Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 15
  • Print publication year: 2010
  • Online publication date: June 2012

2 - The diatoms: a primer

from Part I - Introduction

Summary

Introduction

Diatoms have long been lauded for their use as powerful and reliable environmental indicators (Cholnoky, 1968; Lowe, 1974). This utility can be attributed to their high abundance and species diversity, which are distributed among most aquatic environments. Additionally, their remains are highly durable and well preserved in accumulated sediments. Often, scientists exploiting the group simply as environmental proxies give little thought as to how and why the species diversity exists in these environments. This may be a by-product of how diatoms are collected and identified. Diatoms are most often recognized by the presence of a siliceous cell wall, the frustule. This structure varies considerably in shape and architecture among species (Figure 2.1) and virtually all taxonomic diagnosis of taxa is based upon frustular morphology. To properly observe diatom frustules for taxonomic identification, living and sedimentary collections are typically subjected to various “cleaning” techniques designed to remove all organic materials (e.g. Battarbee et al., 2001; Blanco et al., 2008), allowing unobstructed observation of the frustule in the microscope. This frequent observation of inorganic components of the cell without reference to the organic features allows observers to “forget” that the specimens seen in the microscope represent individual organisms competing in the selective environments driven by biotic and abiotic ecological pressures. The abundance and taxonomic diversity can be attributed to the extraordinary success of diatoms in the competitive ecological arena.

The casual observer frequently regards diatoms, like most protists, as primitive ancestral lineages to multicellular organisms. While some protists may fit this description, diatoms do not. Diatoms are a relatively recent evolutionary group with the common ancestor’s origin considered to be between 200 and 190 million years before present (Rothpletz, 1896, 1900; Medlin et al., 1997).

Related content

Powered by UNSILO
Ahlgren, G., Lundstedt, L., Brett, M., & Forsberg, C. (1990). Lipid composition and food quality of some freshwater phytoplankton for cladoceran zooplankters. Journal of Plankton Research, 12, 809–18.
Almqvist, N., Bhatia, R., Primbs, G., et al. (2004). Elasticity and adhesion force mapping reveals real-time clustering of growth factor receptors and associated changes in local cellular rheological properties. Biophysical Journal, 86, 1753–62.
Alverson, A. J. (2007). Strong purifying selection in the silicon transporters of marine and freshwater diatoms, Limnology and Oceanography, 52, 1420–9
Alverson, A. J., Cannone, J. J., Gutell, R. R., & Theriot, E. C. (2006). The evolution of elongate cell shape in diatoms. Journal of Phycology, 42, 655–68.
Alverson, A. J., Jansen, R. K., and Theriot, E. C. (2007). Bridging the Rubicon: phylogenetic analysis reveals repeated colonizations of marine and fresh waters by thalassiosiroid diatoms. Molecular Phylogenetics and Evolution, 45, 193–210.
Andersen, R. A., Saunders, G. W., Paskind, M. P., & Sexton, J. P. (1993). Ultrastructure and 18S rRNA gene sequence for Pelagomonas calceolata gen. et sp. nov. and the description of a new algal class, the Pelagophyceae classis nov. Journal of Phycology, 29, 701–15.
Apt, K. K., Bhaya, D., & Grossman, A. R. (1994) Characterization of the genes encoding the light-harvesting proteins in diatoms: the biogenesis of the fucocanthin chlorophyll a/c protein complex, Journal of Applied Phycology 6, 225–30.
Armbrust, E. V. (1999). Identification of a new gene family expressed during the onset of sexual reproduction in the centric diatom Thalassiosira weissflogii. Applied Environmental Microbiology, 65, 121–8.
Arts, M. T., Brett, M. T., & Kainz, M. J. (2009). Lipids in Aquatic Ecosystems. New York: Springer.
