Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T09:44:56.794Z Has data issue: false hasContentIssue false

15 - Diatoms and environmental change in large brackish-water ecosystems

from Part IV - Diatoms as indicators in marine and estuarine environments

Published online by Cambridge University Press:  05 June 2012

Pauline Snoeijs
Affiliation:
Stockholm University
Kaarina Weckström
Affiliation:
Geological Survey of Denmark and Greenland (GEUS)
John P. Smol
Affiliation:
Queen's University, Ontario
Eugene F. Stoermer
Affiliation:
University of Michigan, Ann Arbor
Get access

Summary

Introduction

Classification of brackish waters

Brackish waters comprise a range of exclusive habitats that can be subdivided into three major categories: transition zones between freshwater and marine habitats, transition zones between hyperhaline water and marine habitats, and inland waters without marine water exchange. Salinities of brackish-water habitats vary from relatively stable (e.g. some large saline lakes; see Fritz et al., this volume) to extremely instable in time and space (e.g. estuaries bordering tidal seas; see Trobajo & Sullivan, this volume). In the past, many efforts have been made to classify brackish waters according to salinity and the occurrence of biological species (Kolbe, 1932; Segerstråle, 1959; den Hartog, 1964). The more detailed such classifications are, the less well they appear to fit with all types of brackish waters. Based on salinity, defined as the total concentration of ionic components in g per kg water, generally accepted approximate limits are: limnetic (freshwater) <0.5 practical salinity units (psu) = parts per thousand (ppt), oligohaline 0.5–5 psu, mesohaline 5–18 psu, polyhaline 18–30 psu, euhaline 30–40 psu, hyperhaline 40 psu (known as the “Venice System”: Anonymous, 1959).

Large brackish-water ecosystems

Earth's longest salinity gradient comprises the continental microtidal Baltic Sea (Leppäranta & Myrberg, 2009: surface area 377,000 km2, water volume 21,000 km3, mean depth 58 m, maximum depth 459 m) and its transition area to the North Sea.

Type
Chapter
Information
The Diatoms
Applications for the Environmental and Earth Sciences
, pp. 287 - 308
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abelmann, A. (1985). Palökologische und ökostratigraphische Untersuchungen von Diatomeenassoziationen an holozänen Sedimenten der zentralen Ostsee. Berichte Reports, Geologisch-Paläontologisches Institut der Universität Kiel, 9, 1–199.Google Scholar
Aladin, N., Plotnikov, I. S., & Filippov, A. A. (2002). Invaders in the Caspian Sea. In Invasive Aquatic Species of Europe – Distribution, Impacts and Management, ed. Leppäkoski, E., Olenin, S., & Gollasch, S., Dordrecht: Kluwer Academic Publishers, pp. 351–9.CrossRefGoogle Scholar
Alheit, J., Möllmann, C., Dutz, J., et al. (2005). Synchronous ecological regime shifts in the central Baltic and the North Sea in the late 1980s. ICES Journal of Marine Science, 62, 1205–15.CrossRefGoogle Scholar
Alhonen, P. (1971). The stages of the Baltic Sea as indicated by the diatom stratigraphy. Acta Botanica Fennica, 92, 3–17.Google Scholar
Alhonen, P. (1986). Late Weichselian and Flandrian diatom stratigraphy: methods, results and research tendencies. Striae, 24, 27–33.Google Scholar
Andrén, E. (1999a). Holocene environmental changes recorded by diatom stratigraphy in the southern Baltic Sea. Meddelanden från Stockholms universitets institution för geologi och geokemi, 302, 1–22.Google Scholar
Andrén, E. (1999b). Changes in the composition of the diatom flora during the last century indicate increased eutrophication of the Oder estuary, south-western Baltic Sea. Estuarine, Coastal and Shelf Science, 48, 665–76.CrossRefGoogle Scholar
Andrén, E., Andrén, T., & Kunzendorf, H. (2000a). Holocene history of the Baltic Sea as a background for assessing records of human impact in the sediments of the Gotland Basin. Holocene, 10, 687–702.CrossRefGoogle Scholar
Andrén, E., Andrén, T. & Sohlenius, G. (2000b). The Holocene history of the southwestern Baltic Sea as reflected in a sediment core from the Bornholm Basin. Boreas, 29, 233–50.CrossRefGoogle Scholar
Andrén, E., Shimmield, G., & Brand, T. (1999). Environmental changes of the last three centuries indicated by siliceous microfossil records from the southwestern Baltic Sea. Holocene, 9, 25–38.CrossRefGoogle Scholar
,Anonymous (1959). Final Resolution of the Symposium on the Classification of Brackish Waters. Archivio di Oceanografia e Limnologia (Supplement), 11, 243–5.Google Scholar
,Anonymous (1985). Kaspiiskoye morye (Caspian Sea). Moscow: Nauka (in Russian).Google Scholar
