.
Huber, M., Brinkhuis, H., Stickley, C. E., et al. (2004). Eocene circulation of the Southern Ocean: was Antarctica kept warm by subtropical waters? Paleoceanography, PA4016, DOI:10.1029/2004PA001014.
Iakovleva, A. I., Brinkhuis, H., & Cavagnetto, C. (2001). Late Paleocene–early Eocene dinoflagellate cysts from the Turgay Strait, Kazakhstan: correlations across ancient seaways. Palaeogeography, Palaeoclimatology, Palaeoecology, 172, 243–68.
Iakovleva, A. I. & Heilmann-Clausen, C. (2007). Wilsonidium pechoricum new species – a new dinoflagellate species with unusual asymmetry from the Paleocene/Eocene Transition. Journal of Paleontology, 81, 1020–30.
Iakovleva, A. I., Oreshkina, T. V., Alekseev, A. S., & Rousseau, D.-D. (2000). A new Paleogene micropaleontological and paleogeographical data in the Petchora Depression, northeastern European Russia. Comptes Rendus de l'Académie des Sciences – Series IIA – Earth and Planetary Science, 330, 485–91.
Iijima, A. & Tada, R. (1981). Silica diagenesis of Neogene diatomaceous and volcaniclastic sediments in northern Japan. Sedimentology, 28, 185–200.
Jacobs, B. F., Kingston, J. D., & Jacobs, L. L. (1999). The origin of grass-dominated ecosystems. Annals of the Missouri Botanical Garden, 86, 590–643.
Jacot Des Combes, H., Esper, O., Rocha, C. L., et al. (2008). Diatom δ13C, δ15N, and C/N since the last glacial maximum in the Southern Ocean: potential impact of species composition, Paleoceanography, 23, PA4209, DOI:10.1029/2008PA001589.
Jenkyns, H. C., Forster, A., Schouten, A., & Sinninghe Damsté, J. S. (2004). High temperatures in the Late Cretaceous Arctic Ocean. Nature, 432, 888–92.
Jordan, R. W., Priddle, J., Pudsey, C. J., Barker, P. F., & Whitehouse, M. J. (1991). Unusual diatom layers in Upper Pleistocene sediments from the northern Weddell Sea. Deep-Sea Research, 38, 829–43.
Jousé, A. P. (1949). Algae diatomaceae aetatis superne cretaceae ex arenis argillaceis-systematis. Botanicheskie Materialy Otdela Sporovykh Rastenii, Botanicheskii Institut, Akademia Nauk, SSSR, 6, 65–78 (in Russian).
Jousé, A. P. (1951). Diatoms of Paleocene age in the northern Urals. Botanicheskie Materialy Otdela Sporovykh Rastenii, Botanicheskii Institut, Akademia Nauk, SSSR, 7, 24–42 (in Russian).
Jousé, A. P. (1978). Diatom biostratigraphy on the generic level. Micropaleontology, 24, 316–26.
Juillet-Leclerc, A. & Schrader, H. (1987). Variations of upwelling intensity recorded in varved sediment from the Gulf of California during the past 3,000 years. Nature, 329, 146–9.
Kaczmarska, I., Barbrick, N. E., Ehrman, J. M., & Cant, G. P. (1993). Eucampia index as an indicator of the late Pleistocene oscillations of the winter sea ice extent at the Leg 119 Site 745B at the Kerguelen Plateau. Hydrobiologia, 269–270, 103–12.
Kanaya, T. (1957). Eocene diatom assemblages from the Kellogg and “Sidney” shales, Mt. Diablo Area, California. The Science Reports of the Tohoku University, Sendai, Japan, 2nd Series (Geology), 28, 27–124.
Katz, M. E., Finkel, Z., Grzebyk, D., Knoll, A. H., & Falkowski, P. G. (2004). Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual Reviews of Ecology, Evolution, and Systematics, 35, 523–56.
Katz, M. E., Wright, J. D., Miller, K. G., et al. (2005). Biological overprint of the geological carbon cycle. Marine Geology, 217 (Special Issue), 323–38.
Kawamura, A. (1992). Notes on the pattern of diatom fouling in three southern rorqual species. Bulletin of the Faculty of Bioresources, Mie University, 8, 19–26.