Bachvaroff, T. R., Sanchez-Puerta, M. V., & Delwiche, C. F. (2005). Chlorophyll c-containing plastid relationships based on analyses of a multigene data set with all four chromalveolate lineages. Molecular Biology Evolution, 22, 1772–82.
Battarbee, R. W., Carvalho, L., Jones, V. J., et al. (2001). Diatom analysis. In Tracking Environmental Change using Lake Sediments, ed. Smol, J. P., Birks, H. J. B. and Last, W. M., Dordrecht: Kluwer Academic Publishers, pp. 155–202.
Bhattacharya, D. and Medlin, L. K. (2004). Dating and algal origin using molecular clock methods. Protist, 155, 9–10.
Bhaya, D. & Grossmann, (1991). A new route for targeting proteins into plastids; evidence from diatoms. Molecular and General Genetics, 229, 400–4.
Bhaya, D. and Grossman, A. R. (1993). Characterization of gene clusters encoding the fucoxanthin chlorophyll proteins of the diatom Phaeodactylum tricornutum. Nucleic Acids Research, 21, 4458–66.
Biggs, B. J. F. (1996). Patterns in benthic algae of streams. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L. and Lowe, R. L., San Diego, CA: Academic Press, pp. 31–56.
Blanco, S., Alvarez, I. & Cejudo, C. (2008). A test on different aspects of diatom processing techniques. Journal of Applied Phycology, 20, 445–50.
Bodyl, A. (2005). Do plastid-related characters support the chromalveolate hypothesis?Journal of Phycology, 41, 712–19.
Bott, T. L. (1996). Algae in microscopic food webs. In Algal Ecology: Freshwater Benthic Ecosystems, ed. Stevenson, R. J., Bothwell, M. L. and Lowe, R. L., San Diego, CA: Academic Press, pp. 574–607.
Bourne, C. M., Palmer, J. D., & Stoermer, E. F. (1992). Organization of the chloroplast genome of the freshwater centric diatom Cyclotella meneghiniana. Journal of Phycology, 28, 347–55.
Brzezinski, M. A. (1992). Cell-cycle effects on the kinetics of silicic acid uptake and resource competition among diatoms. Journal of Plankton Research, 14, 1511–39.
Brzezinski, M. A., Olson, R. J., & Chisholm, S. W. (1990). Silicon availability and cell-cycle progression in marine diatoms. Marine Ecological Progress Series, 67, 83–96.
Canter, H. M. & Lund, J. W. G. (1948). Studies on plankton parasites. I. Fluctuations in the numbers of Asterionella formosa Hass. in relation to fungal epidemics. New Phytologist, 47, 238–61.
Canter, H. M. & Lund, J. W. G. (1951). Studies on plankton parasites. III. Examples of the interaction between parasitism and other factors determining the growth of diatoms. Annals of Botany, 15, 359–71.
Canter, H. M. & Lund, J. W. G. (1953). Studies on plankton parasites. II. The parasitism of diatoms with special reference to lakes in the English Lake District. Transactions of the British Mycological Society, 36, 13–37.
Cavalier-Smith, T. (2003) Protist phylogeny and the high-level classification of Protozoa. European Journal of Phycology, 39, 338–48.
Chepurnov, V. A., Mann, D. G., Dassow, P., et al. (2006). Oogamous reproduction, with two-step auxosporulation, in the centric diatom Thalassiosira puntigera (Bacillariophyta). Journal of Phycology, 42, 845–58.
Cholnoky, B. J. (1968). Die Ökologie der Diatomeen in Binnengewässern. Lehere: Verlag von J. Cramer.
Conley, D. J. (1988). Biogenic silica as an estimate of siliceous microfossil abundance in Great Lakes sediments. Biogeochemistry, 6, 161–79.
Conley, D. J. (2002). Terrestrial ecosystems and the global biogeochemical silica cycle. Global Biogeochemical Cycles, 16, 1121.
Conley, D. J., Kilham, S. S., & Theriot, E. C. (1989). Differences in silica content between marine and freshwater diatoms. Limnology and Oceanography, 3, 205–13.