,Anonymous (2000). Directive 200/60/EC of the European Parliament and of the Council of 23 October 2000 establishing a framework for Community action in the field of water policy. Official Journal of the European Communities, L 327/1.Google Scholar
Archibald, R. E. M. (1983). The diatoms of the Sundays and Great Fish rivers in the eastern Cape Province of South Africa. Bibliotheca Diatomologica, 1, 1–362 + 34 plates.Google Scholar
Bakan, G. & Büyükgüngör, H. (2000). The Black Sea. In Seas at the Millenium: an Environmental Evaluation, ed. Sheppard, C. R. C., Amsterdam: Elsevier Science Ltd, pp. 285–305.Google Scholar
Berglund, B. E., Sandgren, P., Barnekow, L., et al. (2005). Early Holocene history of the Baltic Sea, as reflected in coastal sediments in Blekinge, southeastern Sweden. Quaternary International, 130, 111–39.CrossRefGoogle Scholar
Besiktepe, S., Ryabushko, L., Ediger, D. Yimaz, et al. (2008). Domoic acid production by Pseudo-nitzschia calliantha Lundholm, Moestrup et Hasle (Bacillariophyta) isolated from the Black Sea. Harmful Algae, 7, 438–42.CrossRefGoogle Scholar
Birks, H. J. B. (1995). Quantitative palaeoenvironmental reconstructions. Quaternary Research Association, Technical Guide, 5, 161–254.Google Scholar
Björck, S. (1995). A review of the history of the Baltic Sea 13.0–8.0 ka BP. Quaternary International, 27, 19–40.CrossRefGoogle Scholar
Björck, S. (2008). The late Quaternary development of the Baltic Sea basin. In Assessment of Climate Change for the Baltic Sea Basin, ed. the BACC author team, Berlin: Springer-Verlag, pp. 398–407.Google Scholar
Björck, S., Andrén, T., & Jensen, J. B. (2008). An attempt to resolve the partly conflicting data and ideas on the Ancylus–Litorina transition. Polish Geological Institute Special Papers, 23, 21–6.Google Scholar
Blanck, H. & Dahl, B. (1996). Pollution-induced community tolerance (PICT) in marine periphyton in a gradient of tri-n-butyltin (TBT) contamination. Aquatic Toxicology, 35, 57–77.CrossRefGoogle Scholar
Bonsdorff, E. (2006). Zoobenthic diversity-gradients in the Baltic Sea: continuous post-glacial succession in a stressed ecosystem. Journal of Experimental Marine Biology and Ecology, 330, 383–91.CrossRefGoogle Scholar
Bradshaw, E. G. (2001). Linking land and lake. The response of lake nutrient regimes and diatoms to long-term land-use change in Denmark. Unpublished Ph.D. thesis, University of Copenhagen.Google Scholar
Busse, S. & Snoeijs, P. (2002). Gradient responses of diatom communities in the Bothnian Bay, northern Baltic Sea. Nova Hedwigia, 74, 501–25.CrossRefGoogle Scholar
Busse, S. & Snoeijs, P. (2003). Gradient responses of diatom communities in the Bothnian Sea (northern Baltic Sea), with emphasis on responses to water movement. Phycologia, 42, 451–64.CrossRefGoogle Scholar
Cadée, G. C. & Hegeman, J. (1991). Historical phytoplankton data of the Maarsdiep. Hydrobiological Bulletin, 24, 111–8.CrossRefGoogle Scholar
Carlson, L. & Snoeijs, P. (1994). Radiocaesium in algae from Nordic coastal waters. In Nordic Radioecology – The Transfer of Radionuclides through Nordic Ecosystems to Man, ed. Dahlgaard, H., Amsterdam: Elsevier Science Publishers, pp. 105–17.CrossRefGoogle Scholar
Carpelan, L. H. (1978a). Evolutionary euryhalinity of diatoms in changing environments. Nova Hedwigia, 29, 489–526.Google Scholar
Carpelan, L. H. (1978b). Revision of Kolbe's system der Halobien based on diatoms of Californian lagoons. Oikos, 31, 112–22.CrossRefGoogle Scholar
Clarke, A., Juggins, S. & Conley, D. (2003). A 150-year reconstruction of the history of coastal eutrophication in Roskilde Fjord, Denmark. Marine Pollution Bulletin, 46, 1615–18.CrossRefGoogle ScholarPubMed
Cleve, P. T. (1899). Bidrag till Kännedom om Östersjöns och Bottniska vikens postglaciala geologi. Sveriges Geologiska Undersökningar, C180 (in Swedish).Google Scholar
Cleve-Euler, A. (1951–1955). Die Diatomeen von Schweden und Finnland I-V. Kungliga Svenska Vetenskapsakademiens Handlingar, 2(1), 1–163; 3(3), 1–153; 4(1), 1–255; 4(5), 1–158; 5(4), 1–132.Google Scholar
Conley, D. J. (2000). Biogeochemical nutrient cycles and nutrient management strategies. Hydrobiologia, 410, 87–96.CrossRefGoogle Scholar
Conley, D. J., Stålnacke, P., Pitkänen, H., & Wilander, A. (2000). The transport and retention of dissolved silicate by rivers in Sweden and Finland. Limnology and Oceanography, 45, 1850–53.CrossRefGoogle Scholar
Jonge, V. N., Elliott, M., & Orive, E. (2002). Causes, historical development, effects and future challenges of a common environmental problem: eutrophication. Hydrobiologia, 475–476, 1–19.CrossRefGoogle Scholar
