References
1.Regnier P, Friedlingstein P, Ciais P, Mackenzie FT, Gruber N, Janssens IA, et al. Anthropogenic perturbation of carbon fluxes from land to ocean. Nat Geosci. 2013;6:597–607.
2.Mackenzie FT, Lerman A, Andersson AJ. Past and present of sediment and carbon biogeochemical cycling models. Biogeosciences. 2004;1:11–32.
3.Whitman WB, Coleman DC, Wiebe WJ. Prokaryotes: the unseen majority. Proc Natl Acad Sci. 1998;95(12):6578–6583.
4.Parkes RJ, Cragg B, Roussel E, Webster G, Weightman A, Sass H. A review of prokaryotic populations and processes in sub-seafloor sediments, including biosphere:geosphere interactions. Mar Geol. 2014;352:409–425.
5.Kallmeyer J, Pockalny R, Adhikari RR, Smith DC, D’Hondt S. Global distribution of microbial abundance and biomass in subseafloor sediment. Proc Natl Acad Sci. 2012;109:16213–16216.
6.Edwards KJ, Becker K, Colwell F. The deep, dark energy biosphere: intraterrestrial life on Earth. Annu Rev Earth Planet Sci. 2012;40:551–568.
7.Edwards KJ, Wheat G, Sylvan JB. Under the sea: microbial life in volcanic oceanic crust. Nat Rev Microbiol. 2011;9:703–712.
8.Orcutt BN, Sylvan JB, Knab NJ, Edwards KJ. Microbial ecology of the dark ocean above, at, and below the seafloor. Microbiol Molec Biol Rev. 2011;75:361–422.
9.McMahon S, Parnell J. Weighing the deep continental biosphere. FEMS Microbiol Ecol. 2014;87:113–120.
10.Bar-on Y, Phillips R, Milo R. The biomass distribution on Earth. Proc Natl Acad Sci. 2018;115:6506–6511.
11.Chapelle FH, Zelibor Jr. JL, Jay Grimes D, Knobel LL. Bacteria in deep coastal plain sediments of Maryland: a possible source of CO2 to groundwater. Water Resources Res. 1987;23:1625–1632.
12.Pedersen K, Ekendahl S. Distribution and activity of bacteria in deep granitic groundwaters of Southeastern Sweden. Microb Ecol. 1990;20:37–52.
13.Stevens TO, McKinley JP. Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 1995;270:450–455.
14.Parkes RJ, Cragg BA, Bale SJ, Getliff JM, Goodman K, Rochelle PA, et al. Deep bacterial biosphere in Pacific Ocean sediments. Nature. 1994;371:410–413.
15.Gold T. The deep, hot biosphere. Proc Natl Acad Sci. 1992;89(13):6045–6049.
16.Balkwill DL. Numbers, diversity, and morphological charateristics of aerobic, chemoheterotrophic bacteria in deep subsurface sediments from a site in South Carolina. Geomicrobiol J. 1989;7:33–52.
17.Hoehler TM, Jørgensen BB. Micorbial life under extreme energy limitation. Nat Rev Microbiol. 2013;11:83–94.
18.Lever MA, Rogers KL, Lloyd KG, Overmann J, Schink B, Thauer RK, et al. Life under extreme energy limitation: a synthesis of laboratory- and field-based investigations. FEMS Microbiol Rev. 2015;39:688–728.
19.D’Hondt S, Inagaki F, Zarikian CA, Abrams LJ, Dubois N, Engelhardt T, et al. Presence of oxygen and aerobic communities from sea floor to basement in deep-sea sediments. Nat Geosci. 2015;8:299–304.
20.Jørgensen BB, Marshall IPG. Slow microbial life in the seabed. Annu Rev Marine Sci. 2016;8:311–332.
21.LaRowe DE, Burwicz EB, Arndt S, Dale AW, Amend JP. The temperature and volume of global marine sediments. Geology. 2017;45:275–278.