Cox, E. J. (1996). Identification of freshwater diatoms from live material. London: Chapman & Hall.
Edlund, M. B. & Stoermer, E. F. (1997). Ecological, evolutionary, and systematic significance of diatom life histories. Journal of Phycology 33, 897–918.
Falkowski, P. G., Katz, M. E., Knoll, A. H., et al. (2004). The evolution of modern eukaryotic phytoplankton. Science, 305, 354–60.
Fourtanier, E. & Kociolek, J. P. (1999). Catalogue of the diatom genera. Diatom Research, 14, 1–190.
Fourtanier, E. & Kociolek, J. P. (2009a). Catalogue of Diatom names, part II: Abas through Bruniopsis. Occasional Papers of the California Academy of Sciences, 156(1).
Fourtanier, E. & Kociolek, J. P. (2009b). Catalogue of diatom names, part I: introduction and bibliography. Occasional Papers of the California Academy of Sciences, 156(2).
Geitler, L. (1973). Auxosporenbildung und Systematik bei pennaten Diatomeen und die Cytologie von Cocconeis-Sippen. Österreichische Botanische Zeitschrift, 122, 299–321.
Geitler, L. (1982). Die infraspeczifischen Sippen von Cocconeis placentula des Lunzer Seebachs. Archiv für Hydrobiologie. Supplement, 63, 1–11.
Goertzen, L. R. & Theriot, E. C. (2003). Effect of taxon sampling, character weighting, and combined data on the interpretation of relationships among the heterokont algae. Journal of Phycology, 39, 423–39.
Gordon, R. & Drum, R. (1994). The chemical basis of diatom morphogenesis. International Review of Cytology, 150, 243–372.
Grzebyk, D., Katz, M. E., Knoll, A. H., et al. (2004). Response to comment on “The evolution of modern eukaryotic phytoplankton.” Science, 306, 2191.
Guillou, L., Chrétiennot-Dinet, M. J., Medlin, L. K., et al. (1999). Bolidomonas: a new genus with two species belonging to a new algal class, Bolidophyceae (Heterokonta). Journal of Phycology, 35, 368–81.
Hargraves, P. E. & French, F. W. (1983). Diatom resting spores: significance and strategies. In Survival Strategies of the Algae, ed. Fryxell, G., Cambridge: Cambridge University Press, pp. 49–68.
Harper, J. T. & Keeling, P. J. (2003). Nucleus-encoded, plastid-targeted glyceraldehyde-3-phosphate dehydrogenase (GAPDH) indicates a single origin for chromalveolate plastids. Molecular Biology and Evolution, 20, 1730–5.
Harper, J. T., Waanders, E., & Keeling, P. J. (2005). On the monophyly of chromalveolates using a six-protein phylogeny of eukaryotes. International Journal of Systematic and Evolutionary Microbiology, 55, 487–96.
Harwood, D. M. (1988). Upper Cretaceous and lower Paleocene diatom and silicoflagellate biostratigraphy from Seymour Island, eastern Antarctic Peninsula. In Seymour Island Geology and Paleontology, ed. Feldman, R. M. and Woodburne, M. O., Geological Society of America Memoir, vol. 169, pp. 55–129.
Harwood, D. M. & Nikolaev, V. A. (1995). Cretaceous diatoms: morphology, taxonomy, biostratigraphy. In Siliceous Microfossils, ed. Blome, C. E., Whalen, P. M., & Reed, K. M., Paleontological Society Short Course 8, Knoxville, TN: The Paleontology Society, pp. 81–106.
Higgins, M. J., Molino, P., Mulvaney, P., & Wetherbee, R. (2003). The structure and nanomechanical properties of the adhesive mucilage that mediates diatom–substratum adhesion and motility. Journal of Phycology, 39, 1181–93.