Hartog, C. (1964). Typologie des Brackwassers. Helgoländer Wissenschaftliche Meeresuntersuchungen, 10, 377–90.CrossRefGoogle Scholar
Ellegaard, M., Clarke, A. L., Reuss, N., et al. (2006). Long-term changes in plankton community structure and geochemistry in Mariager Fjord, Denmark, linked to increased nutrient loading. Estuarine, Coastal and Shelf Science, 68, 567–78.CrossRefGoogle Scholar
Elmgren, R. (1989). Man's impact on the ecosystem of the Baltic Sea: energy flows today and at the turn of the century. Ambio, 18, 326–32.Google Scholar
Emeis, K.-C., Struck, U., Blanz, T., Kohly, A., & Voss, M. (2003). Salinity changes in the central Baltic Sea (NW Europe) over the last 10 000 years. Holocene, 13, 411–21.CrossRefGoogle Scholar
Eppley, R. W. (1977). The growth and culture of diatoms. In The Biology of Diatoms, ed. D. Werner, Botanical Monographs, volume 13, Oxford: Blackwell Scientific Publications, pp. 24–64.Google Scholar
Falandysz, J., Trzosinska, A., Szefer, P., Warzocha, J., & Draganik, B. (2000). The Baltic Sea, especially southern and eastern regions. In Seas at the Millenium: an Environmental Evaluation, ed. Sheppard, C. R. C., Amsterdam: Elsevier Science Ltd, pp. 99–120.Google Scholar
Finenko, Z. Z. (2008). Biodiversity and bioproductivity. In The Black Sea Environment, The Handbook of Environmental Chemistry, 5Q, ed. Kostianoy, A. G. & Kosarev, A. N., Berlin: Springer-Verlag, pp. 351–74.CrossRefGoogle Scholar
Folke, C., Carpenter, S., Walker, B., et al. (2004). Regime shifts, resilience and biodiversity in ecosystem management. Annual Review of Ecology, Evolution and Systematics, 35, 557–81.CrossRefGoogle Scholar
Fonselius, S. H. (1970). Stagnant sea. Environment, 12, 2–11; 40–8.Google Scholar
Fonselius, S. H. (1972). On eutrophication and pollution in the Baltic sea. In Marine Pollution and Sea Life, ed. Ruvio, M., London: Fishing News (Books) Ltd, pp. 23–8.Google Scholar
Gomoiu, M.-T., Alexandrov, B., Shadrin, N., & Zaitsev, Y. (2002). The Black Sea – a recipient, donor and transit area for alien species. In Invasive Aquatic Species of Europe – Distribution, Impacts and Management, ed. Leppäkoski, E., Olenin, S., & Gollasch, S., Dordrecht: Kluwer Academic Publishers, pp. 341–50.CrossRefGoogle Scholar
Grimm, K. A. & Gill, A. S. (1994). Fossil phytoplankton blooms and selfish genes: the ecological and evolutionary significance of Chaetoceros resting spores in laminated diatomaceous sediments. Geological Society of America Abstract with Programs, 26, A170–71.Google Scholar
Grönlund, T. (1993). Diatoms in surface sediments of the Gotland Basin in the Baltic Sea. Hydrobiologia, 269–270, 235–42.CrossRefGoogle Scholar
Gudelis, V. & Königsson, L.-K. (eds.) (1979). The Quaternary History of the Baltic. Acta Universitatis Upsaliensis, Symposia Universitatis Upsaliensis Annuum Quingentesimum Celebrantis, vol. 1, pp. 1–279.
Gustafsson, B. G. & Westman, P. (2002). On the causes for salinity variations in the Baltic Sea during the last 8500 years. Paleoceanography, 17, 1040.CrossRefGoogle Scholar
Haecky, P., Jonsson, S., & Andersson, A. (1998). Influence of sea ice on the composition of the spring phytoplankton bloom in the northern Baltic Sea. Polar Biology, 20, 1–8.CrossRefGoogle Scholar
Hasle, G. R., Lange, C. B., & Syvertsen, E. E. (1996). A review of Pseudo-nitzschia, with special reference to the Skagerrak, North Atlantic, and adjacent waters. Helgoländer Meeresuntersuchungen, 50, 131–75.CrossRefGoogle Scholar
Hasle, G. R. & Syvertsen, E. E. (1990). Arctic diatoms in the Oslofjord and the Baltic Sea – a bio- and palaeogeographic problem? In Proceedings of the 10th International Diatom Symposium, ed. Simola, H., Königstein: Koeltz Scientific Books, pp. 285–300.Google Scholar
,HELCOM (2007). Climate change in the Baltic Sea area – HELCOM Thematic Assessment in 2007. Baltic Sea Environment Proceedings, 111, 1–49.Google Scholar
Hendey, N. I. (1964). An introductory account of the smaller algae of British coastal waters. Part V: Bacillariophyceae (diatoms). Fishery Investigation Series, IV, 1–317 + plates I–XLV.Google Scholar
Hillebrand, H., Snoeijs, P., & Soininen, J. (2010). Warming leads to higher species turnover in a coastal ecosystem. Global Change Biology, 16, 1181–93.CrossRefGoogle Scholar
Höglander, H., Larsson, U., & Hajdu, S. (2004). Vertical distribution and settling of spring phytoplankton in the offshore NW Baltic Sea proper. Marine Ecology Progress Series, 283, 15–27.CrossRefGoogle Scholar