Kemp, A. E. S. & Baldauf, J. G. (1993). Vast Neogene laminated diatom mat deposits from the eastern equatorial Pacific Ocean. Nature, 362, 141–4.
Kemp, A. E. S., Baldauf, J. G., & Pearce, R. B. (1995). Origins and paleoceanographic significance of laminated diatom ooze from the eastern equatorial Pacific Ocean (Leg 138). Proceedings of the Ocean Drilling Program, Scientific Results, 138, 641–5.
Kemp, A. E. S., Pearce, R. B., Grigorov, I., et al. (2006). The production of giant marine diatoms and their export at oceanic frontal zones: implications for Si and C flux in stratified oceans. Global Biogeochemical Cycles, 20, GB4S04-[13pp], DOI:10.1029/2006GB002698.
Kemp, A. E. S., Pearce, R. B., Koizumi, I., Pike, J., & Rance, S. J. (1999). The role of mat forming diatoms in formation of the Mediterranean sapropels. Nature, 398, 57–61.
Kemp, A. E. S., Pike, J., Pearce, R. B., & Lange, C. B. (2000). The “fall dump” – a new perspective on the role of a “shade flora” in the annual cycle of diatom production and export flux. Deep-Sea Research II, 47, 2129–54.
Kohnen, M. E. L., Sinninghe Damsté, J. S., Kock-van Dalen, A. C., et al. (1990). Origin and diagenetic transformation of C25 and C30 highly branched isoprenoid sulfur compounds: further evidence for the formation of organically bound sulfur during early diagenesis. Geochimica et Cosmochimica Acta, 54, 3053–63.
Kooistra, W. H. C. F. & Medlin, L. K. (1996). Evolution of the diatoms (Bacillariophyta) IV. A reconstruction of their age from small subunit rRNA coding regions and fossil record. Molecular Phylogenetics and Evolution, 6 (3), 391–407.
Kolbe, R. W. (1954). Diatoms from equatorial Pacific cores. Reports of the Swedish Deep-Sea Expedition 1947–1948, VI, 1–49.
Krammer, R., Baumann, K.-H., & Henrich, R. (2005). Middle to late Miocene fluctuations in the incipient Benguela Upwelling System revealed by calcareous nannofossil assemblages (ODP Site 1085A). Palaeogeography, Palaeoclimatology, Palaeoecology, 230, 319–34.
Lange, C. B., Berger, W. H., Lin, H. L., & Wefer, G. (1999). The early Matuyama Diatom Maximum off SW Africa, Benguela Current System (ODP Leg 175). Marine Geology, 161, 93–114.
Lange, C. B., Romero, O. E., Wefer, G., & Gabric, A. J. (1998). Offshore influence of coastal upwelling off Mauritania, NW Africa, as recorded by diatoms in sediment traps at 2195 m water depth. Deep-Sea Research I, 45 (6), 985–1013.
Lazarus, D., Spencer-Cervato, C., Pika-Biolzi, M., et al. (1995). Revised chronology of Neogene DSDP holes from the World Ocean. Ocean Drilling Program Technical Note 24, College Station, TX: Ocean Drilling Program.
Leckie, R. M. & Webb, P.-N. (1983). Late Oligocene–early Miocene glacial record of the Ross Sea, Antarctica: evidence from DSDP Site 270. Geology, 11, 578–82.
Leventer, A., Domack, E., Dunbar, R., et al. (2006). Marine sediment record from the East Antarctic margin reveals dynamics of ice sheet recession. GSA Today, 16 (12), DOI:10.1130/GSAT01612A.1
Levasseur, M., Gosselin, M., & Michaud, S. (1994). A new source of dimethylsulfide (DMS) for the Arctic atmosphere: ice diatoms. Marine Biology, 121, 381–7.
Lipps, J. H. & Mitchell, E. (1976). Trophic model for the adaptive radiations and extinctions of pelagic marine mammals. Paleobiology, 2, 147–55.
Lohman, K. E. (1931). Diatoms from the Modelo Formation (Upper Miocene) near Girard, Los Angeles County, California. Unpublished Masters thesis, California Institute of Technology, Pasadena, CA.
Lohman, K. E. (1938). Pliocene diatoms from the Kettleman Hills, California. United States Geological Survey, Professional Paper 196-B, 55–87.
