Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T09:35:48.644Z Has data issue: false hasContentIssue false

7 - Infant Heart Rate: A Developmental Psychophysiological Perspective

from SECTION TWO - AUTONOMIC AND PERIPHERAL SYSTEMS: THEORY, METHODS, AND MEASURES

Published online by Cambridge University Press:  27 July 2009

Greg D. Reynolds
Affiliation:
Assistant Professor of Psychology University of Tennessee
John E. Richards
Affiliation:
Professor of Psychology University of South Carolina
Louis A. Schmidt
Affiliation:
McMaster University, Ontario
Sidney J Segalowitz
Affiliation:
Brock University, Ontario
Get access

Summary

INTRODUCTION

Psychophysiology is the study of the relation between psychological events and biological processes in human participants. The electrocardiogram (ECG) and heart rate (HR) have been commonly used measures throughout the history of psychophysiological research. Early studies found that stimuli eliciting differing emotional responses in adults also elicited HR responses differing in magnitude and direction of change from baseline (e.g., Darrow, 1929; Graham & Clifton, 1966; Lacey, 1959). Vast improvements in methods of measuring ECG and knowledge regarding the relation between HR and cognitive activity have occurred.

Heart rate has been particularly useful in developmental psychophysiological research. Researchers interested in early cognitive and perceptual development have utilized HR as a window into cognitive activity for infants before they are capable of demonstrating complex behaviors or providing verbal responses. Also, the relation between brain control of HR and the behavior of HR during psychological activity has helped work in developmental cognitive neuroscience. In this chapter, we address the use of the ECG and HR in research on infants. We review three ways in which HR has been used in psychophysiological research: HR changes, attention phases defined by HR, and HR variability (particularly respiratory sinus arrhythmia). Topics we focus on are the areas of the brain that are indexed with these measures, developmental changes associated with these measures, and the relation of these measures to psychological processes. Before covering research with infants, we briefly review background information on the heart, the ECG and HR, and its relation to psychophysiology.

Type
Chapter
Information
Developmental Psychophysiology
Theory, Systems, and Methods
, pp. 173 - 212
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Akselrod, S., Gordon, D., Madwed, J. B., Snidman, N. C., Shannon, D. C., & Cohen, R. J. (1985). Hemodynamic regulation: Investigation by spectral analysis. American Journal of Physiology, 249, H867–H875.Google ScholarPubMed
Andreassi, J. L. (1989). Psychophysiology: Human behavior and physiological response. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Anrep, G. W., Pascual, W., & Rossler, R. (1935). Respiratory variations of the heart rate. I. The reflex mechanism of the respiratory arrhythmia. Royal Society of London Proceedings, Series B, 119, 191–217.CrossRefGoogle Scholar
Aslin, R. N., & Salapatek, P. (1975). Saccadic localization of visual targets by the very young human infant. Perception and Psychophysics, 17, 293–302.CrossRefGoogle Scholar
Atkinson, J., Hood, B., Braddick, O. J., & Wattam-Bell, J. (1988). Infants' control of fixation shifts with single and competing targets: Mechanisms for shifting attention. Perception, 17, 367–368.Google Scholar
Atkinson, J., Hood, B., Wattam-Bell, J., & Braddick, O. J. (1992). Changes in infants' ability to switch visual attention in the first three months of life. Perception, 21, 643–653.CrossRefGoogle ScholarPubMed
Bar-Haim, Y., Marshall, P. J., & Fox, N. A. (2000). Developmental changes in heart period and high-frequency heart period variability from 4 months to 4 years of age. Developmental Psychobiology, 37, 44–56.3.0.CO;2-7>CrossRefGoogle ScholarPubMed
Bell, M. A. (1998). Frontal lobe function during infancy: Implications for the development of cognition and attention. In Richards, J. E. (Ed.), Cognitive neuroscience of attention: A developmental perspective (pp. 287–316). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Berg, W. K. (1975). Cardiac components of the defense response in infants. Psychophysiology, 12, 244.Google Scholar