Huisman, J., Olff, H., & Fresco, L. F. M. (1993). A hierarchical set of models for species response analysis. Journal of Vegetation Science, 4, 37–46.CrossRefGoogle Scholar
Humborg, C., Ittekkot, V., Cociasu, A., & Bodungen, B. (1997). Effect of the Danube River dam on Black Sea biochemistry and ecosystem structure. Nature, 386, 385–8.CrossRefGoogle Scholar
Hustedt, F. (1953). Die Systematik der Diatomeen in ihren Beziehungen zur Geologie und Ökologie nebst einer Revision des Halobien-Systems. Svensk Botanisk Tidskrift, 47, 509–19.Google Scholar
Huttunen, M. & Niemi, Å. (1986). Sea-ice algae in the northern Baltic Sea. Memoranda Societatis pro Fauna et Flora Fennica, 62, 58–62.Google Scholar
Ianora, A., Poulet, S. A., & Miralto, A. M. (2003). The effects of diatoms on copepod reproduction: a review. Phycologia, 42, 351–63.CrossRefGoogle Scholar
Ignatius, H. & Tynni, R. (1978). Itämeren vaiheet ja piilevätutkimus [Baltic Sea stages and diatom analysis]. Tuurun yliopiston maaperägeologia osaston julkaisuja, 36, 1–26 (in Finnish, with English summary).Google Scholar
Ignatius, H., Axberg, S., Niemistö, L., & Winterhalter, B. (1981). Quaternary geology of the Baltic Sea. In The Baltic Sea, ed. Voipio, A., Amsterdam: Elsevier Science Publishers, pp. 54–105.Google Scholar
,IPCC (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, ed. Pachauri, R. K., & Reisinger, A., Geneva: IPCC.Google Scholar
Jiang, H. (1996). Diatoms from the surface sediments of the Skagerrak and the Kattegat and their relationship to the spatial changes of environmental variables. Journal of Biogeography, 23, 129–37.CrossRefGoogle Scholar
Jiang, H., Björck, S., & Knudsen, K. L. (1997). A palaeoclimatic and palaeoceanographic record of the last 11 000 14C years from the Skagerrak–Kattegat, northeastern Atlantic margin. Holocene, 7, 301–10.CrossRefGoogle Scholar
Jiang, H., Björck, S., & Svensson, N.-O. (1998). Reconstruction of Holocene sea-surface salinity in the Skagerrak–Kattegat: a climatic and environmental record of Scandinavia. Journal of Quaternary Science, 13, 107–14.3.0.CO;2-#>CrossRefGoogle Scholar
John, J. (1983). The diatom flora of the Swan River estuary, western Australia. Bibliotheca Phycologica, 64, 1–359.Google Scholar
Jonsson, P. & Carman, R. (1994). Changes in deposition of organic matter and nutrients in the Baltic Sea during the twentieth century. Marine Pollution Bulletin, 28, 417–26.CrossRefGoogle Scholar
Jonsson, P. & Jonsson, B. (1988). Dramatic changes in Baltic sediments during the last three decades. Ambio, 17, 158–60.Google Scholar
Juggins, S. (1992). Diatoms in the Thames estuary, England. Ecology, palaeoecology, and salinity transfer function. Bibliotheca Diatomologica, 25, 1–216.Google Scholar
Juhlin-Dannfelt, H. (1882). On the diatoms of the Baltic Sea. Bihang till Kungliga Svenska Vetenskapsakademiens Handlingar, 6, 1–52.Google Scholar
Kabailiene, M. (1995). The Baltic Ice Lake and Yoldia Sea stages, based on data from diatom analysis in the central, south-eastern and eastern Baltic. Quaternary International, 27, 69–72.CrossRefGoogle Scholar
Karayeva, N. I. & Makarova, I. V. (1973). Special features and origin of the Caspian Sea diatom flora. Marine Biology, 21, 269–75.CrossRefGoogle Scholar
Karpinsky, M. G. (2005). Biodiversity. In The Caspian Sea Environment, The Handbook of Environmental Chemistry, 5P, ed. Kostianoy, A. G. & Kosarev, A. N., Berlin: Springer-Verlag, pp. 159–73.CrossRefGoogle Scholar
Karpinsky, M. G., Shiganova, T. A., & Katunin, D. N. (2005). Introduced species. In The Caspian Sea Environment, The Handbook of Environmental Chemistry, Part 5P, ed. Kostianoy, A. G. and Kosarev, A. N.. Berlin: Springer-Verlag, pp. 175–90.CrossRefGoogle Scholar
Keskitalo, J. (1987). Phytoplankton in the sea area off the Olkiluoto nuclear power station, west coast of Finland. Annales Botanici Fennici, 24, 281–99.Google Scholar
Keskitalo, J. & Heitto, L. (1987). Overwintering of benthic vegetation outside the Olkiluoto nuclear power station, west coast of Finland. Annales Botanici Fennici, 24, 231–43.Google Scholar
Kolbe, R. W. (1927). Zur Ökologie, Morphologie und Systematik der Brackwasser-Diatomeen. Pflanzenforschung, 7, 1–146.Google Scholar
Kolbe, R. W. (1932). Grundlinien einer allgemeinen Ökologie der Diatomeen. Ergebnisse der Biologie, 8, 221–348.Google Scholar
Kosarev, A. N. (2005). Physico-geographical conditions of the Caspian Sea. In The Caspian Sea Environment, The Handbook of Environmental Chemistry, Part 5P, ed. Kostianoy, A. G. & Kosarev, A. N., Berlin: Springer-Verlag, pp. 5–31.CrossRefGoogle Scholar