Long, J. A., Fuge, D. P., & Smith, J. (1946). Diatoms of the Moreno Shale. Journal of Paleontology, 20 (2), 89–118.
Lyle, M., Gibbs, S., Moore, T. C., & Rea, D. K. (2007). Late Oligocene initiation of the Antarctic Circumpolar Current: evidence from the South Pacific. Geology, 35, 691–4.
MacLeod, N., Rawson, P. F., Forey, P. L., et al. (1997). The Cretaceous–Tertiary biotic transition. Journal of the Geological Society, 154, 265–92.
Mann, A. (1921). The diatoms of the Lompoc Beds. In The Fish Fauna of the California Tertiary, ed. Jordan, D.S., Stanford University Publications, University Series, Biological Sciences, vol. 1, 293–8.
Merico, A., Tyrrell, T., & Wilson, P. A. (2008). Eocene/Oligocene ocean de-acidification linked to Antarctic glaciation by sea level fall. Nature, 452, 979–82.
Michalopoulos, P., Aller, R. C., & Reeder, R. J. (2000). Conversion of diatoms to clays during early diagenesis in tropical, continental shelf muds. Geology, 28 (12), 1095–8.
Mikkelsen, N. (1977). Silica dissolution and overgrowth of fossil diatoms. Micropaleontology, 23, 223–6.
Miller, K. G., Browning, J. V., Aubry, M.-P., et al. (2008). Eocene–Oligocene global climate and sea-level changes: St. Stephens Quarry, Alabama. Geological Society of America Bulletin, 120, 34–53.
Mills, L. G. (1881). Diatoms from Guano. Journal of the Royal Microscopical Society, 1, 865 + plate XI.
Mitlehner, A. G. (1996). Palaeoenvironments in the North Sea Basin around the Paleocene–Eocene boundary: evidence from diatoms and other siliceous microfossils. Geological Society, London, Special Publications, 101, 255–73.
Moore, T. C. Jr., Jarrard, R. D., Olivarez Lyle, A., & Lyle, M. (2008). Eocene biogenic silica accumulation rates at the Pacific equatorial divergence zone. Paleoceanography, 23, PA2202, DOI:10.1029/2007PA001514.
Moran, K., Backman, J., Brinkhuis, H., et al. (2006). The Cenozoic palaeoenvironment of the Arctic Ocean. Nature, 441, 601–5.
Mukhina, V. V. (1976). Species composition of the Late Paleocene diatoms and silicoflagellates in the Indian Ocean. Micropaleontology, 22 (2), 151–8.
Nagasawa, S., Holmes, R. W., & Nemoto, T. (1989). Occurrence of Cetacean diatoms in the sediments of Otsuchi Bay, Iwate, Japan. Proceedings of the Japan Academy, Series B, 65 (4), 80–3.
Naish, T. R., Powell, R. D., & Levy, R. H. (eds.) (2007). Studies from the ANDRILL, McMurdo Ice Shelf Project, Antarctica – Initial Science Report on AND-1B. Terra Antartica, 14, 109–328.
Naish, T., Powell, R., Levy, R., et al. (2009). Obliquity-paced Pliocene West Antarctic Ice Sheet oscillations. Nature, 458, 322–8.
Nelson, D. M., Tréguer, P., Brzezinski, M. A., Leynaert, A., & Quéguiner, B. (1995). Production and dissolution of biogenic silica in the ocean: revised global estimates, comparison with regional data and relationship to biogenic sedimentation. Global Biogeochemical Cycles, 9, 359–72.
Nikolaev, V. A., Kociolek, J. P., Fourtanier, E., Barron, J. A., & Harwood, D. M. (2001). Late Cretaceous diatoms (Bacillariophyceae) from the Marca Shale Member of the Moreno Formation, California. Occasional Papers of the California Academy of Sciences, 152, 1–119.
Olney, M., Bohaty, S. M., Harwood, D. M., & Scherer, R. P. (2009). Creania lacyae gen. et sp. nov. and Synedropsis cheethamii sp. nov.: fossil indicators of Antarctic sea ice?Diatom Research, 24, 357–75.
Olney, M. P., Scherer, R. P., Bohaty, S. M., & Harwood, D. M. (2005). Eocene–Oligocene paleoecology and the diatom genus Kisseleviella Sheshukova-Poretskaya from the Victoria Land Basin, Antarctica. Marine Micropaleontology, 58, 56–72.
