Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 4
  • Print publication year: 2006
  • Online publication date: August 2009

9 - Placental mechanisms and developmental origins of health and disease



The placenta plays a unique role in supporting the fetal allograft throughout gestation, protecting against immune rejection whilst also serving to supply oxygen and nutrients to, and remove carbon dioxide and waste products from, the fetus. As the nutrient interface between mother and fetus, the placenta may passively or actively transfer nutrients to the fetus or metabolise them en route. In addition the placenta produces a variety of peptide and steroid hormones that affect placental, maternal and fetal metabolism and development. The developmental origins of health and adult disease hypothesis proposes that alterations in fetal development, or adaptations of the fetus to alterations in the normal amount or pattern of substrate supply across the placenta, lead somehow to cardiovascular and metabolic disease in adult life. There is now abundant evidence both from human epidemiological studies and from animal studies that maternal nutrition may ‘programme’ the offspring for adult disease. This effect may be direct but it is more likely to be mediated in some manner by placental structure and/or function regulating the amount or composition of nutrients transferred. Does the placenta therefore play an active or a passive role in programming? Reduced fetal and placental weights are both associated with fetal programming. However, it is argued that, rather than reduced placental weight (and function) being linked to reduced fetal weight in a cause-and-effect relationship, reduced weight(s) might be a surrogate marker for an adverse intrauterine experience.

Related content

Powered by UNSILO
Adams, R. H., Porras, A., Alonso, al. (2000). Essential role of p38alpha MAP kinase in placental but not embryonic cardiovascular development. Mol. Cell, 6, 109–16.
Adelman, D. M., Gertsenstein, M., Nagy, A., Simon, M. C. and Maltepe, E. (2000). Placental cell fates are regulated in vivo by HIF-mediated hypoxia responses. Genes Dev., 14, 3191–203.
Ahmed, A. W. M. and Khaliq, A. (1997). J. Soc. Gynecol. Investig., 4, A663.
Alfaidy, N., Gupta, S., DeMarco, C., Caniggia, I. and Challis, J. R. (2002). Oxygen regulation of placental 11 beta-hydroxysteroid dehydrogenase 2: physiological and pathological implications. J. Clin. Endocrinol. Metab., 87, 4797–805.
Ayuk, P. T., Theophanous, D., Souza, S. W., Sibley, C. P. and Glazier, J. D. (2002). L-arginine transport by the microvillous plasma membrane of the syncytiotrophoblast from human placenta in relation to nitric oxide production: effects of gestation, preeclampsia, and intrauterine growth restriction. J. Clin. Endocrinol. Metab., 87, 747–51.
Barak, Y., Nelson, M. C., Ong, E. al. (1999). PPAR gamma is required for placental, cardiac, and adipose tissue development. Mol. Cell, 4, 585–95.
Bartha, J. L., Romero-Carmona, R., Escobar-Llompart, M., Paloma-Castro, O. and Comino-Delgado, R. (2003). Human chorionic gonadotropin and vascular endothelial growth factor in normal and complicated pregnancies. Obstet. Gynecol., 102, 995–9.
Benirschke, K. and Kaufmann, P. (2000). Pathology of the Human Placenta. New York, NY: Springer.
Brosens, I. A., Robertson, W. B. and Dixon, H. G. (1970). The role of the spiral arteries in the pathogenesis of pre-eclampsia. J. Pathol., 101, Pⅵ.
Burton, G. J., Hempstock, J. and Jauniaux, E. (2001). Nutrition of the human fetus during the first trimester: a review. Placenta, 22 (Suppl. A) S70–7.
Cetin, I. (2003). Placental transport of amino acids in normal and growth-restricted pregnancies. Eur. J. Obstet. Gynecol. Reprod. Biol., 110 (Suppl. 1), S50–4.
Challis, J. R., Sloboda, D. M., Alfaidy, al. (2002). Prostaglandins and mechanisms of preterm birth. Reproduction, 124, 1–17.
Charnock-Jones, D. S., Kaufmann, P. and Mayhew, T. M. (2004). Aspects of human fetoplacental vasculogenesis and angiogenesis. I. Molecular regulation. Placenta, 25, 103–13.
Constancia, M., Hemberger, M., Hughes, J., et al. (2002). Placental-specific IGF-II is a major modulator of placental and fetal growth. Nature, 417, 945–8.
Cooper, J. C., Sharkey, A. M., Charnock-Jones, D. S., Palmer, C. R. and Smith, S. K. (1996).VEGF mRNA levels in placentae from pregnancies complicated by pre-eclampsia. Br. J. Obstet. Gynaecol., 103, 1191–6.
Cramer, S., Beveridge, M., Kilberg, M. and Novak, D. (2002). Physiological importance of system A-mediated amino acid transport to rat fetal development. Am. J. Physiol. Cell Physiol., 282, C153–60.