Kosarev, A. N. & Kostianoy, A. G. (2008). Introduction. In The Black Sea Environment, The Handbook of Environmental Chemistry, Part 5Q, ed. Kostianoy, A. G. and Kosarev, A. N.. Berlin: Springer-Verlag, pp. 1–10.Google Scholar
Kosarev, A. N., Kostianoy, A. G., & Shiganova, T. A. (2008). The Sea of Azov. In The Black Sea Environment, The Handbook of Environmental Chemistry, Part 5Q, ed. Kostianoy, A. G. & Kosarev, A. N., Berlin: Springer-Verlag, pp. 63–89.Google Scholar
Kosarev, A. N. & Yablonskaya, E. A. (1994). The Caspian Sea. The Hague: SPB Academic Publishing.Google Scholar
Kuylenstierna, M. (1989–1990). Benthic Algal Vegetation in the Nordre Älv Estuary (Swedish west Coast). Doctoral Dissertation, Gothenburg University, Sweden, vol. 1, text (1990), vol. 2, plates (1989).Google Scholar
Laing, I. & Gollasch, S. (2002). Coscinodiscus wailesii – a nuisance diatom in European waters. In Invasive Aquatic Species of Europe – Distribution, Impacts and Management, ed. Leppäkoski, E., Olenin, S. & Gollasch, S., Dordrecht: Kluwer Academic Publishers, pp. 53–5.CrossRefGoogle Scholar
Lamb, H. H. (1995). Climate, History and the Modern World, 2nd edition, London: Routledge, pp. 1–464.Google Scholar
Lambeck, K. (1999). Shoreline displacements in southern-central Sweden and the evolution of the Baltic Sea since the last maximum glaciation. Journal of the Geological Society, London, 156, 465–86.CrossRefGoogle Scholar
Larsson, U., Elmgren, R., & Wulff, F. (1985). Eutrophication and the Baltic Sea: causes and consequences. Ambio, 14, 9–14.Google Scholar
Leppäkoski, E. & Mihnea, P. E. (1996). Enclosed seas under man-induced change: a comparison between the Baltic and Black seas. Ambio, 25, 380–9.Google Scholar
Leppäkoski, E. & Olenin, S. (2000). Non-native species and rates of spread: lessons from the brackish Baltic Sea. Biological Invasions, 2, 151–63.CrossRefGoogle Scholar
Leppäkoski, E., Olenin, S. & Gollasch, S. (2002). The Baltic Sea – a field laboratory for invasion biology. In Invasive Aquatic Species of Europe – Distribution, Impacts and Management, ed. Leppäkoski, E., Olenin, S. & Gollasch, S., Dordrecht: Kluwer Academic Publishers, pp. 253–9.CrossRefGoogle Scholar
Leppäranta, M. & Myrberg, K. (2009). Physical Oceanography of the Baltic Sea. Berlin: Springer Praxis Books/Geophysical Sciences.CrossRefGoogle Scholar
Lindahl, G., Wallström, K., Roomans, G. M., & Pedersén, M. (1983). X-ray microanalysis of planktic diatoms in in situ studies of metal pollution. Botanica Marina, 26, 367–73.CrossRefGoogle Scholar
Luckas, B., Dahlmann, J., Erler, K., et al. (2005). Overview of key phytoplankton toxins and their recent occurrence in the North and Baltic seas. Environmental Toxicology, 20, 1–17.CrossRefGoogle ScholarPubMed
MacKenzie, B. R. & Schiedek, D. (2007). Daily ocean monitoring since the 1860s shows record warming of northern European seas. Global Change Biology, 13, 1335–47.CrossRefGoogle Scholar
Mann, D. G. & Evans, K. M. (2007). Molecular genetics and the neglected art of diatomics. In Unravelling the Algae – the Past, Present and Future of Algal Systematics, ed. Brodie, K. and Lewis, J., Boca Raton, FL: CRC Press, pp. 231–65.Google Scholar
Matoshko, A., Gozhik, P. & Semenenko, V. (2009). Late Cenozoic fluvial development within the Sea of Azov and Black Sea coastal plains. Global and Planetary Change, 68, 270–87.CrossRefGoogle Scholar
Miller, U. (1986). Ecology and palaeoecology of brackish water diatoms with special reference to the Baltic Basin. In Proceedings of the 8th International Diatom Symposium, ed. Ricard, M., Königstein: Koeltz Scientific Books, pp. 601–11.Google Scholar
Miller, U. & Risberg, J. (1990). Environmental changes, mainly eutrophication, as recorded by fossil siliceous micro-algae in two cores from the uppermost sediments of the north-western Baltic. Nova Hedwigia, Beiheft, 100, 237–53.Google Scholar
Miller, U. & Robertsson, A.-M. (1979). Biostratigraphical investigations in the Anundsjö region, Ångermanland, northern Sweden. Early Norrland, 12, 1–76.Google Scholar
Molander, S., Blanck, H., & Söderström, M. (1990). Toxicity assessment by pollution-induced tolerance (PICT), and identification of metabolites in periphyton communities after exposure to 4,5,6-trichloroguaiacol. Aquatic Toxicity (Amsterdam), 18, 115–36.CrossRefGoogle Scholar
Mölder, K. & Tynni, R. (1967–1973). Über Finnlands rezente und subfossile Diatomeen I–VII. Bulletin of the Geological Society of Finland, 39, 199–217; 40, 151–70; 41, 235–51; 42, 129–44; 43, 203–20; 44, 141–49; 45, 159–79.Google Scholar
,MOLTEN, DETECT and DEFINE (2006). Coastal ecology and palaeoecology of the Baltic and adjacent seas. See http://craticula.ncl.ac.uk/Molten/jsp/index.jsp.