Berg, W. K., & Berg, K. M. (1979). Psychophysiological development in infancy: State, sensory function, and attention. In Osofsky, J. (Ed.), Handbook of infant development (pp. 283–343). New York: Wiley.Google Scholar
Berntson, G. G., Bigger, J. T., Eckberg, D. L., Grossman, P., Kaufmann, P. G., Malik, M., Nagaraja, H. N., Porges, S. W., Saul, J. P., Stone, P. H., & Molen, M. W. (1997). Heart rate variability: Origins, methods, and interpretive caveats. Psychophysiology, 34, 623–648.CrossRefGoogle ScholarPubMed
Berntson, G. G., Cacioppo, J. T., & Quigley, K. S. (1993). Respiratory sinus arrhythmia: Autonomic origins, physiological mechanisms, and psychophysiological implications. Psychophysiology, 30, 183–196.CrossRefGoogle ScholarPubMed
Bornstein, M. H., Pecheux, M. G., & Lecuyer, R. (1988). Visual habituation in human infants: Development and rearing circumstances. Psychological Research, 50, 130–133.CrossRefGoogle ScholarPubMed
Bornstein, M. H., & Suess, P. E. (2000). Physiological self-regulation and information processing in infancy: Cardiac vagal tone and habituation. Child Development, 71, 273–287.CrossRefGoogle ScholarPubMed
Brown, J. W., Leavitt, L. A., & Graham, F. K. (1977). Response to auditory stimuli in 12-week-old infants. Developmental Psychobiology, 10, 255–266.CrossRefGoogle Scholar
Brownley, K. A., Hurwitz, B. E., & Schneiderman, N. (2000). Cardiovascular psychophysiology. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology (pp. 224–264). Cambridge, UK: Cambridge University Press.Google Scholar
Byrne, J. M., Clark-Tousenard, M. E., Hondas, B. J., & Smith, I. M. (1985). Stability of individual differences in infant visual attention. Unpublished paper presented at the Biennial Meeting of the Society for Research in Child Development, Toronto, Canada.Google Scholar
Casey, B. J., & Richards, J. E. (1988). Sustained visual attention measured with an adapted version of the visual preference paradigm. Child Development, 59, 1514–1521.CrossRefGoogle ScholarPubMed
Casey, B. J., & Richards, J. E. (1991). A refractory period for the heart rate response in infant visual attention. Developmental Psychobiology, 24, 327–340.CrossRefGoogle ScholarPubMed
Casey, B. J., Trainor, R., Giedd, J., Vauss, Y., Vaituzis, C. K., Hamburger, S., Kozuch, P., & Rapoport, J. L. (1997). The role of anterior cingulate in automatic and controlled processes: A developmental neuroanatomical study. Developmental Psychobiology, 30, 61–69.3.0.CO;2-T>CrossRefGoogle ScholarPubMed
Chase, H. H. (1965). Habituation of an acceleratory cardiac response in neonates. Unpublished Master's Thesis, University of Wisconsin.Google Scholar
Clarkson, M. G., & Berg, W. K. (1983). Cardiac orienting and vowel discrimination in newborns: Crucial stimulus parameters of acoustic stimuli. Child Development, 54, 162–171.CrossRefGoogle Scholar
Clifton, R. K., & Nelson, M. N. (1976). Developmental study of habituation in infants: The importance of paradigm, response system and state. In Tighe, T. J. & Leaton, R. N. (Eds.), Habituation: Perspectives from child development, animal behavior, and neurophysiology (pp. 159–206). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Cohen, L. B. (1988). The relationship between infant habituation and infant information processing. European Bulletin of Cognitive Psychology/Cahiers de Psychologie Cognitive, 8, 442–444.Google Scholar
Cohen, R. A. (1993). The neuropsychology of attention. New York, NY: Plenum Press.CrossRefGoogle Scholar
Colombo, J. (1993). Infant cognition: Predicting later intellectual functioning. Newbury Park, CA: Sage.CrossRefGoogle Scholar
Colombo, J., Freeseman, L. J., Coldren, J. T., & Frick, J. E. (1995). Individual differences in infant visual fixation: Dominance of global and local stimulus properties. Cognitive Development, 10, 271–285.CrossRefGoogle Scholar