Dao, D., Frank, D., Qian, al. (1998). IMPT1, an imprinted gene similar to polyspecific transporter and multi-drug resistance genes. Hum. Mol. Genet., 7, 597–608.
Fernandez-Twinn, D. S., Ozanne, S. E., Ekizoglou, al. (2003). The maternal endocrine environment in the low-protein model of intra-uterine growth restriction. Br. J. Nutr., 90, 815–22.
Genbacev, O., Joslin, R., Damsky, C. H., Polliotti, B. M. and Fisher, S. J. (1996). Hypoxia alters early gestation human cytotrophoblast differentiation/invasion in vitro and models the placental defects that occur in preeclampsia. J. Clin. Invest., 97, 540–50.
Genbacev, O., Zhou, Y., Ludlow, J. W. and Fisher, S. J. (1997). Regulation of human placental development by oxygen tension. Science, 277, 1669–72.
Giugliano, D., Ceriello, A. and Paolisso, G. (1996). Oxidative stress and diabetic vascular complications. Diabetes Care, 19, 257–67.
Godfrey, K. M. (1998). Maternal regulation of fetal development and health in adult life. Eur. J. Obstet. Gynecol. Reprod. Biol., 78, 141–50.
Gratton, R. J., Asano, H. and Han, V. K. (2002). The regional expression of insulin-like growth factor II (IGF-II) and insulin-like growth factor binding protein-1 (IGFBP-1) in the placentae of women with pre-eclampsia. Placenta, 23, 303–10.
Hahn, T., Barth, S., Graf, al. (1999). Placental glucose transporter expression is regulated by glucocorticoids. J. Clin. Endocrinol. Metab., 84, 1445–52.
Harrington, K. F., Campbell, S., Bewley, S. and Bower, S. (1991). Doppler velocimetry studies of the uterine artery in the early prediction of pre-eclampsia and intra-uterine growth retardation. Eur. J. Obstet. Gynecol. Reprod. Biol., 42 (Suppl.) S14–20.
Hauguel-de Mouzon, S. and Shafrir, E. (2001). Carbohydrate and fat metabolism and related hormonal regulation in normal and diabetic placenta. Placenta, 22, 619–27.
Illsley, N. P. (2000).Placental glucose transport in diabetic pregnancy. Clin. Obstet. Gynecol., 43, 116–26.
Irwin, J. C., Suen, L. F., Martina, N. A., Mark, S. P. and Giudice, L. C. (1999). Role of the IGF system in trophoblast invasion and pre-eclampsia. Hum. Reprod., 14 (Suppl. 2), 90–6.
Jansson, T. and Powell, T. L. (2000). Placental nutrient transfer and fetal growth. Nutrition, 16, 500–2.
Jansson, T., Scholtbach, V. and Powell, T. L. (1998). Placental transport of leucine and lysine is reduced in intrauterine growth restriction. Pediatr. Res., 44, 532–7.
Jansson, T., Wennergren, M. and Powell, T. L. (1999). Placental glucose transport and GLUT 1 expression in insulin-dependent diabetes. Am. J. Obstet. Gynecol., 180, 163–8.
Jansson, T., Ekstrand, Y., Wennergren, M. and Powell, T. L. (2001). Placental glucose transport in gestational diabetes mellitus. Am. J. Obstet. Gynecol., 184, 111–16.
Jansson, T., Ekstrand, Y., Bjorn, C., Wennergren, M. and Powell, T. L. (2002). Alterations in the activity of placental amino acid transporters in pregnancies complicated by diabetes. Diabetes, 51, 2214–19.
Jansson, N., Greenwood, S. L., Johansson, B. R., Powell, T. L. and Jansson, T. (2003). Leptin stimulates the activity of the system A amino acid transporter in human placental villous fragments. J. Clin. Endocrinol. Metab., 88, 1205–11.
Jauniaux, E. (1996). Intervillous circulation in the first trimester: the phantom of the color Doppler obstetric opera. Ultrasound Obstet. Gynecol., 8, 73–6.
Jauniaux, E., Watson, A. L., Hempstock, J., Bao, Y. P., Skepper, J. N. and Burton, G. J. (2000). Onset of maternal arterial blood flow and placental oxidative stress: a possible factor in human early pregnancy failure. Am. J. Pathol., 157, 2111–22.
Jauniaux, E., Greenwold, N., Hempstock, J. and Burton, G. J. (2003). Comparison of ultrasonographic and Doppler mapping of the intervillous circulation in normal and abnormal early pregnancies. Fertil. Steril., 79, 100–6.
Kaminsky, S., Sibley, C. P., Maresh, M., Thomas, C. R. and Souza, S. W. (1991a). The effects of diabetes on placental lipase activity in the rat and human. Pediatr. Res., 30, 541–3.