Olney, M. P., Scherer, R. P., Harwood, D. M., & Bohaty, S. M. (2007). Oligocene-early Miocene Antarctic nearshore diatom biostratigraphy. Deep-Sea Research II, 54, 2325–49.
Oreshkina, T. & Aleksandrova, G. (2007). Terminal Paleocene of the Volga middle reaches: biostratigraphy and paleosettings. Stratigraphy and Geological Correlation, 15 (2), 206–30.
Passow, U., Engel, A., & Ploug, H. (2003). The role of aggregation for the dissolution of diatom frustules. FEMS Microbiology Ecology, 46, 247–55.
Patarnello, T., Bargelloni, L., Varotto, V., & Battaglia, B. (1996). Krill evolution and the Antarctic ocean currents: evidence of vicariant speciation as inferred by molecular data. Marine Biology, 126, 603–8.
Pike, J. (2000). Data report: backscattered electron imagery analysis of early Pliocene laminated Ethmodiscus ooze, ODP Site 1010, Leg 167. Proceedings of the Ocean Drilling Program, Scientific Results, 167, 207–12.
Pike, J., Allen, C. S., Leventer, A., Stickley, C. E., & Pudsey, C. J. (2008). Comparison of contemporary and fossil diatom assemblages from the western Antarctic Peninsula shelf. Marine Micropaleontology, 67, 274–87.
Pfuhl, H. A., & McCave, I. N. (2005). Evidence for late Oligocene establishment of the Antarctic Circumpolar Current. Earth and Planetary Science Letters, 235, 715–28.
Pollock, D. E. (1997). The role of diatoms, dissolved silicate and Antarctic glaciation in glacial/interglacial climatic change: a hypothesis. Global and Planetary Change, 14, 113–25.
Prasad, V., Strömberg, C. A. E., Alimohammadian, H., & Sahni, A. (2005). Dinosaur coprolites and the early evolution of grasses and grazers. Science, 310, 1177–80.
Rabosky, D. L. & Sorhannus, U. (2009). Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature, 457, 183–6.
Radionova, E. P. & Khokhlova, I. E. (2000). Was the North Atlantic connected with the Tethys via the Arctic in the early Eocene? Evidence from siliceous plankton. Geologiska Foreningens i Stockholm Forhnndlingar (GFF), 122, 133–4.
Raiswell, R. & Berner, R. A. (1985). Pyrite formation in euxinic and semi-euxinic sediments. American Journal of Science, 285, 710–24.
Reinhold, T. (1937). Fossil diatoms of the Neogene of Java and their zonal distribution. Geolische Serie, 12, 43–133 + 21 plates.
Romero, O., Mollenhauer, G., Schneider, R. R., & Wefer, G. (2003). Oscillations of the siliceous imprint in the central Benguela Upwelling System from MIS 3 through to the early Holocene: the influence of the Southern Ocean. Journal of Quaternary Science, 18, 733–43.
Rothpletz, A. (1896). Über die Flysch-Fucoiden und einige andere fossile Algen, sowie über liasische, Diatomeen führende Hornschwämme. Zeitschrift der Deutschen Geologischen Gesellschaft, Berlin, 48, 854–914.
Rothpletz, A. (1900). Über einen neuen jurassichen Hornschwämm und die darin eingeschlossenen. Diatomeen. Zeitschrift der Deutschen Geologischen Gesellschaft, Berlin, 52, 154–60.
Round, F. E., & Alexander, C. G. (2002). Licmosoma – a new diatom genus growing on barnacle cirri. Diatom Research, 17, 319–26.
Rowland, S. J., & Robson, J. N. (1990). The widespread occurrence of highly branched acyclic C20, C25 and C30 hydrocarbons, recent sediments biota – a review. Marine Environmental Research, 30, 191–216.
Salamy, K. A., & Zachos, J. C. (1999). Late Eocene–early Oligocene climate change on Southern Ocean fertility: inferences from sediment accumulation and stable isotope data. Palaeogeography, Palaeoclimatology, Palaeoecology, 145, 79–93.
Scherer, R. P. (1991). Quaternary and Tertiary microfossils from beneath Ice Stream B: Evidence for a dynamic West Antarctic Ice Sheet history. Global and Planetary Change, 4, 395–412.