Colombo, J., & Mitchell, D. W. (1990). Individual and developmental differences in infant visual attention. In Colombo, J. & Fagan, J. W. (Eds.), Individual differences in infancy (pp. 193–227). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Colombo, J., Mitchell, D. W., Coldren, J. T., & Freeseman, L. J. (1991). Individual differences in infant visual attention: Are short lookers faster processors or feature processors?Child Development, 62, 1247–1257.CrossRefGoogle ScholarPubMed
Colombo, J., Mitchell, D. W., & Horowitz, F. D. (1988). Infant visual behavior in the paired-comparison paradigm. Child Development, 59, 1198–1210.CrossRefGoogle ScholarPubMed
Colombo, J., Richman, W. A., Shaddy, D. J., Greenhoot, A. F., & Maikranz, J. M. (2001). Heart rate-defined phases of attention, look duration, and infant performance in the paired-comparison paradigm. Child Development, 72, 1605–1616.CrossRefGoogle ScholarPubMed
Courage, M. L., Reynolds, G. D., & Richards, J. E. (2006). Infants' visual attention to patterned stimuli: Developmental change from 3- to 12-months of age. Child Development, 77, 680–695.CrossRefGoogle ScholarPubMed
Courchesne, E. (1977). Event-related brain potentials: Comparison between children and adults. Science, 197, 589–592.CrossRefGoogle ScholarPubMed
Courchesne, E. (1978). Neurophysiological correlates of cognitive development: Changes in long-latency event-related potentials from childhood to adulthood. Electroencephalography and Clinical Neurophysiology, 45, 468–482.CrossRefGoogle ScholarPubMed
Darrow, C. W. (1929). Differences in the physiological reactions to sensory and ideational stimuli. Psychological Bulletin, 26, 185–201.CrossRefGoogle Scholar
Davis, R. C., Buchwald, A. M., & Frankmann, R. W. (1955). Autonomic and muscular responses and their relation to simple stimuli. Psychological Monographs, 69, 1–71.CrossRefGoogle Scholar
Davis, C. M., Crowell, D. H., & Chun, B. J. (1965). Monophasic heart rate accelerations in human infants to peripheral stimulation. American Psychologist, 20, 478.Google Scholar
Schonen, S., McKenzie, B., Maury, L., & Bresson, F. (1978). Central and peripheral object distances as determinants of the effective visual field in early infancy. Perception, 7, 499–506.CrossRefGoogle ScholarPubMed
Diamond, A., Cruttenden, L., & Neiderman, D. (1994). AB with multiple wells: 1. Why are multiple wells sometimes easier than two wells? 2. Memory or memory + inhibition. Developmental Psychology, 30, 192–205.CrossRefGoogle Scholar
Diamond, A., Prevor, M. B., Callender, G., & Druin, D. P. (1997). Prefrontal cortex cognitive deficits in children treated early and continuously for PKU. Monographs of the Society for Research in Child Development, 62, 4.CrossRefGoogle ScholarPubMed
Einthoven, W., Fahr, G., & Waart, A. (1913). Uber die richtung und die manifeste grosse der pontetialshwankungen in menchlichen herzen und uber den einfluss der herzlage auf die for des elecktrokardiogram. Archives of Physiology, 150, 275–315.CrossRefGoogle Scholar
Fabiani, M., Gratton, G., & Coles, M. G. H. (2000). Event-related brain potentials: Methods, theory, and applications. In Cacioppo, J. T., Tassinary, L. G., & Berntson, G. G. (Eds.), Handbook of psychophysiology (pp. 53–84). New York: Cambridge University Press.Google Scholar
Feldman, R., Greenbaum, C. W., & Yirmiya, N. (1999). Mother-infant affect synchrony as an antecedent of the emergence of self-control. Developmental Psychology, 35, 223–231.CrossRefGoogle ScholarPubMed
Field, J., Muir, D., Pilon, R., Sinclair, M., & Dodwell, P. (1980). Infants' orientation to lateral sounds from birth to three months. Child Development, 51, 295–298.CrossRefGoogle ScholarPubMed
Finlay, D., & Ivinskis, A. (1984). Cardiac and visual responses to moving stimuli presented either successively or simultaneously to the central and peripheral visual fields in 4-month-old infants. Developmental Psychology, 20, 29–36.CrossRefGoogle Scholar
Fox, N. A. (1979). Cardiac responses to two types of auditory stimuli in preterm infants. Paper presented at the Annual meeting of the Society for Psychophysiological Research, Cincinnati, Ohio.Google Scholar
Fox, N. A. (1989). Psychophysiological correlates of emotional reactivity during the first year of life. Developmental Psychology, 25, 364–372.CrossRefGoogle Scholar
