Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-25T05:41:43.830Z Has data issue: false hasContentIssue false

6 - Experimental techniques for study of plastic deformation

Published online by Cambridge University Press:  05 June 2012

Shun-ichiro Karato
Affiliation:
Yale University, Connecticut
Get access

Summary

An understanding of the experimental techniques of study of plastic deformation is important not only for those who wish to conduct deformation experiments but also for those who would like to apply experimental data on plastic deformation for geological, geophysical and geochemical studies. There is a range of techniques that have been used and each of them has some advantages and limitations. This chapter provides a brief summary of the basic techniques used in experimental studies of plastic deformation. They include mechanical tests under high pressure and temperature using a standard tri-axial testing apparatus as well as large-strain torsion apparatus and some of the recently developed ultrahigh-pressure (> 10 GPa) deformation apparatus. Key issues in sample preparation and characterization are also reviewed including the control of the chemical environment.

Key words gas-medium deformation apparatus, solid-medium deformation apparatus, load cell, X-ray in-situ stress/strain measurement, constant stress (strain-rate) test, hardness test, stress-relaxation test, stress-dip test, compression (tension) test, torsion test.

Introduction

Experimental techniques of deformation studies in Earth sciences involve (1) the generation and characterization of Earth-like thermodynamic conditions (pressure, temperature, chemical environment), (2) the controlled generation of differential stress (or strain) and (3) the measurements of stress and strain. Therefore an experimental set-up usually consists of an environmental chamber (sample assembly) in which a desired thermodynamic environment (e.g., pressure, temperature, fugacity of water, fugacity of oxygen etc.) is established, and an actuator to generate differential stress, and some sensors to measure strain and/or stress, temperature and pressure (Fig. 6.1).

Type
Chapter
Information
Deformation of Earth Materials
An Introduction to the Rheology of Solid Earth
, pp. 99 - 113
Publisher: Cambridge University Press
Print publication year: 2008

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×