22.Magnabosco C, Lin L-H, Dong H, Bomberg M, Ghiorse W, Stan-Lotter H, et al. The biomass and biodiversity of the continental subsurface. Nat Geosci. 2018;11:707–717.
23.Cogley JG. Continental margins and the extent and number of the continents. Rev Geophys Space Phys. 1984;22:101–122.
24.Anderson BW, Zoback M, Hickman S, Newmark R. Permeability versus depth in the upper oceanic crust: In situ measurements in DSDP Hole 504B, eastern equatorial Pacific. J Geophys Res. 1985;90:3659–3669.
25.Becker K. Measurements of the permeability of the sheeted dikes in Hole 504B, ODP Leg 111. In: Becker K et al. eds. Proceedings of the Ocean Drilling Program Science Results. College Station, TX: Ocean Drilling Program, 1989, pp. 317–325.
26.Becker K, Langseth M, Von Herzen RP, Anderson R. Deep crustal geothermal measurements, Hole 504B, Costa Rica Rift. J Geophys Res. 1983;88:3447–3457.
27.Hickman SH, Langseth M, Svitek. In situ permeability and pore-pressure measurements near the Mid-Atalntic Ridge, Deep Sea Drilling Project Hole 395A. In: Hyndman RD, Salisbury MH, eds. Initial Reports of the Deep Sea Drilling Project. Washington, DC: US Goverment Printing Office, 1984, pp. 699–708.
28.Becker K. Measurements of the permeability of the upper oceanic crust at Hole 395A, ODP Leg 109. In: Detrick R, Honnorez J, Bryan WB, Juteau T, eds. Proceedings of the Ocean Drilling Program Science Results. College Station, TX: Ocean Drilling Program, 1990, pp. 213–222.
29.Winslow DM, Fisher AT, Becker K. Characterizing borehole fluid flow and formation permeability in the ocean crust using linked analytic models and Markov Chain Monte Carlo analysis. Geochem Geophys Geosyst. 2013;14:3857–3874.
30.Alt JC. Alteration of the upper oceanic crust: mineralogy, chemistry, and processes. In: Davis EE, Elderfield H, eds. Hydrogeology of the Oceanic Lithosphere. Cambridge: Cambridge University Press, 2004, pp. 456–488.
31.Teagle DAH, Wilson DS. Leg 206 synthesis: initiation of drilling an intact section of upper oceanic crust formed at a superfast spreading rate at Site 1256 in the eastern equatorial Pacific. In: Wilson DS, Teagle DAH, Acton GD, Vanko DA, eds. Proceedings of the Ocean Drilling Program, Initial Reports. College Station, TX, USA: Ocean Drilling Program, 2007, pp. 1–15.
32.Fisher AT, Alt JC, Bach W. Hydrogeologic properties, processes and alteration in the igneous ocean crust. In: Stein R, Blackman D, Inagaki F, Larsen H-C, eds. Earth and Life Processes Discovered from Subseafloor Environment – A Decade of Science Achieved by the Integrated Ocean Drilling Program (IODP). Amsterdam/New York: Elsevier, 2014, pp. 507–551.
33.Jakosky B, Shock EL. The biological potential of Mars, the early Earth, and Europa. J Geophys Res Lett Planets. 1998;103(E8):19359–19364.
34.Michalski JR, Onstott TC, Mojzsis SJ, Mustard J, Chan QHS, Niles PB, et al. The Martian subsurface as a potential window into the origin of life. Nat Geosci. 2018;11:21–26.
35.Vance S, Harnmeijer J, Kimura J, Hussmann H, Demartin B, Brown JM. Hydrothermal systems in small ocean planets. Astrobiology. 2007;7:987–1005.
36.Bradley JA, Amend JP, LaRowe DE. Survival of the fewest: microbial dormancy and maintenance in marine sediments through deep time. Geobiology. 2019;17:43–59.