Fox, N. A., & Gelles, M. (1984). Face-to-face interaction in term and preterm infants. Infant Mental Health Journal, 5, 192–205.3.0.CO;2-M>CrossRefGoogle Scholar
Frick, J. E., & Colombo, J. (1996). Individual differences in infant visual attention: Recognition of degraded visual forms by 4-month-olds. Child Development, 67, 188–204.CrossRefGoogle Scholar
Frick, J. E., & Richards, J. E. (2001). Individual differences in recognition of briefly presented stimuli. Infancy, 2, 331–352.CrossRefGoogle Scholar
Garcia-Koll, C., Kagan, J., & Reznick, J. S. (1984). Behavioral inhibition in young children. Child Development, 55, 1005–1019.Google Scholar
Goldman-Rakic, P. S. (1988). Topography of cognition: Parallel distributed networks in primate association cortex. Annual Review of Neuroscience, 11, 137–156.CrossRefGoogle ScholarPubMed
Graham, F. K. (1979). Distinguishing among orienting, defense, and startle reflexes. In Kimmel, H. D., Olst, E. H., & Orlebeke, J. F. (Eds.), The orienting reflex in humans (pp. 137–167). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Graham, F. K., Anthony, B. J., & Zeigler, B. L. (1983). The orienting response and developmental processes. In Siddle, D. (Ed.), Orienting and habituation: Perspectives in human research (pp. 371–430). Sussex, UK: Wiley.Google Scholar
Graham, F. K., Berg, K. M., Berg, W. K., Jackson, J. C., Hatton, H. M., & Kantowitz, S. R. (1970). Cardiac orienting response as a function of age. Psychonomic Science, 19, 363–365.CrossRefGoogle Scholar
Graham, F. K., & Clifton, R. K. (1966). Heart-rate change as a component of the orienting response. Psychological Bulletin, 65, 305–320.CrossRefGoogle ScholarPubMed
Graham, F. K., & Jackson, J. C. (1970). Arousal systems and infant heart rate responses. In Reese, H. W. & Lipsitt, L. P. (Eds.), Advances in child development and behavior. (Vol. 5, pp. 59–117). New York: Academic Press.Google Scholar
Graham, F. K., Strock, B. D., & Zeigler, B. L. (1981). Excitatory and inhibitory influences on reflex responsiveness. In Collins, W. A. (Ed.), Aspects of the development of competence (pp. 1–38). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Harper, R. M., Hoppenbrouwers, T., Sterman, M. B., McGinty, D. J., & Hodgman, J. (1976). Polygraphic studies of normal infants during the first six months of life. I. Heart rate and variability as a function of state. Pediatric Research, 10, 945–961.CrossRefGoogle ScholarPubMed
Harper, R. M., Scalabassi, R. J., & Estrin, T. (1976). Time series analysis and sleep research. IEEE Transactions and Autonomic Control, AC-19, 932–943.Google Scholar
Harper, R. M., Walter, D. O., Leake, B., Hoffman, H. J., Sieck, G. C., Sterman, M. B., Hoppenbrouwers, T., & Hodgman, J. (1978). Development of sinus arrhythmia during sleeping and waking states in normal infants. Sleep, 1, 33–48.CrossRefGoogle ScholarPubMed
Harris, P., & MacFarlane, A. (1974). The growth of the effective visual field from birth to seven weeks. Journal of Experimental Child Psychology, 18, 340–348.CrossRefGoogle ScholarPubMed
Hassett, J., & Danforth, D. (1982). Introduction to the cardiovascular system. In Cacioppo, J. T. & Petty, R. E. (Eds.), Perspectives in cardiovascular psychophysiology (pp. 4–18). New York: Guilford Press.Google Scholar
Heilman, K. M., Watson, R. T., Valenstein, E., & Goldberg, M. E. (1987). Attention: Behavior and neural mechanisms. In Mountcastle, V. B., Plum, F., & Geiger, S. R. (Eds.), Handbook of physiology, Section 1: The nervous system (Vol. V, pp. 461–481). Bethesda, MD: American Physiological Society.Google Scholar
Hicks, J. M., & Richards, J. E. (1998). The effects of stimulus movement and attention on peripheral stimulus localization by 8- to 26-week-old infants. Infant Behavior and Development, 21, 571–589.CrossRefGoogle Scholar
Hood, B. M., & Atkinson, J. (1993). Disengaging visual attention in the infant and adult. Infant Behavior and Development, 16, 405–422.CrossRefGoogle Scholar
Hunter, S. K., & Richards, J. E. (2003). Peripheral stimulus localization by 5- to 14-week-old infants during phases of attention. Infancy, 4, 1–25.CrossRefGoogle Scholar