Munthe, H. (1892). Studier ofer Baltiska hafets qvartära historia. Bihang till Kungliga Svenska Vetenskaps Akademins Handlingar, 18 II (in Swedish).Google Scholar
Munthe, H. (1894). Preliminary report on the physical geography of the Litorina Sea. Bulletin of the Geological Institution of the University of Uppsala, 2, 1–38.Google Scholar
Norrman, B. & Andersson, A. (1994). Development of ice biota in a temperate sea area (Gulf of Bothnia). Polar Biology, 14, 531–7.CrossRefGoogle Scholar
Olli, K., Clarke, A., Danielsson, Å., et al. (2008). Diatom stratigraphy and long-term dissolved silica concentrations in the Baltic Sea. Journal of Marine Systems, 73, 284–99.CrossRefGoogle Scholar
Papush, L. & Danielsson, Å. (2006). Silicon in the marine environment: dissolved silica trends in the Baltic Sea. Estuarine, Coastal and Shelf Science, 67, 53–66.CrossRefGoogle Scholar
Pedersén, M., Roomans, G. M., Andrén, M., et al. (1981). X-ray microanalysis of metals in algae – a contribution to the study of environmental pollution. Scanning Electron Microscopy, 1981 II, 499–509.Google Scholar
Petrov, A. & Nevrova, E. (2007). Database on Black Sea benthic diatoms (Bacillariophyta): its use for a comparative study of diversity pecularities under technogenic pollution impacts. In Proceedings Ocean Biodiversity Informatics, ed. Vanden Berghe, E., Appeltans, W., Costello, M. J., & Pissierssens, P., IOC Workshop Report, 202, Paris: UNESCO, pp. 153–65.Google Scholar
Plante-Cuny, M. R. & Plante, R. (1986). Benthic marine diatoms as food for benthic marine animals. In Proceedings of the 8th International Diatom Symposium, ed. Ricard, M., Königstein: Koeltz Scientific Books, pp. 525–37.Google Scholar
Potapova, M. & Snoeijs, P. (1997). The natural life cycle in wild populations of Diatoma moniliformis (Bacillariophyceae) and its disruption in an aberrant environment. Journal of Phycology, 33, 924–37.CrossRefGoogle Scholar
Proschkina-Lavrenko, A. I. (1955). Diatomovye vodorosli planktona Chernogo morya [Planktonic diatoms of the Black Sea], Moskva: Akademii Nauk S.S.S.R. (in Russian).Google Scholar
Proshkina-Lavrenko, A. I. (1963). Diatomovye vodorosli planktona Azovskogo morya (Planktonic Diatoms of the Sea of Azov), Moskva: Akademii Nauk S.S.S.R. (in Russian).Google Scholar
Proshkina-Lavrenko, A. I. & Makarova, I. V. (1968). Vodorosli planktona Kaspiiskogo morya (Planktonic Diatoms of the Caspian Sea), Leningrad: Nauka (in Russian).Google Scholar
Punning, J.-M., Martma, T., Kessel, H., & Vaikmäe, R. (1988). The isotope composition of oxygen and carbon in the subfossil mollusc shells of the Baltic Sea as an indicator for paleosalinity. Boreas, 17, 27–31.CrossRefGoogle Scholar
Rahm, L., Conley, D., Sandén, P., Wulff, F., & Stålnacke, P. (1996). Time series analysis of nutrient inputs to the Baltic Sea and changing DSi:DIN ratios. Marine Ecology Progress Series, 130, 221–8.CrossRefGoogle Scholar
Remane, A. (1940). Einführung in die zoologische Ökologie der Nord- und Ostsee. In Die Tierwelt der Nord- und Ostsee, ed. Grimpe, G. & Wagler, E., Leipzig: Akademische Verlags-gesellschaft Becker & Erler, vol. 1a, pp. 1–238.Google Scholar
Remane, A. (1958). Ökologie des Brackwassers. In Die Biologie des Brackwassers, ed. Remane, A. & Schlieper, C., Stuttgart, pp. 1–216.Google Scholar
Risberg, J. (1990). Siliceous microfossil stratigraphy in a superficial sediment core from the northwestern part of the Baltic proper. Ambio, 19, 167–72.Google Scholar
Risberg, J. (1991). Palaeoenvironment and sea level changes during the early Holocene on the Södertörn peninsula, Södermanland, eastern Sweden. Stockholm University, Department of Quaternary Research, Report, 20, 1–27.Google Scholar
Robertsson, A. M. (1990). The diatom flora of the Yoldia sediments in the Närke province, south central Sweden. Nova Hedwigia, Beiheft, 100, 255–62.Google Scholar
Round, F. E., Crawford, R. M. & Mann, D. G. (1990). The Diatoms – Biology and Morphology of the Genera, Cambridge: Cambridge University Press.Google Scholar
Round, F. E. & Sims, P. A. (1981). The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations. InProceedings of the 6th International Diatom Symposium, ed. Ross, R., Königstein: Koeltz Scientific Books, pp. 301–20.Google Scholar
Ryabova, N., Zimina, L., Zimin, V., et al. (1994). In Abstracts of the International Meeting on the Urbanization and the Protection of the Biocoenosis of the Baltic Coasts, Juodrante, Lithuania, 4–8 October 1994, ed. Volskis, R., Paris: UNESCO, Regional Office for Science and Technology for Europe, Technical Report, 22, pp. 63–9.Google Scholar
Ryves, D. B., Amsinck, S. L., Anderson, N. J., et al. (2004). Reconstructing the salinity and environment of the Limfjord and Vejlerne Nature Reserve, Denmark, using a diatom model for brackish lakes and fjords. Canadian Journal of Fisheries and Aquatic Sciences, 61, 1988–2006.CrossRefGoogle Scholar
Sagert, S., Rieling, T., Eggert, A., & Schubert, H. (2008). Development of a phytoplankton indicator system for the ecological assessment of brackish coastal waters (German Baltic Sea coast). Hydrobiologia, 611, 91–103.CrossRefGoogle Scholar
Saunders, K. M., McMinn, A., Roberts, D., Dodgson, D. A., & Heijnis, H. (2007). Recent human-induced salinity changes in Ramsar-listed Orielton Lagoon, south-east Tasmania, Australia: a new approach for coastal lagoon conservation and management. Aquatic Conservation: Marine and Freshwater Ecosystems, 17, 51–70.CrossRefGoogle Scholar
Schelske, C. L., Stoermer, E. F., & Kenney, W. F. (2006). Historic low-level phosphorus enrichment in the Great Lakes inferred from biogenic silica accumulation in sediments. Limnology & Oceanography, 51, 728–48.CrossRefGoogle Scholar
Segerstråle, S. G. (1959). Brackish water classification, a historical survey. Archivio di Oceanografia e Limnologia (Supplement), 11, 7–33.Google Scholar
Shiganova, T. (2008). Introduced species. In The Black Sea Environment, The Handbook of Environmental Chemistry, Part 5Q, ed. Kostianoy, A. G. & Kosarev, A. N., Berlin: Springer-Verlag, pp. 375–406.Google Scholar
Simonsen, R. (1962). Untersuchungen zur Systematik und Ökologie der Bodendiatomeen der westlichen Ostsee. Internationale Revue der gesamten Hydrobiologie, Systematische Beihefte, 1, 1–144.Google Scholar
Smayda, T. J. (1990). Novel and nuisance phytoplankton blooms in the sea: evidence for a global epidemic. In Toxic Marine Phytoplankton – Proceedings of the 4th International Conference on Toxic Marine Plankton, ed. Granéli, W., Sundström, B., Edler, L., & Anderson, D. M., pp. 29–40.