Scherer, R. P., Aldahan, A., Tulaczyk, S., et al. (1998). Pleistocene collapse of the West Antarctic Ice Sheet. Science, 281, 82–5.
Scherer, R. P., Bohaty, S. M., Dunbar, R. B., et al. (2008). Antarctic records of precession-paced insolation-driven warming during early Pleistocene Marine Isotope Stage 31. Geophysical Research Letters, 35, L03505, DOI:10.1029/2007GL032254.
Scherer, R. P., Bohaty, S. M., & Harwood, D. M. (2001). Oligocene and Lower Miocene siliceous microfossil biostratigraphy of Cape Roberts Project Core CRP-2/2A, Victoria Land Basin, Antarctica. Terra Antartica, 7, 417–42.
Scherer, R. P., Gladenkov, A. Yu., & Barron, J. A. (2007a). Methods and applications of Cenozoic marine diatom biostratigraphy. In Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms, ed. Starratt, S. W., Paleontological Society Short Course 13, Knoxville, TN: The Paleontological Society, pp. 61–83.
Scherer, R., Hannah, M., Maffioli, P., et al. (2007b). Paleontologic characterisation and analysis of the AND-1B Core, ANDRILL McMurdo Ice Shelf Project, Antarctica. Terra Antartica, 14, 223–54.
Scherer, R. P., Sjunneskog, C. M., Iverson, N., & Hooyer, T. (2004). Assessing subglacial processes from diatom fragmentation patterns. Geology, 32, 557–60.
Scherer, R. P., Sjunneskog, C. M., Iverson, N., & Hooyer, T. (2005). Frustules to fragments, diatoms to dust: how degradation of microfossil micro and nanostructures can teach us how ice sheets work. Journal of Nanoscience and Nanotechnology, 5, 96–9.
Schrader, H.-J. (1971). Fecal pellets: role in sedimentation of pelagic diatoms. Science, 174, 55–7.
Schrader, H. J. & Gersonde, R. (1978). Diatoms and silicoflagellates. Utrecht Micropaleontological Bulletin, 17, 129–76.
Schrader, H. & Sorknes, R. (1990). Spatial and temporal variation of Peruvian coastal upwelling during the latest Quaternary. Proceedings of the Ocean Drilling Program, Scientific Results, 112, 391–406.
Schuette, G. & Schrader, H. (1979). Diatom taphocoenoses in the coastal upwelling area off western South America. Nova Hedwigia, 64, 359–78.
Schuette, G. & Schrader, H. (1981). Diatom taphocoenoses in the coastal upwelling area off south West Africa. Marine Micropaleontology, 6, 131–55.
Shannon, L. V. & Hunter, D. (1988). Notes on Antarctic Intermediate Water around southern Africa. South African Journal of Marine Science, 6, 107–17.
Shemesh, A., Burckle, L. H., & Hays, J. D. (1995). Late Pleistocene oxygen isotope records of biogenic silica from the Atlantic sector of the Southern Ocean, Paleoceanography 10, 179–96.
Shemesh, A., Mortlock, R. A., & Froelich, P. N. (1989). Late Cenozoic Ge/Si record of marine biogenic opal: implications for variations of riverine fluxes to the ocean, Paleoceanography, 4, 221–34.
Shiine, H., Suzuki, N., Motoyama, I., et al. (2008). Diatom biomarkers during the Eocene/Oligocene transition in the Il'pinskii Peninsula, Kamchatka, Russia. Palaeogeography, Palaeoclimatology, Palaeoecology, 264, 1–10.
Shimada, C., Hasegawa, S., Tanimura, Y., & Burckle, L. H. (2003). A new index to quantify diatom dissolution levels based on a ratio of Neodenticula seminae frustule components. Micropaleontology, 49, 267–76.
Shimada, C., Sato, T., Toyoshima, S., Yamasaki, M., & Tanimura, Y. (2008). Paleoecological significance of laminated diatomaceous oozes during the middle-to-late Pleistocene, North Atlantic Ocean (IODP Site U1304). Marine Micropaleontology, 69, 139–50.
Shimada, C., Tanaka, Y., & Tanimura, Y. (2006). Seasonal variation in skeletal silicification of Neodenticula seminae, a marine planktonic diatom: sediment trap experiments in the NW Pacific Ocean (1997–2001). Marine Micropaleontology, 60, 130–44.