Hildebrand, M. K., Dahlin, K., & Volcani, B. E. (1998). Characterization of a silicon transporter gene family in Cylindrotheca fusiformis: Sequences, expression analysis, and identification of homologs in other diatoms, Molecular and General Genetics, 260, 480–6.
Hoek, C.. (1978). Algen: Einführung in die Phycologie. Stuttgart: G. Thieme Verlag.
Julius, M. L. (2007a). Perspectives on the evolution and diversification of the diatoms. In Pond Scum to Carbon Sink: Geological and Environmental Applications of the Diatoms, ed. Starratt, S., Paleontological Society Short Course 13, Knoxville, TN: Paleontological Society, pp. 1–13.
Julius, M. L. (2007b). Why sweat the small stuff: the role of microalgae in sustaining Hawaiian ecosystem integrity. Bishop Museum Bulletin in Cultural and Environmental Studies, 3, 183–93.
Julius, M. L., Blob, R., & Schoenfuss, H. L. (2005). The survival of Sicyopterus stimpsoni, an endemic amphidromous Hawaiian gobiid fish, relies on the hydrological cycles of streams: evidence from changes in algal composition of diet through growth stages. Aquatic Ecology, 39, 473–84.
Julius, M. L., Estabrook, G. F., Edlund, M. B., & Stoermer, E. F. (1997). Recognition of taxonomically significant clusters near the species level, using computationally intensive methods, with examples from the Stephanodiscus niagarae species complex (Bacillariophyceae). Journal of Phycology, 33, 1049–54.
Julius, M. L., Stepanek, J., Tedrow, O., Gamble, C., & Schoenfess, H. L. (2007). Estrogen-receptor independent effects of two ubiquitous environmental estrogens on Melosira varians Agardh, a common component of the aquatic primary production community. Aquatic Toxicology, 85, 19–27.
Julius, M. L., Stoermer, E. F., Taylor, C. M., & Schelske, C. L. (1998). Local extinction of Stephanodiscus niagarae Ehrenb. (Bacillariophyta) in the recent limnological record of Lake Ontario. Journal of Phycology, 34, 766–71.
Katz, M. E., Finkel, Z. V., Grzebyk, D., Knoll, A. H., & Falkowski, P. G. (2004). Evolutionary trajectories and biogeochemical impacts of marine eukaryotic phytoplankton. Annual Review of Ecology and Systematics, 35, 523–56.
Keeling, P. J. (2004). Diversity and evolutionary history of plastids and their hosts. American Journal of Botany, 91, 1481–93.
Keeling, P. J., Archibald, J. M., Fast, N. M., and Palmer, J. D. (2004). Comment on “The evolution of modern eukaryotic phytoplankton,” Science, 306, 2191.
Kidder, D. L. & Erwin, D. H. (2001). Secular distribution of biogenic silica through the phanerozoic: comparison of silica-replaced fossils and bedded cherts at the series level. Journal of Geology, 109, 509–22.
Kidder, D. L. & Gierlowski-Kordesch, E. H. (2005). Impact of grassland radiation on the nonmarine silica cycle and Miocene diatomite. Palaios, 20, 198–206.
Kingston, J. C. (2003). Araphid and monorhaphid diatoms. In Freshwater Algae of North America: Classification and Ecology, ed. Wehr, J. D. and Sheath, R. G., San Diego, CA: Academic Press, pp. 595–636.
Kitchell, J. A., Clark, D. L., and Gombos, A. M. Jr. (1986). Biological selectivity of extinction: a link between background and mass extinction. Palios, 1, 504–11.
Kociolek, J. P. (1997). Historical constraints, species concepts and the search for a natural classification of diatoms. Diatom, 13, 3–8.
Kociolek, J. P. & Stoermer, E. F. (1988). A preliminary investigation of the phylogenetic relationships of the freshwater, apical pore field-bearing cymbelloid and gomphonemoid diatoms (Bacillariophyceae). Journal of Phycology, 24, 377–85.