Hunter, M. A., Ross, H. S., & Ames, E. W. (1982). Preferences for familiar or novel toys: Effect of familiarization time in 1-year-olds. Developmental Psychology, 18, 519–529.CrossRefGoogle Scholar
Izard, C. E., Porges, S. W., Simons, R. F., Haynes, O. M., Hyde, C., Parisi, M., & Cohen, B. (1991). Infant cardiac activity: Developmental changes and relations with attachment. Developmental Psychology, 27, 432–439.CrossRefGoogle Scholar
Jankowksi, J. J., & Rose, S. A. (1997). The distribution of attention in infants. Journal of Experimental Child Psychology, 65, 127–140.CrossRefGoogle Scholar
Jennings, J. R. (1986). Bodily changes during attention. In Coles, M. G. H., Donchin, E., & Porges, S. W. (Eds.), Psychophysiology: Systems, processes, and applications (pp. 268–289). New York: Guilford Press.Google Scholar
Kagan, J., Kearsley, R., & Zelazo, P. (1978). Infancy. Cambridge, MA: Harvard University Press.Google Scholar
Kahneman, D. (1973). Attention and effort. Englewood Cliffs, NJ: Prentice-Hall.Google Scholar
Katona, P. G., Frasz, A., & Egbert, J. R. (1980). Maturation of cardiac control in full-term and preterm infants during sleep. Early Human Development, 4, 145–159.CrossRefGoogle ScholarPubMed
Katona, P. G., & Jih, F. (1975). Respiratory sinus arrhythmia: Noninvasive measure of parasympathetic control. Journal of Applied Physiology, 39, 801–805.CrossRefGoogle Scholar
Keen, R. E., Chase, H. H., & Graham, F. K. (1965). Twenty-four hour retention by neonates of an habituated heart rate response. Psychonomic Science, 2, 265–266.CrossRefGoogle Scholar
Lacey, J. I. (1959). Psychophysiological approaches to the evaluation of psychotherapeutic process and outcome. In Rubinstein, E. A. & Parloff, M. B. (Eds.), Research in psychotherapy (pp. 160–208). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
Lacey, J. I., Kagan, J., Lacey, B. C., & Moss, M. A. (1962). The visceral level: Situational determinants and behavioral correlates of autonomic response patterns. In Knapp, P. (Ed.), Expression of the emotions in man (pp. 161–196). New York: International Universities Press.Google Scholar
Lacey, J. I., & Lacey, B. C. (1958). The relationship of resting autonomic activity to motor impulsivity. In The brain and human behavior (Proceedings of the Association for Research in Nervous and Mental Disease, pp. 1257–1290). Baltimore, MD: Williams & Wilkins.Google Scholar
Lang, A. (1990). Involuntary attention and physiological arousal evoked by structural features and emotional content in TV commercials. Communication Research, 17, 275–299.CrossRefGoogle Scholar
Lansink, J. M., & Richards, J. E. (1997). Heart rate and behavioral measures of attention in 6-, 9-, and 12-month-old infants during object exploration. Child Development, 68, 610–620.CrossRefGoogle ScholarPubMed
Lewis, M., Kagan, K., Campbell, H., & Kalafat, J. (1965). The cardiac response as a correlate of attention in infants. [Abstract]. American Psychologist, 20, 478.Google Scholar
Lipton, E. L., & Steinschneider, A. (1964). Studies on the psychophysiology of infancy. Merrill-Palmer Quarterly, 10, 103–177.Google Scholar
Maikranz, J. M., Colombo, J., Richman, W. A., & Frick, J. E. (2000). Autonomic correlates of individual differences in sensitization and look duration during infancy. Infant Behavior and Development, 23, 137–151.CrossRefGoogle Scholar
MacFarlane, A., Harris, P., & Barnes, I. (1976). Central and peripheral vision in early infancy. Journal of Experimental Child Psychology, 21, 532–538.CrossRefGoogle ScholarPubMed
McCall, R. B., & Kagan, J. (1967). Stimulus-schema discrepancy and attention in the infant. Journal of Experimental Child Psychology, 5, 381–390.CrossRefGoogle ScholarPubMed
Mesulam, M. M. (1983). The functional anatomy and hemispheric specialization for directed attention. Trends in Neuroscience, 6, 384–387.CrossRefGoogle Scholar
Moruzzi, G., & Magoun, H. W. (1949). Brain stem reticular formation and activation of the EEG. Electroencephalography and Clinical Neurophysiology, 1, 455–473.CrossRefGoogle ScholarPubMed
Nelson, C. A., & Collins, P. F. (1991). Event-related potential and looking-time analysis of infants' responses to familiar and novel events: Implications for visual recognition memory. Developmental Psychology, 27, 50–58.CrossRefGoogle Scholar