Siesser, W. G. (1980). Late Miocene origin of the Benguela upwelling system off northern Namibia. Science, 208, 283–5.
Sims, P. A., Mann, D. G., & Medlin, L. K. (2006). Evolution of the diatoms: insights from fossil, biological and molecular data. Phycologia, 45, 361–402.
Sinninghe Damsté, J. S., Muyzer, G., Abbas, B., et al. (2004). The rise of the rhizosolenid diatoms. Science, 304, 584–7.
Sjunneskog, C. S. & Scherer, R. P. (2005). Mixed diatom assemblages in Ross Sea (Antarctica) glacigenic facies. Palaeogeography, Palaeoclimatology, Palaeoecology, 218 (3–4), 287–300.
Smetacek, V. S. (1985). Role of sinking in diatom life-history cycles: ecological, evolutionary and geological significance. Marine Biology, 84, 239–51.
Spencer-Cervato, C. (1999). The Cenozoic deep-sea microfossil record: explorations of the DSDP/ODP sample set using the Neptune database (online). Palaeontologia Electronica, 2 (2), article 4.
Stickley, C. E., Brinkhuis, H., McGonigal, K. L., et al. (2004a). Late Cretaceous–Quaternary biomagnetostratigraphy of ODP Sites 1168, 1170, 1171, and 1172, Tasmanian Gateway. Proceedings of the Ocean Drilling Program, Scientific Results, 189, 1–57. See
Stickley, C. E., Brinkhuis, H., Schellenberg, S. A., et al. (2004b). Timing and nature of the deepening of the Tasmanian Gateway. Paleoceanography, 19, PA4027, DOI: 10.1029/2004PA001022.
Stickley, C. E., Koç, N., Brumsack, H.-J., Jordan, R. W., & Suto, I. (2008). A siliceous microfossil view of middle Eocene Arctic paleoenvironments: a window of biosilica production and preservation. Paleoceanography, 23, PA1S14, DOI:10.1029/2007PA001485.
Stickley, C. E., Pike, J., Leventer, A., et al. (2005). Deglacial ocean and climate seasonality in laminated diatom sediments, MacRobertson Shelf, Antarctica. Palaeogeography, Palaeoclimatology, Palaeoecology, 227, 290–310.
Stickley, C. E., St. John, K., Koç, N., et al. (2009). Evidence for middle Eocene Arctic sea ice from diatoms and ice-rafted debris. Nature, 460, 376–9.
Strelnikova, N. I. (1974). Diatoms of the Late Cretaceous (Western Siberia). Moscow: Nauka (in Russian).
Strelnikova, N. I. (1975). Diatoms of the Cretaceous Period. Nova Hedwigia, Beiheft, 53, 311–21.
Summerhayes, C. P., Prell, W. L. & Emeis, K. C. (eds.) (1992). Upwelling systems: evolution since the early Miocene. Geological Society of London, Special Publication, 64, 1–519.
Suto, I. (2004). Fossil marine diatom resting spore morpho-genus Gemellodiscus gen. nov. in the North Pacific and Norwegian Sea. Paleontological Research, 8, 255–82.
Suto, I. (2005). Taxonomy and biostratigraphy of the fossil marine diatom resting genera Dicladia Ehrenberg, Monocladia Suto and Syndendrium Ehrenberg in the North Pacific and Norwegian Sea. Diatom Research, 20, 351–74.
Suto, I. (2006). The explosive diversification of the diatom genus Chaetoceros across the Eocene/Oligocene and Oligocene/Miocene boundaries in the Norwegian Sea. Marine Micropaleontology, 58, 259–69.
Suto, I., Jordan, R. W., & Watanabe, M. (2008). Taxonomy of the fossil marine diatom resting spore genus Goniothecium Ehrenberg and its allied species. Diatom Research, 23, 445–69.
Suto, I., Jordan, R. W., & Watanabe, M. (2009). Taxonomy of middle Eocene diatom resting spores and their allied taxa from IODP sites in the central Arctic Ocean (the Lomonosov Ridge). Micropaleontology, 55, 259–312.
Suto, I., Watanabe, M., & Jordan, R. W. (in press). Taxonomy of the fossil marine diatom resting spore genus Odontotropis Grunow. Diatom Research.