Kociolek, J. P. & Stoermer, E. F. (1989). Chromosome numbers in diatoms: a review. Diatom Research, 4, 47–54.
Krammer, K. & Lange-Bertalot, H. (1986). Bacillariophyceae, 1 Teil, Naviculaceae. In Süsswasserflora von Mitteleuropa, Band 2, ed. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D., Stuttgart: Gustav Fischer.
Krammer, K. & Lange-Bertalot, H. (1988). Bacillariophyceae, 2 Teil, Bacillariaceae, Epithemiaceae, Surirellaceae. In Süsswasserflora von Mitteleuropa, Band 2, ed. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D.. Jena: Gustav Fischer.
Krammer, K. & Lange-Bertalot, H. (1991a). Bacillariophyceae, 3 Teil, Centrales, Fragilariaceae, Eunotiaceae. In Süsswasserflora von Mitteleuropa, Band 2, ed. Ettl, H., Gerloff, J., Heynig, H., and Mollenhauer, D.. Jena, Stuttgart: Gustav Fischer.
Krammer, K. & Lange-Bertalot, H. (1991b). Bacillariophyceae, 4 Teil, Achnanthaceae, Kritische Erganzungen zu Navicula (Lineolatae) und Gomphonema, In Süsswasserflora von Mitteleuropa, Band 2, ed. Ettl, H., Gerloff, J., Heynig, H. and Mollenhauer, D.. Jena, Stuttgart: Gustav Fischer.
Kröger, N., Deutzmann, R., & Sumper, M. (1999). Polycationic peptides from diatom biosilica that direct silica nanosphere formation. Science, 286, 1129–32.
Lange-Bertalot, H. (1997). As a practical diatomist, how does one deal with the flood of new names? Diatom, 13, 9–12.
Leblanc, C., Falciatore, A., & Bowler, C. (1999). Semi-quantitative RT-PCR analysis of photoregulated gene expression in marine diatoms. Plant Molecular Biology, 40, 1031–44.
Leedale, G. F. (1974). How many are the kingdoms of organisms? Taxon, 23, 261–70.
Lowe, R. L. (1974). Environmental requirements and pollution tolerance of freshwater diatoms. EPA-670/4–74-005. Cincinnati, OH: US Environmental Protection Agency.
MacDonald, J. D. (1869). On the structure of the diatomaceous frustule, and its genetic cycle. Annual Magazine of Natural History, 4, 1–8.
Mann, D. G. (1993). Patterns of sexual reproduction in diatoms. Hydrobiologia, 269/270, 11–20.
Mann, D. G. (1997). Shifting sands: the use of the lower taxonomic ranks in diatoms. Diatom, 13, 13–17.
Mann, D. G. & Droop, S. J. M. (1996). Biodiversity, biogeography and conservation of diatoms. In Biogeography of Freshwater Algae: Proceedings of the Workshop on Biogeography of Freshwater Algae, Developments in Hydrobiology 118, ed. Kristiansen, J., Dordecht: Kluwer Academic Publishers, pp. 19–32.
Martin-Jezequel, V., Hildebrand, M., and Brzezinski, M. A. (2000). Silicon metabolism in diatoms: implications for growth. Journal of Phycology, 36, 821–40.
MacBride, S. A. & Edgar, R. K. (1988) Janus cells unveiled: frustular morphometric variability in Gomphonema angustatum. Diatom Research, 13, 293–310.
Medlin, L. K., Kooistra, W. H. C. F., Gersonde, R., Sims, P. A., & Wellbrock, U. (1997). Is the origin of the diatoms related to the end-Permian mass extinction? Nova Hedwigia, 65, 1–11.
North, W. J. (1994). Review of Macrocystis biology. In Biology of Economic Algae, ed. Akatsura, I., The Hague: SPB Academic Publishing, pp. 447–528.