37.DePaolo DJ. Sustainable carbon emissions: the geologic perspective. MRS Energy Sustain. 2015;2:E9.
38.van Bodegom P. Micorbial maintenance: a critical review of its quantification. Microb Ecol. 2007;5:513–523.
39.LaRowe DE, Amend JP. Catabolic rates, population sizes and doubling/replacement times of microorganisms in the natural settings. Am J Sci. 2015;315:167–203.
40.Jørgensen BB. Shrinking majority of the deep biosphere. Proc Natl Acad Sci. 2012;109:15976–15977.
41.LaRowe DE, Amend JP. Power limits for microbial life. Front Extr Microbiol. 2015;6:718.
42.Shock EL, Holland ME. Quantitative habitability. Astrobiology. 2007;7:839–851.
43.Morita RY. Bacteria in Oligotrophic Environments: Starvation–Survival Lifestyle. New York: Chapman & Hall, 1997.
44.D’Hondt S, Spivack AJ, Pockalny R, Ferdelman TG, Fischer JP, Kallmeyer J, et al. Subseafloor sedimentary life in the South Pacific Gyre. Proc Natl Acad Sci. 2009;106:11651–11656.
45.Jørgensen BB, Boetius A. Feast and famine – microbial life in the deep-sea bed. Nat Rev Microbiol. 2007;5:770–781.
46.Røy H, Kallmeyer J, Adhikari RR, Pockalny R, Jørgensen BB, D’Hondt S. Aerobic microbial respiration in 86-million-year-old deep-sea red clay. Science. 2012;336:922–925.
47.Morono Y, Terada T, Nishizawa M, Ito M, Hillion F, Takahata N, et al. Carbon and nitrogen assimilation in deep subseafloor micorbial cells. Proc Natl Acad Sci. 2011;108:18295–18300.
48.McCollom TM, Amend JP. A thermodynamic assessment of energy requirements for biomass synthesis by chemolithoautotrophic micro-organisms in oxic and anoxic environments. Geobiology. 2005;3:135–144.
49.LaRowe DE, Amend JP. The energetics of anabolism in natural settings. ISME J. 2016;10:1285–1295.
50.LaRowe DE, Van Cappellen P. Degradation of natural organic matter: a thermodynamic analysis. Geochim Cosmochim Acta. 2011;75:2030–2042.
51.Heijnen JJ, van Dijken JP. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms. Biotech Bioeng. 1992;39:833–858.
52.Russell JB, Cook GM. Energetics of bacterial growth: balance of anabolic and catabolic reactions. Microbiol Rev. 1995;59:48–62.
53.Stouthamer AH. A theoretical study on the amount of ATP required for synthesis of micorbial cell material. Antonie van Leeuwenhoek. 1973;39:545–565.
54.LaRowe DE, Helgeson HC. Biomolecules in hydrothermal systems: calculation of the standard molal thermodynamic properties of nucleic-acid bases, nucleosides, and nucleotides at elevated temperatures and pressures. Geochim Cosmochim Acta. 2006;70:4680–4724.
55.LaRowe DE, Helgeson HC. The energetics of metabolism in hydrothermal systems: calculation of the standard molal thermodynamic properties of magnesium-complexed adenosine nucleotides and NAD and NADP at elevated temperature and pressures. Thermochim Acta. 2006;448:82–106.
56.LaRowe DE, Helgeson HC. Quantifying the energetics of metabolic reactions in diverse biogeochemical systems: electron flow and ATP synthesis. Geobiology. 2007;5:153–168.
57.Lennon JT, Jones SE. Micorbial seed banks: the ecological and evolutionary implication of dormancy. Nat Rev Microbiol. 2011;9:119–130.
58.Nicholson WL, Munakata N, Horneck G, Melosh HJ, Setlow P. Resistence of Bacillus endospores to extreme terrestrial and extraterrestrial environments. Microbiol Mol Biol Rev. 2000;64:548–572.