Smol, J. P. (2008). Pollution of Lakes and Rivers: A Paleoenvironmental Perspective, 2nd edition, Oxford: Blackwell Publishing.Google Scholar
Smol, J. P. & Cumming, B. F. (2000). Tracking long-term changes in climate using algal indicators in lake sediments. Journal of Phycology, 36, 986–1011.CrossRefGoogle Scholar
Snoeijs, P. (1989). Ecological effects of cooling water discharge on hydrolittoral epilithic diatom communities in the northern Baltic Sea. Diatom Research, 4, 373–98.CrossRefGoogle Scholar
Snoeijs, P. (1990). Effects of temperature on spring bloom dynamics of epiplithic diatom communities in the Gulf of Bothnia. Journal of Vegetation Science, 1, 599–608.CrossRefGoogle Scholar
Snoeijs, P. (1991). Monitoring pollution effects by diatom community composition – a comparison of methods. Archiv für Hydrobiologie, 121, 497–510.Google Scholar
Snoeijs, P. (1992). Studies in the Tabularia fasciculata complex. Diatom Research, 7, 313–44.CrossRefGoogle Scholar
Snoeijs, P. (1994). Distribution of epiphytic diatom species composition, diversity and biomass on different macroalgal hosts along seasonal and salinity gradients in the Baltic Sea. Diatom Research, 9, 189–211.CrossRefGoogle Scholar
Snoeijs, P. (1995). Effects of salinity on epiphytic diatom communities on Pilayella littoralis (Phaeophyceae) in the Baltic Sea. Ecoscience, 2, 382–94.CrossRefGoogle Scholar
Snoeijs, P. (1999). Marine and brackish waters. In Swedish Plant Geography. Acta Phytogeographica Suecica, 84, 187–212.
Snoeijs, P. & Kautsky, U. (1989). Effects of ice-break on the structure and dynamics of a benthic diatom community in the northern Baltic Sea. Botanica Marina, 32, 547–62.CrossRefGoogle Scholar
Snoeijs, P. & Notter, M. (1993a). Benthic diatoms as monitoring organisms for radionuclides in a brackish-water coastal environment. Journal of Environmental Radioactivity, 18, 23–52.CrossRefGoogle Scholar
Snoeijs, P. & Notter, M. (1993b). Radiocaesium from Chernobyl in benthic algae along the Swedish Baltic Sea coast. Swedish University of Agricultural Sciences Report SLU-REK, 72, 1–21.Google Scholar
Snoeijs, P. & Potapova, M. (1998) Ecotypes or endemic species? – a hypothesis on the evolution of Diatoma taxa (Bacillariophyta) in the northern Baltic Sea. Nova Hedwigia 67: 303–48.Google Scholar
Snoeijs, P., Busse, S. & Potapova, M. (2002). The importance of diatom cell size in community analysis. Journal of Phycology, 38, 265–72.CrossRefGoogle Scholar
Snoeijs, P., Vilbaste, S., Potapova, M., Kasperoviciene, J. & Balashova, (1993–1998). Intercalibration and Distribution of Diatom Species in the Baltic Sea, Uppsala: Opulus Press, vol. 1–5.Google Scholar
Sohlenius, G., Sternbeck, J., Andrén, E. & Westman, P. (1996). Holocene history of the Baltic Sea as recorded in a sediment core from the Gotland Deep. Marine Geology, 134, 183–201.CrossRefGoogle Scholar
Sommer, U. & Lengfellner, K. (2008). Climate change and the timing, magnitude, and composition of the phytoplankton spring bloom. Global Change Biology, 14, 1199–208.CrossRefGoogle Scholar
Sundbäck, K. & Snoeijs, P. (1991). Effects of nutrient enrichment on microalgal community composition in a coastal shallow-water sediment system: an experimental study. Botanica Marina, 34, 341–58.CrossRefGoogle Scholar
Sundelin, U. (1922). Några ord angående förläggningen av L.G. i de av transgression ej drabbade delarna av det baltiska området samt angående tidpunkten för Litorinahavets inträde. GFF, 44, 543–44.Google Scholar
Braak, C. J. F. (1986). Canonical correspondence analysis: a new eigenvector technique for multivariate direct gradient analysis. Ecology, 67, 1167–79.CrossRefGoogle Scholar
Braak, C. J. F. & Juggins, S. (1993). Weighted averaging partial least squares regression (WA-PLS): an improved method for reconstructing environmental variables from species assemblages. Hydrobiologia, 269/270, 485–502.CrossRefGoogle Scholar
Thessen, A. E. & Stoecker, D. K. (2008). Distribution, abundance and domoic acid analysis of the toxic diatom genus Pseudo-nitzschia from the Chesapeake Bay. Estuaries & Coasts, 31, 664–72.CrossRefGoogle Scholar
Thulin, B., Possnert, G. & Vuorela, I. (1992). Stratigraphy and age of two postglacial sediment cores from the Baltic Sea. Geologiska Föreningeni Stockholm Förhandlingar, 114, 165–79.CrossRefGoogle Scholar
Tuovinen, N., Weckström, K. & Virtasalo, J. (2010). Assessment of recent eutrophication and climate influence in the Archipelago Sea based on the subfossil diatom record. Journal of Paleolimnology, 44, 95–108.CrossRefGoogle Scholar