Owens, T. G. (1986). Light-harvesting function in the diatom Phaeodactylum tricornutum. Plant Physiology, 80, 732–8
Patrick, R. & Reimer, C. W. (1966). The diatoms of the United States I. Academy of Natural Sciences Philadelphia, Monograph no. 13.
Patrick, R. & Reimer, C. W. (1975). The diatoms of the United States II, part 1. Academy of Natural Sciences Philadelphia, Monograph no. 13.
Patterson, D. J. (1989). Stramenopiles: chromophytes from a protistan perspective. In The Chromophyte Algae: Problems and Perspectives, ed. Green, J. C., Leadbeater, B. S. C. and Diver, W. L.. Systematics Association Special Volume No. 38, Oxford: Clarendon Press, pp. 357–79.
Pfitzer, E. (1869). Über den Bau und Zellteilung der Diatomeen, Botanische Zeitung, 27, 774–6.
Pfitzer, E. (1871). Üntersuchungen über Bau und Entwicklung der Bacillariaceen (Diatomeen). In Botanische Abhandlungen aus dem Gebiet der Mophologie und Physiologie, ed. Hanstein, J., Bonn: Adolph Marcus Publishing, pp. 1–189.
Rabosky, D. L. & Sorhannus, U. (2009). Diversity dynamics of marine planktonic diatoms across the Cenozoic. Nature, 457, 183–6.
Rivkin, R. B. (1986). Radioisotopic method for measuring cell division rates of individual species of diatoms from natural populations. Applied Environmental Microbiology, 51, 769–75.
Rothpletz, A. (1896). Über die Flysch-Fucoiden und einige andere fossile Algae, sowie über laisische, Diatomeen führende Hornschwämme. Zeitschrift der Deutschen Geologischen Gesellschaft, 4, 854–914.
Rothpletz, A. (1900). Über einen neuen jurassichen Hornschwämme und die darin eingeschlossenen Diatomeen. Zeitschrift der Deutschen Geologischen Gesellschaft, 52, 154–60.
Round, F. E. (1996). What characters define diatom genera, species and infraspecific taxa? Diatom Research, 11, 203–18.
Round, F. E. (1997). Genera, species and varieties B are problems real or imagined? Diatom, 13, 25–9.
Round, F. E., Crawford, D. M., & Mann, D. G. (1990). The Diatoms: Biology and Morphology of the Genera. Cambridge: Cambridge University Press.
Round, F. E. & Sims, P. A. (1981). The distribution of diatom genera in marine and freshwater environments and some evolutionary considerations. In Proceedings of the Sixth Symposium of Recent and Fossil Diatoms, ed. Ross, R., Königstein: Koeltz Scientific Books, pp. 301–20.
Ryall, K., Harper, J. T., & Keeling, P. J. (2003). Plastid-derived Type II fatty acid biosynthetic enzymes in chromists. Gene, 313, 139–48.
Sanchez-Puerta, M. V. & Delwiche, C. F. (2008). Minireview: a hypothesis for plastid evolution in chromalveolates. Journal of Phycology, 44, 1097–107.
Saunders, G. W., Potter, D., Paskind, M. P., & Andersen, R. A. (1995). Cladistic analyses of combined traditional and molecular data sets reveal an algal lineage. Proceedings of the National Academy of Sciences of the USA, 92, 244–8.
Schelske, C. L. & Stoermer, E. F. (1971). Eutrophication, silica depletion, and predicted changes in algal quality in Lake Michigan. Science, 173, 423–4.
Scherer, C., Wiltshirea, K., & Bickmeyer, U. (2007). Inhibition of multidrug resistance transporters in the diatom Thalassiosira rotula facilitates dye staining. Plant Physiology and Biochemistry, 46, 100–3.
Schmid, A. M. (1994). Aspects of morphogenesis and function of diatom cell walls with implications for taxonomy. Protoplasma, 181, 43–60.