Nelson, C. A., & Collins, P. F. (1992). Neural and behavioral correlates of visual recognition memory in 4- and 8-month-old infants. Brain and Cognition, 19, 105–121.CrossRefGoogle ScholarPubMed
Oakes, L. A., Madole, K. L., & Cohen, L. B. (1991). Infant object examining: Habituation and categorization. Cognitive Development, 6, 377–392.CrossRefGoogle Scholar
Oakes, L. M., & Tellinghuisen, D. J. (1994). Examining in infancy: Does it reflect active processing?Developmental Psychology, 30, 748–756.CrossRefGoogle Scholar
Picton, T. W., Bentin, S., Berg, P., Donchin, E., Hillyard, S. A., Johnson, R. Jr.., Ritter, W., Ruchkin, D. S., Rugg, M. D., & Taylor, M. J. (2000). Guidelines for using human event-related potentials to study cognition: Recording standards and publication criteria. Psychophysiology, 37, 127–152.CrossRefGoogle ScholarPubMed
Pomerleau, A., & Malcuit, G. (1981). State effects on concomitant cardiac and behavioral responses to a rocking stimulus in human newborns. Infant Behavior and Development, 4, 163–174.CrossRefGoogle Scholar
Pomerleau-Malcuit, A., & Clifton, R. K. (1973). Neonatal heart-rate response to tactile, auditory and vestibular stimulation in different states. Child Development, 44, 485–496.CrossRefGoogle ScholarPubMed
Porges, S. W. (1976). Peripheral and neurochemical parallels of psychopathology: A psychophysiological model relating autonomic imbalance in hyperactivity, psychopathology, and autism. In Reese, H. (Ed.), Advances in Child Development and Behavior (Vol. 11, pp. 35–65). New York: Academic Press.Google Scholar
Porges, S. W. (1980). Individual differences in attention: A possible physiological substrate. In Advances in Special Education (Vol. 2, pp. 111–134).Greenwich, CT: JAI Press.Google Scholar
Porges, S. W. (1985). Spontaneous oscillations in heart rate: Potential index of stress. In P. G. Mogberg (Ed.), Animal stress: New directions in defining and evaluating the effects of stress. Bethesda, MD: American Physiological Society.
Porges, S. W. (1992). Autonomic regulation and attention. In Campbell, B. A., Hayne, H., Richardson, R. (Eds.), Attention and information processing in infants and adults: Perspectives from human and animal research (pp. 201–223). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Porges, S. W. (2001). The polyvagal theory: Phylogenetic substrates of a social nervous system. International Journal of Psychophysiology, 42, 123–146.CrossRefGoogle ScholarPubMed
Porges, S. W., & Bohrer, R. E. (1990). Analyses of periodic processes in psychophysiological research. In Cacioppo, J. T. & Tassinary, I. G. (Eds.), Principles of psychophysiology: Physical, social, and inferential elements (pp. 708–753). New York: Cambridge University Press.Google Scholar
Porges, S. W., McCabe, P. M., & Yongue, B. G. (1982). Respiratory-heart rate interactions: Psychophysiological implications for pathophysiology and behavior. In Cacioppo, J. T. & Petty, R. (Eds.), Perspectives in cardiovascular psychophysiology (pp. 223–264). New York: Guilford Press.Google Scholar
Porter, F. L. (2001). Vagal tone. In Singer, L. & Zeskind, P. (Eds.), Biobehavioral assessment of the infant (pp. 100–124). New York: Guilford Press.Google Scholar
Porter, C. L., Bryan, Y., & Hsu, H. (1995). Physiological markers in early infancy: Stability of 1-to 6-month vagal tone. Infant Behavior and Development, 18, 363–367.CrossRefGoogle Scholar
Posner, M. I. (1995). Attention in cognitive neuroscience: An overview. In Gazzaniga, M. S., (Ed.), Cognitive neurosciences (pp. 615–624). Cambridge, MA: MIT Press.Google Scholar
Posner, M. I., & Petersen, S. E. (1990). The attention system of the human brain. Annual Review of Neuroscience, 13, 25–42.CrossRefGoogle ScholarPubMed
Reed, S. F., Ohel, G., David, R., & Porges, S. W. (1999). A neural explanation of fetal heart rate patterns: A test of the polyvagal theory. Developmental Psychobiology, 35, 108–118.3.0.CO;2-N>CrossRefGoogle ScholarPubMed
Reynolds, G. D., & Richards, J. E. (2005). Familiarization, attention, and recognition memory in infancy: An ERP and cortical source localization study. Developmental Psychology, 41, 598–615.CrossRefGoogle ScholarPubMed