Kaminsky, S., Souza, S. W., Massey, R. F., Smart, J. L. and Sibley, C. P. (1991b). Effects of maternal undernutrition and uterine artery ligation on placental lipase activities in the rat. Biol. Neonate, 60, 201–6.
Kaufmann, P., Mayhew, T. M. and Charnock-Jones, D. S. (2004). Aspects of human fetoplacental vasculogenesis and angiogenesis. II. Changes during normal pregnancy. Placenta, 25, 114–26.
Kingdom, J. C. and Kaufmann, P. (1997). Oxygen and placental villous development: origins of fetal hypoxia. Placenta, 18, 613–21; discussion 623–6.
Kossenjans, W., Eis, A., Sahay, R., Brockman, D. and Myatt, L. (2000). Role of peroxynitrite in altered fetal–placental vascular reactivity in diabetes or preeclampsia. Am. J. Physiol. Heart. Circ. Physiol., 278, H1311–19.
Krozowski, Z., MaGuire, J. A., Stein-Oakley, A. N., Dowling, J., Smith, R. E. and Andrews, R. K. (1995). Immunohistochemical localization of the 11 beta-hydroxysteroid dehydrogenase type II enzyme in human kidney and placenta. J. Clin. Endocrinol. Metab., 80, 2203–9.
Laatikainen, T., Virtanen, T., Kaaja, R. and Salminen-Lappalainen, K. (1991). Corticotropin-releasing hormone in maternal and cord plasma in pre-eclampsia. Eur. J. Obstet. Gynecol. Reprod. Biol., 39, 19–24.
Lepercq, J., Guerre-Millo, M., Andre, J., Cauzac, M. and Hauguel-de Mouzon, S. (2003). Leptin: a potential marker of placental insufficiency. Gynecol. Obstet. Invest., 55, 151–5.
Lindsay, R. S., Lindsay, R. M., Waddell, B. J. and Seckl, J. R. (1996). Prenatal glucocorticoid exposure leads to offspring hyperglycaemia in the rat: studies with the 11 beta-hydroxysteroid dehydrogenase inhibitor carbenoxolone. Diabetologia, 39, 1299–305.
Lyall, F., Gibson, J. L., Greer, I. A., Brockman, D. E., Eis, A. L. and Myatt, L. (1998). Increased nitrotyrosine in the diabetic placenta: evidence for oxidative stress. Diabetes Care, 21, 1753–8.
Mahendran, D., Donnai, P., Glazier, J. D., Souza, S. W., Boyd, R. D. and Sibley, C. P. (1993). Amino acid (system A) transporter activity in microvillous membrane vesicles from the placentas of appropriate and small for gestational age babies. Pediatr. Res., 34, 661–5.
McMullen, S., Osgerby, J. C., Thurston, L. al. (2004). Alterations in placental 11 beta-hydroxysteroid dehydrogenase (11 betaHSD) activities and fetal cortisol: cortisone ratios induced by nutritional restriction prior to conception and at defined stages of gestation in ewes. Reproduction, 127, 717–25.
Mizuno, Y., Sotomaru, Y., Katsuzawa, Y., et al. (2002). Asb4, Ata3, and Dcn are novel imprinted genes identified by high-throughput screening using RIKEN cDNA microarray. Biochem. Biophys. Res. Commun., 290, 1499–505.
Mudgett, J. S., Ding, J., Guh-Siesel, al. (2000) Essential role for p38alpha mitogen-activated protein kinase in placental angiogenesis. Proc. Natl. Acad. Sci. USA, 97, 10454–9.
Murphy, V. E. and Clifton, V. L. (2003). Alterations in human placental 11beta-hydroxysteroid dehydrogenase type 1 and 2 with gestational age and labour. Placenta, 24, 739–44.
Muttukrishna, S., Knight, P. G., Groome, N. P., Redman, C. W. and Ledger, W. L. (1997). Activin A and inhibin A as possible endocrine markers for pre-eclampsia. Lancet, 349, 1285–8.
Myatt, L. (2002) Role of placenta in preeclampsia. Endocrine, 19, 103–11.
Myatt, L., Rosenfield, R. B., Eis, A. L., Brockman, D. E., Greer, I. and Lyall, F. (1996). Nitrotyrosine residues in placenta. Evidence of peroxynitrite formation and action. Hypertension, 28, 488–93.
Nelson, D. M., Smith, S. D., Furesz, T. al. (2003). Hypoxia reduces expression and function of system A amino acid transporters in cultured term human trophoblasts. Am. J. Physiol. Cell Physiol., 284, C310–15.
Page, N. M., Woods, R. J., Gardiner, S. al. (2000). Excessive placental secretion of neurokinin B during the third trimester causes pre-eclampsia. Nature, 405, 797–800.