Tynni, R. (1975–1980). Über Finnlands rezente und subfossile Diatomeen VIII–XI. Geological Survey of Finland, Bulletin, 274, 1–35; 284, 1–37; 296, 1–55; 312, 1–93.Google Scholar
Ulanova, A., Busse, S. & Snoeijs, P. (2009). Coastal diatom–environment relationships in the brackish Baltic Sea. Journal of Phycology, 45, 54–68.CrossRefGoogle ScholarPubMed
Vaalgamaa, S. & Conley, D. J. (2008). Detecting environmental change in estuaries: nutrient and heavy metal distributions in sediment cores in estuaries from the Gulf of Finland, Baltic Sea. Estuarine, Coastal and Shelf Science, 76, 45–56.CrossRefGoogle Scholar
Vasiliu, F. (1996). The Black Sea. In Marine Benthic Vegetation – Recent Changes and the Effects of Eutrophication, ed. Schramm, W. and Nienhuis, P. H.. Ecological Studies, Volume 123. Berlin: Springer-Verlag, pp. 435–47.CrossRefGoogle Scholar
Wasmund, N. & Uhlig, S. (2003). Phytoplankton trends in the Baltic Sea. ICES Journal of Marine Science, 60, 177–86.CrossRefGoogle Scholar
Wasmund, N., Nausch, G. & Matthäus, W. (1998). Phytoplankton spring blooms in the southern Baltic Sea – spatio-temporal development and long-term trends. Journal of Plankton Research, 20, 1099–117.CrossRefGoogle Scholar
Weckström, K. (2006). Assessing recent eutrophication in coastal waters of the Gulf of Finland (Baltic Sea) using subfossil diatoms. Journal of Paleolimnology, 35, 571–92.CrossRefGoogle Scholar
Weckström, K. & Juggins, S. (2005). Coastal diatom–environment relationship from the Gulf of Finland, Baltic Sea. Journal of Phycology, 42, 21–35.CrossRefGoogle Scholar
Weckström, K., Juggins, S. & Korhola, A. (2004). Quantifying background nutrient concentrations in coastal waters: a case study from an urban embayment of the Baltic Sea. Ambio, 33, 324–7.CrossRefGoogle ScholarPubMed
Weckström, K., Korhola, A. & Weckström, J. (2007). Impacts of eutrophication on diatom life forms and species richness in coastal waters of the Baltic Sea. Ambio, 36, 155–60.CrossRefGoogle ScholarPubMed
Wendker, S. (1990). Untersuchungen zur subfossilen und rezenten Diatomeenflora des Schlei-Ästuars (Ostsee). Bibliotheca Diatomologica, 20, 1–268.Google Scholar
Westman, P. & Sohlenius, G. (1999). Diatom stratigraphy in five offshore sediment cores from the northwestern Baltic proper implying large scale circulation changes during the last 8500 years. Journal of Paleolimnology, 22, 53–69.CrossRefGoogle Scholar
Willén, T. (1985). Phytoplankton, chlorophyll a and primary production in the Biotest Basin, Forsmark, 1981–1982. Abstracts of the 9th BMB Symposium, Turku/Åbo, Finland, 11–15 June, Åbo Akademi, p. 123.
Wilson, S. E., Cumming, B. F. & Smol, J. P. (1996). Assessing the reliability of salinity inference models from diatom assemblages: an examination of a 219-lake data set from western North America, Canadian Journal of Fisheries and Aquatic Science, 53, 1580–94.Google Scholar
Winn, K., Werner, F. & Erlenkeuser, H. (1988). Hydrography of the Kiel Bay, western Baltic, during the Litorina transgression. Meyniana, 40, 31–46.Google Scholar
Witkowski, A. (1994). Recent and fossil diatom flora of the Gulf of Gdansk, southern Baltic Sea. Bibliotheca Diatomologica, 28, 1–313.Google Scholar
Wulff, F., Stigebrandt, A. & Rahm, L. (1990). Nutrient dynamics of the Baltic Sea. Ambio, 19, 126–76.Google Scholar
Yunev, O. A., Carstensen, J., Moncheva, S., Khaliulin, A., Ærtebjerg, G. & Nixon, S. (2007). Nutrient and phytoplankton trends on the western Black Sea shelf in response to cultural eutrophication and climate changes. Estuarine, Coastal and Shelf Science, 74, 63–76.CrossRefGoogle Scholar
Zillén, L., Conley, D. J., Andrén, T., Andrén, E. & Björck, S. (2008). Past occurrences of hypoxia in the Baltic Sea and the role of climate variability, environmental change and human impact. Earth-Science Reviews, 91, 77–92.CrossRefGoogle Scholar
Zonn, I. S. (2005). Environmental issues of the Caspian. In The Caspian Sea Environment, The Handbook of Environmental Chemistry, Part 5P, ed. Kostianoy, A. G. and Kosarev, A. N., Berlin: Springer-Verlag, pp. 223–42.CrossRefGoogle Scholar
Zonn, I. S., Fashchuk, D. Y. & Ryabinin, A. I. (2008). Environmental issues of the Black Sea. In The Black Sea Environment, The Handbook of Environmental Chemistry, Part 5Q, ed. Kostianoy, A. G. and Kosarev, A. N., Berlin: Springer-Verlag, pp. 407–21.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×