Schmid, A. M. & Volcani, B. E. (1983). Wall morphogenesis in Cosinodiscus wailesii Gran and Angst. I. Valve morphology and development of its architecture. Jorunal of Phycology, 19, 387–402
Shubin, N. (2008). Your Inner Fish: A Journey into the 3.5-Billion-Year History of the Human Body. New York: Pantheon Publishers.
Sicko-Goad, L., Schelske, C. L., & Stoermer, E. F. (1984). Estimation of carbon and silica content of diatoms from natural assemblages using morphometric techniques. Limnology and Oceanography, 29, 1170–8.
Sicko-Goad, L., Stoermer, E. F., & Fahnenstiel, G. (1986). Rejuvenation of Melosira granulata (Bacillariophyceae) resting cells from anoxic sediments of Douglas Lake, Michigan. I. Light and 14C uptake. Journal of Phycology, 22, 22–8.
Sicko-Goad, L., Stoermer, E. F., & Ladewski, B. G. (1977). A morphometric method for correcting phytoplankton cell volume estimates. Protoplasma, 93, 147–63.
Simonsen, R. (1979). The diatom system: ideas on phylogeny. Bacillaria, 2, 9–71.
Sorhannus, U. (2001). A “total evidence” analysis of the phylogenetic relationships among the photosynthetic stramenopiles. Cladistics, 17, 227–41.
Sorhannus, U. (2007). A nuclear-encoded small-subunit ribosomal RNA timescale for diatom evolution. Marine Micropaleontology, 65, 1–12.
Stoermer, E. F. (1967). Polymorphism in Mastogloia. Journal of Phycology, 3, 73–7.
Stoermer, E. F. (2001). Diatom taxonomy for paleolimnologists. Journal Paleolimnology, 25, 393–398.
Sullivan, C. W. (1977). Diatom mineralization of silicic acid. II. Regulation of Si(OH)4 transport rates during the cell cycle of Navicula pelliculosa. Journal of Phycology, 13, 86–91.
Townsend, S. A. & Gell, P. A. (2005) The role of substrate type on benthic diatom assemblages in the Daly and Roper rivers of the Australian wet/dry tropics. Hydrobiologia, 548, 101–15.
Theriot, E. C., Cannone, J. J., Gutell, R. R., & Alverson, A. J. (2009). The limits of nuclear-encoded SSU rDNA for resolving the diatom phylogeny. European Journal of Phycology, 44, 277–90.
Theriot, E. C., Sherilyn, C. F., Whitlock, C., & Conley, D. J. (2006). Late Quaternary rapid morphological evolution of an endemic diatom in Yellowstone Lake, Wyoming. Paleobiology, 32, 38–54.
Theriot, E. C. & Stoermer, E. F. (1984). Principal component analysis of Stephanodiscus: observations on two new species from the Stephanodiscus niagarae complex. Bacillaria, 7, 37–58.
Tuchman, M. L., Theriot, E. C., & Stoermer, E. F. (1984). Effects of low level salinity concentrations on the growth of Cyclotella meneghiniana Kütz. Archiv für Protistenkunde, 128, 319–26.
Tuji, A. (2000). Observation of developmental processes in loosely attached diatom (Bacillariophyceae) communities. Phycological Research, 48, 75–84.
Volkman, J. K., Jeffery, S. W., Nichols, P. D., Rogers, G. I., & Garland, C. D. (1989). Fatty acid and lipid composition of 10 species of microalgae used in mariculture. Journal of Experimental Marine Biology and Ecology, 128, 219–40.
Yoon, H. S., Hackett, J. D., Pinto, G., & Bhattacharya, D. (2002). The single, ancient origin of chromist plastids. Proceedings of the National Academy of Science, USA, 99, 1507–12.
Wetherbee, R. (2002). The diatom glasshouse. Science, 298, 13–14.
Williams, D. M. & Kociolek, J. P. (2007). Pursuit of a natural classification of diatoms: history, monophyly and the rejection of paraphyletic taxa. European Journal of Phycology, 42, 313–19.