Richards, J. E. (1985a). The development of sustained attention in infants from 14 to 26 weeks of age. Psychophysiology, 22, 409–416.CrossRefGoogle Scholar
Richards, J. E. (1985b). Respiratory sinus arrhythmia predicts heart rate and visual responses during visual attention in 14- and 20-week-old infants. Psychophysiology, 22, 101–109.CrossRefGoogle Scholar
Richards, J. E. (1986). Power spectral analysis quantification of respiratory sinus arrhythmia. Psychophysiology, 23, 414.Google Scholar
Richards, J. E. (1987). Infant visual sustained attention and respiratory sinus arrhythmia. Child Development, 58, 488–496.CrossRefGoogle ScholarPubMed
Richards, J. E. (1988a). Heart rate changes and heart rate rhythms, and infant visual sustained attention. In Ackles, P. K., Jennings, J. R., & Coles, M. G. H. (Eds.), Advances in psychophysiology (Vol. 3, pp. 189–221). Greenwich, CT: JAI Press,Google Scholar
Richards, J. E. (1988b). Heart rate offset responses to visual stimuli in infants from 14 to 26 weeks of age. Psychophysiology, 25, 278–291.CrossRefGoogle Scholar
Richards, J. E. (1989). Development and stability of HR-defined, visual sustained attention in 14, 20, and 26 week old infants. Psychophysiology, 26, 422–430.CrossRefGoogle Scholar
Richards, J. E. (1994). Baseline respiratory sinus arrhythmia and heart rate responses during sustained visual attention in preterm infants from 3 to 6 months of age. Psychophysiology, 31, 235–243.CrossRefGoogle ScholarPubMed
Richards, J. E. (1995a). Infant cognitive psychophysiology: Normal development and implications for abnormal developmental outcomes. In Ollendick, T. H. & Prinz, R. J. (Eds.), Advances in Clinical Child Psychology (Vol. 17, pp. 77–107). New York: Plenum Press.CrossRefGoogle Scholar
Richards, J. E. (1995b). Reliability of respiratory sinus arrhythmia in R-R intervals, in 14-, 20-, and 26-week-old infants. Infant Behavior and Development, 18, 155–161.CrossRefGoogle Scholar
Richards, J. E. (1997a). Effects of attention on infants' preference for briefly exposed visual stimuli in the paired-comparison recognition-memory paradigm. Developmental Psychology, 33, 22–31.CrossRefGoogle Scholar
Richards, J. E. (1997b). Peripheral stimulus localization by infants: Attention, age and individual differences in heart rate variability. Journal of Experimental Psychology: Human Perception and Performance, 23, 667–680.Google Scholar
Richards, J. E. (1998). Focusing on visual attention. Early Development and Parenting, 7, 153–158.3.0.CO;2-G>CrossRefGoogle Scholar
Richards, J. E. (2000). Development of multimodal attention in young infants: Modification of the startle reflex by attention. Psychophysiology, 37, 65–75.CrossRefGoogle ScholarPubMed
Richards, J. E. (2001). Attention in young infants: A developmental psychophysiological perspective. In Nelson, C. A. & Luciana, M. (Eds.), Handbook of developmental cognitive neuroscience (pp. 321–338). Cambridge, MA: MIT Press.Google Scholar
Richards, J. E. (2003). Attention affects the recognition of briefly presented visual stimuli in infants: An ERP study. Developmental Science, 6, 312–328.CrossRefGoogle Scholar
Richards, J. E., & Anderson, D. R. (2004). Attentional inertia in children's extended looking at television. Advances in Child Development and Behavior, 32, 163–212.CrossRefGoogle ScholarPubMed
Richards, J. E., & Casey, B. J. (1991). Heart rate variability during attention phases in young infants. Psychophysiology, 28, 43–53.CrossRefGoogle ScholarPubMed
Richards, J. E., & Casey, B. J. (1992). Development of sustained visual attention in the human infant. In Campbell, B. A., Hayne, H., & Richardson, R. (Eds.), Attention and information processing in infants and adults: Perspectives from human and animal research (pp. 30–60). Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Richards, J. E., & Cronise, K. (2000). Extended visual fixation in the early preschool years: Look duration, heart rate changes, and attentional inertia. Child Development, 71, 602–620.CrossRefGoogle ScholarPubMed