Takahashi, O., Kimura, M., Ishii, A., & Mayama, S. (1999). Upper Cretaceous diatoms from central Japan. In Proceedings of the Fourteenth International Diatom Symposium, Tokyo, ed. Mayama, S., Idei, M., & Koizumi, I., Königstein: Koeltz Scientific Books, pp. 146–55.
Tapia, P. M. & Harwood, D. M. (2002). Upper Cretaceous diatom biostratigraphy of the Arctic Archipelago and northern continental margin, Canada. Micropaleontology, 48, 303–42.
Thewissen, J. G. M., & Williams, E. M. (2002). The early radiations of Cetacea (Mammalia): evolutionary pattern and developmental correlations. Annual Review of Ecology and Systematics, 33, 73–90.
Thomas, E. (2008). Descent into the Icehouse. Geology, 36, 191–2.
Tréguer, P., Nelson, D. M., Bennekom, A. J, et al. (1995). The silica balance in the world ocean: a re-estimate. Science, 268, 375–9.
Eetvelde, Y., Dupuis, C., & Cornet, C. (2004). Pyritized diatoms: a good fossil marker in the upper Paleocene–lower Eocene sediments from the Belgian and Dieppe-Hampshire basins. Netherlands Journal of Geosciences, 83, 173–8.
Villareal, T. A., Altabet, M. A., & Culver-Rymsza, K. (1993). Nitrogen transport by vertically migrating diatom mats in the North Pacific Ocean. Nature, 363, 709–12.
Villareal, T. A., Joseph, L., Brzezinski, M. A., et al. (1999). Biological and chemical characteristics of the giant diatom Ethmodiscus (Bacillariophyceae) in the central North Pacific Gyre. Journal of Phycology, 35, 896–902.
Wagner, T., Damsté, J. S. S., Hofmann, P., & Beckmann, B. (2004). Euxinia and primary production in Late Cretaceous eastern equatorial Atlantic surface waters fostered orbitally driven formation of marine black shales. Paleoceanography, 19, DOI:10.1029/2003PA000898.
Watanabe, M. & Takahashi, M. (1997). Diatom biostratigraphy of the middle Miocene Kinone and lower Amatsu Formation in the Boso Peninsula, central Japan. Journal of the Japanese Association for Petroleum Technology, 62, 215–25 (in Japanese with English abstract).
Weijers, J. W. H., Schouten, S., Sluijs, A., Brinkhuis, H., & Sinninghe Damsté, J. S. (2007). High latitude subtropical continental temperatures during the Palaeocene–Eocene Thermal Maximum. Earth and Planetary Science Letters, 261, 230–8.
Whitehead, J. M., Wotherspoon, S., & Bohaty, S. M. (2005). Minimal Antarctic sea ice during the Pliocene. Geology, 33, 137–40.
Witt, O. N. (1886). Über den Polierschiefer von Archangelsk, Kurojedowo im Gouv. Simbirsk. Verhandlungen, Russischskaiserliche, Mineralogische Gesellschaft zu St. Petersburg, Series II, 22, 137–77.
Wolfe, A. P., Edlund, M. B., Sweet, A. R., & Creighton, S. D. (2006). A first account of organelle preservation in Eocene nonmarine diatoms: observations and paleobiological implications. PALAIOS, 21, 298–304.
Wornardt, W. W. Jr. (1972). Stratigraphic distribution of diatom genera in marine sediments in western North America. Palaeogeography, Palaeoclimatology, Palaeoecology, 12, 49–74.
Yoder, J. A., Ackleson, S., Barber, R. T., Flamant, P., & Balch, W. A. (1994). A line in the sea. Nature, 371, 689–92.
Zachos, J. C., Dickens, G. R., & Zeebe, R. E. (2008). An early Cenozoic perspective on greenhouse warming and carbon-cycle dynamics. Nature, 451, 279–83.
Zachos, J., Pagani, M., Sloan, L., Thomas, E., & Billups, K. (2001). Trends, rhythms, and aberrations in global climate 65 Ma to present. Science, 292, 686–93.
Zane, L. & Patarnello, T. (2000). Krill: a possible model for investigating the effects of ocean currents on the genetic structure of a pelagic invertebrate. Canadian Journal of Fisheries and Aquatic Science, 57 (S3), 16–23.