Pepe, G. J., Burch, M. G. and Albrecht, E. D. (2001). Localization and developmental regulation of 11beta-hydroxysteroid dehydrogenase-1 and -2 in the baboon syncytiotrophoblast. Endocrinology, 142, 68–80.
Rajakumar, A., Whitelock, K. A., Weissfeld, L. A., Daftary, A. R., Markovic, N. and Conrad, K. P. (2001). Selective overexpression of the hypoxia-inducible transcription factor, HIF-2alpha, in placentas from women with preeclampsia. Biol. Reprod., 64, 499–506.
Ranheim, T., Staff, A. C. and Henriksen, T. (2001). VEGF mRNA is unaltered in decidual and placental tissues in preeclampsia at delivery. Acta Obstet. Gynecol. Scand., 80, 93–8.
Regnanlt, T. R., Vrijer, B., Galan, H. al. (2003). The relationship between transplacental O2 diffusion and placental expression of PIGF, VEGF and their receptors in a placental insufficiency model of fetal growth restriction. J. Physiol., 550, 641–56.
Reik, W., Constancia, M., Fowden, al. (2003). Regulation of supply and demand for maternal nutrients in mammals by imprinted genes. J. Physiol., 547, 35–44.
Seckl, J. R., Cleasby, M. and Nyirenda, M. J. (2000). Glucocorticoids, 11beta-hydroxysteroid dehydrogenase, and fetal programming. Kidney Int., 57, 1412–17.
Sheppard, B. L. and Bonnar, J. (1976). The ultrastructure of the arterial supply of the human placenta in pregnancy complicated by fetal growth retardation. Br. J. Obstet. Gynaecol., 83, 948–59.
Shin, J. C., Lee, J. H., Yang, D. E., Moon, H. B., Rha, J. G. and Kim, S. P. (2003). Expression of insulin-like growth factor-II and insulin-like growth factor binding protein-1 in the placental basal plate from pre-eclamptic pregnancies. Int. J. Gynaecol. Obstet., 81, 273–80.
Shore, V. H., Wang, T. H., Wang, C. L., Torry, R. J., Caudle, M. R. and Torry, D. S. (1997). Vascular endothelial growth factor, placenta growth factor and their receptors in isolated human trophoblast. Placenta, 18, 657–65.
Sibley, C. P., Coan, P. M., Ferguson-Smith, A. al. (2004). Placental-specific insulin-like growth factor 2 (Igf2) regulates the diffusional exchange characteristics of the mouse placenta. Proc. Natl. Acad. Sci. USA, 101, 8204–8.
Sun, K., Yang, K. and Challis, J. R. (1998). Glucocorticoid actions and metabolism in pregnancy: implications for placental function and fetal cardiovascular activity. Placenta, 19, 353–60.
Vonnahme, K. A. and Ford, S. P. (2004). Differential expression of the vascular endothelial growth factor-receptor system in the gravid uterus of Yorkshire and Meishan pigs. Biol. Reprod., 71, 163–9.
Wallace, J., Bourke, D., Da Silva, P. and Aitken, R. (2001). Nutrient partitioning during adolescent pregnancy. Reproduction, 122, 347–57.
Wallace, J. M., Aitken, R. P., Milne, J. S. and Hay, W. W. (2004). Nutritionally mediated placental growth restriction in the growing adolescent: consequences for the fetus. Biol. Reprod., 71, 1055–62.
Wang, Q., Fuj, H. ii and Knipp, G. T. (2002). Expression of PPAR and RXR isoforms in the developing rat and human term placentas. Placenta, 23, 661–71.
Wang, Y., Walsh, S. W. and Kay, H. H. (1992). Placental lipid peroxides and thromboxane are increased and prostacyclin is decreased in women with preeclampsia. Am. J. Obstet. Gynecol., 167, 946–9.
Welberg, L. A., Seckl, J. R. and Holmes, M. C. (2000). Inhibition of 11beta-hydroxysteroid dehydrogenase, the foeto-placental barrier to maternal glucocorticoids, permanently programs amygdala GR mRNA expression and anxiety-like behaviour in the offspring. Eur. J. Neurosci., 12, 1047–54.
Zhang, E. G., Smith, S. K., Baker, P. N. and Charnock-Jones, D. S. (2001). The regulation and localization of angiopoietin-1, -2, and their receptor Tie2 in normal and pathologic human placentae. Mol. Med., 7, 624–35.
Zhou, Y., McMaster, M., Woo, al. (2002). Vascular endothelial growth factor ligands and receptors that regulate human cytotrophoblast survival are dysregulated in severe preeclampsia and hemolysis, elevated liver enzymes, and low platelets syndrome. Am. J. Pathol., 160, 1405–23.