Richards, J. E., & Gibson, T. L. (1997). Extended visual fixation in young infants: Look distribution, heart rate changes, and attention. Child Development, 68, 1041–1056.CrossRefGoogle ScholarPubMed
Richards, J. E., & Hunter, S. K. (1997). Peripheral stimulus localization by infants with eye and head movements during visual attention. Vision Research, 37, 3021–3035.CrossRefGoogle ScholarPubMed
Richards, J. E., & Hunter, S. K. (1998). Attention and eye movement in young infants: Neural control and development. In Richards, J. E. (Ed.), Cognitive neuroscience of attention: A developmental perspective. Hillsdale, NJ: Lawrence Erlbaum Associates.Google Scholar
Richards, J. E., & Hunter, S. K. (2002). Testing neural models of the development of infant visual attention. Developmental Psychobiology, 40, 226–236.CrossRefGoogle ScholarPubMed
Richards, J. E., & Lansink, J. M. (1998). Distractibility during visual fixation in young infants: The selectivity of attention. In Rovee-Collier, C. (Ed.), Advances in Infancy Research (Vol. 13, pp. 407–444). Norwood, NJ: Ablex Publishing Co.Google Scholar
Richards, J. E., & Turner, E. D. (2001). Distractibility during extended viewing of television in the early preschool years. Child Development, 72, 963–972.CrossRefGoogle Scholar
Robbins, T. W., & Everitt, B. J. (1995). Arousal systems and attention. In Gazzaniga, M. S., (Ed.), Cognitive neurosciences (pp. 703–720). Cambridge, MA: MIT Press.Google Scholar
Rose, S. A. (1983). Differential rates of visual information processing in full-term and preterm infants. Child Development, 54, 1189–1198.CrossRefGoogle ScholarPubMed
Rose, S. A., Gottfried, A. W., Melloy-Carminar, P., & Bridger, W. H. (1982). Familiarity and novelty preferences in infant recognition memory: Implications for information processing. Developmental Psychology, 18, 704–713.CrossRefGoogle Scholar
Ruff, H. A. (1986). Components of attention during infants' manipulative exploration. Child Development, 57, 105–114.CrossRefGoogle ScholarPubMed
Ruff, H. A., Capozzoli, M., & Saltarelli, L. M. (1996). Focused visual attention and distractibility in 10-month old infants. Infant Behavior and Development, 19, 281–293.CrossRefGoogle Scholar
Schectman, V. L., Kluge, K. A., & Harper, R. M. (1988). Time-domain system for assessing variation in heart rate. Medical and Biological Engineering and Computing, 26, 367–373.CrossRefGoogle Scholar
Smith, J. J., & Kampine, J. P. (1984). Circulatory physiology: The essentials. Baltimore, MD: Williams & Wilkins.Google Scholar
Sokolov, E. N. (1963). Perception and the conditioned reflex. New York: Macmillan.Google Scholar
Starzl, T. E., Taylor, C. W., & Magoun, H. W. (1951). Ascending conduction in reticular activating system, with special reference to the dienchephalon. Journal of Neurophysiology, 14, 461–477.CrossRefGoogle Scholar
Stifter, C. A., & Fox, N. A. (1990). Infant reactivity: Physiological correlates of newborn and five-month temperament. Developmental Psychology, 26, 582–588.CrossRefGoogle Scholar
Tellinghuisen, D. J. & Oakes, L. M. (1997). Distractibility in infancy: The effects of distractor characteristics and type of attention. Journal of Experimental Child Psychology, 64, 232– 254.CrossRefGoogle Scholar
Tronick, E. (1972). Stimulus control and growth of the infants' effective visual field. Perception and Psychophysics, 11, 373–376.CrossRefGoogle Scholar
Wagner, S. H., & Sakovits, L. J. (1986). A process analysis in infant visual and cross-modal recognition memory: Implications for an amodal code. Advances in Infancy Research, 4, 195–217.Google Scholar
Watanabe, K., Iwase, K., & Hara, K. (1973). Heart rate variability during sleep and wakefulness in low-birthweight infants. Biology of the Neonate, 22, 87–98.CrossRefGoogle ScholarPubMed
Womack, B. F. (1971). The analysis of respiratory sinus arrhythmia using spectral analysis and digital filtering. IEEE Transactions on Bio-Medical Engineering, 18, 399–409.CrossRefGoogle ScholarPubMed
Zeaman, D., Deane, G., & Wegner, N. (1954). Amplitude and latency characteristics of the conditioned heart response. Journal of Psychology, 37, 235–250.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×