Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-22dnz Total loading time: 0 Render date: 2024-04-25T21:20:20.546Z Has data issue: false hasContentIssue false

Foreword by Stephen W. Porges

Published online by Cambridge University Press:  27 July 2009

Stephen W. Porges
Affiliation:
Brain-Body Center, Department of Psychiatry, University of Illinois at Chicago
Louis A. Schmidt
Affiliation:
McMaster University, Ontario
Sidney J Segalowitz
Affiliation:
Brock University, Ontario
Get access

Summary

Developmental psychophysiology is an emergent discipline that applies the technologies of psychophysiology to study developmental processes. The history of developmental psychophysiology reflects the unscripted dance of investigators moving in and out of disciplines, research questions, populations, clinical problems, physiological measures, and technologies. Developmental psychophysiology represents the products of scientific curiosity and ingenuity as investigators boldly attempt to apply new technologies to study classic problems and unanswered questions regarding the developmental trajectory of psychological processes. Unlike the psychologist, who studies both observable behaviors and subjective reports, the psychophysiologist investigates responses that do not require verbal responses or overt behaviors. Thus, the tools of psychophysiology provide developmental scientists with opportunities to expand the investigative envelope of inquiry to include the preverbal infant.

Before we can place developmental psychophysiology in perspective, we need to examine briefly the history of psychophysiology. Psychophysiology is at the crossroads of several disciplines, each with preferred models, paradigms, and measures. Unlike physiology with its focus on mechanism and structure or cardiology with its focus on clinical status, psychophysiology was driven by paradigms derived from psychology, often treating physiological parameters as if they were observable behaviors. The early psychophysiologists, defined by their use of the polygraph, applied the polygraph to “transform” unobservable psychological or mental processes into measurable physiological variables (e.g., Razran, 1961).

Early papers by Fere (1888) and Tarchanoff (1890) provide visionary statements of the paradigms that would define psychophysiology. Their papers focused on using electrodermal activity as indicators of psychological responses to a variety of stimuli.

Type
Chapter
Information
Developmental Psychophysiology
Theory, Systems, and Methods
, pp. vii - xii
Publisher: Cambridge University Press
Print publication year: 2007

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bartoshuk, A. K. (1962). Response decrement with repeated elicitation of human neonatal cardiac acceleration to sound. Journal of Comparative and Physiological Psychology, 55, 9–13.CrossRefGoogle Scholar
Berger, H. (1929). Ueber das Elektroenkephalogramm des Menschen. Archiv fuer Psychiatrie und Nervenkrankheiten, 87, 527–570. [Reprinted in Porges, S. W., & Coles, M. G. H. (1976). Psychophysiology. Stroudsburg, PA: Dowden, Hutchinson & Ross.]CrossRefGoogle Scholar
Brackbill, Y., Lintz, L. M., & Fitzgerald, H. E. (1968). Differences in the autonomic and somatic conditioning of infants. Psychosomatic Medicine, 30, 193–201.CrossRefGoogle ScholarPubMed
Coles, M. G. H., Donchin, E., & Porges, S. W. (1986). (Eds.). Psychophysiology: Systems, processes, and applications. New York: Guilford.Google Scholar
Fere, C. (1888). Note on changes in electrical resistance under the effect of sensory stimulation and emotion. Comptes Rendus des Seances de la Societe de Biologie, 5, 217–219. [Reprinted in Porges, S. W., & Coles, M. G. H. (1976). Psychophysiology. Stroudsburg, PA: Dowden, Hutchinson & Ross.]Google Scholar
Graham, F. K., Clifton, R. K., & Hatton, H. M. (1968). Habituation of heart rate response to repeated auditory stimulation during the first five days of life. Child Development, 39, 35–52.CrossRefGoogle ScholarPubMed
Hon, E. H., & Lee, S. T. (1963). Electronic evaluation of the fetal heart rate. VIII. Patterns preceding fetal death, further observation. American Journal of Obstetric Gynecology, 87, 814–826.Google Scholar
Pavlov, I. P. (1927). Conditioned Reflexes. London: Oxford University Press.Google Scholar
Peterson, F., & Jung, C. G. (1907). Psychophysical investigations with the galvanometer and pneuomograph in normal and insane individuals. Brain, 30, 153–218.CrossRefGoogle Scholar
Porges, S. W. (2007a). The Polyvagal Perspective. Biological Psychology. 74, 116–143.CrossRefGoogle Scholar
Porges, S. W. (2007b). A phylogenetic journey through the vagus and ambiguous Xth cranial nerve: A commentary on contemporary heart rate variability research. Biological Psychology. 74, 301–307.CrossRefGoogle Scholar
Porges, S. W., Arnold, W. R., & Forbes, E. J. (1973). Heart rate variability: An index of attentional responsivity in human newborns. Developmental Psychology, 8, 85–92.CrossRefGoogle Scholar
Porges, S. W., & Coles, M. G. H. (1976). Psychophysiology. Stroudsburg, PA: Dowden, Hutchinson & Ross.Google Scholar
Porges, S. W., & Raskin, D. C. (1969). Respiratory and heart rate components of attention. Journal of Experimental Psychology, 81, 497–503.CrossRefGoogle Scholar
Razran, G. (1961). The observable unconscious and the inferable conscious in current Soviet psychophysiology: Interoceptive conditioning, semantic conditioning, and the orienting reflex. Psychological Review, 68, 81–147.CrossRefGoogle ScholarPubMed
Tarchanoff, J. (1890). Galvanic phenomena in the human skin during stimulation of the sensory organs and during various forms of mental activity. Pfluger's Archiv fur die Gesamte Physiologie des Menschen und der Tiere, 46, 46–55. [Reprinted in Porges, S. W., & Coles, M. G. H. (1976). Psychophysiology. Stroudsburg, PA: Dowden, Hutchinson & Ross.]CrossRefGoogle Scholar
Yeh, S. Y., Forsythe, A., & Hon, E. H. (1973). Quantification of fetal heart beat-to-beat interval differences. Obstetrics and Gynecology, 41, 355–363.Google ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×