59.Kaprelyants AS, Gottschal JC, Kell DB. Dormancy in non-sporulating bacteria. FEMS Microbiol Rev. 1993;104:271–286.
60.Stolpovsky K, Fetzer I, Van Cappellen P, Thullner M. Influence of dormancy on microbial competition under intermittent substrate supply: insights from model simulations. FEMS Microbiol Ecol. 2016;92:fiw071.
61.Stolpovsky K, Martinez-Lavanchy P, Heipieper HJ, Van Cappellen P, Thullner M. Incorporating dormancy in dynamic microbial community models. Ecolog Model. 2011;222:3092–3102.
62.Johnson SS, Hebsgaard MB, Christensen TR, Mastepanov M, Nielsen R, Munch K, et al. Ancient bacteria show evidence of DNA repair. Proc Natl Acad Sci. 2007;104:14401–14405.
63.Locey KJ. Synthesizing traditional biogeography with micorbial ecology: the importance of dormancy. J Biogeogr. 2010;37:1835–1841.
64.Price PB, Sowers T. Temperature dependence of metabolic rates for microbial growth, maintenance, and survival. Proc Natl Acad Sci. 2004;101:4631–4636.
65.Kondepudi D, Prigogine I. Modern Thermodynamics: From Heat Engines to Dissipative Structures. New York: John Wiley & Sons, 1998.
66.Anderson GM, Crerar DA. Thermodynamics in Geochemistry: The Equilibrium Model. Oxford: Oxford University Press, 1993.
67.Stumm W, Morgan JJ. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 3rd edn. New York: John Wiley & Sons, Inc., 1996.
68.Garrels RM, Christ CL. Solutions, Minerals, and Equilibria. New York: Harper & Row, 1965.
69.Prigogine I, Defay R. Chemical Thermodynamics. London: Longmans, Green & Co., 1954.
70.de Donder T, Van Rysselberghe P. Affinity. Menlo Park, CA: Stanford University Press, 1936.
71.de Donder T. Lecons de Thermodynamique et de Chimie-Physique. Paris: Gauthiers-Villars, 1920.
72.van’t Hoff JH. Études de Dynamique Chimique. Amsterdam: Frederik Muller & Co., 1884.
73.Aagard P, Helgeson HC. Thermodynamic and kinetic constraints on reaction rates among minerals and aqueous solutions. I. Theoretical considerations. Amer J Sci. 1982;282:237–285.
74.Jin Q, Bethke CM. Kinetics of electron transfer through the respiratory chain. Biophys J. 2002;83:1797–1808.
75.Jin Q, Bethke CM. A new rate law describing microbial respiration. Appl Environ Microbiol. 2003;69:2340–2348.
76.Jin Q, Bethke CM. Predicting the rate of microbial respiration in geochemical environments. Geochim Cosmochim Acta. 2005;69:1133–1143.
77.Jin Q, Bethke CM. The thermodynamics and kinetics of microbial metabolism. Am J Sci. 2007;307:643–677.
78.LaRowe DE, Dale AW, Amend JP, Van Cappellen P. Thermodynamic limitations on microbially catalyzed reaction rates. Geochim Cosmochim Acta. 2012;90:96–109.
79.Tanger JC, Helgeson HC. Calculation of the thermodynamic and transport properties of aqueous species at high pressures and temperatures – revised equations of state for the standard partial molal properties of ions and electrolytes. Am J Sci. 1988;288:19–98.
80.Johnson JW, Oelkers EH, Helgeson HC. SUPCRT92 – a software package for calculating the standard molal thermodynamic properties of minerals, gases, aqueous species, and reactions from 1 bar to 5000 bar and 0°C to 1000°C. Comput Geosci. 1992;18:899–947.
81.Shock EL, Oelkers E, Johnson J, Sverjensky D, Helgeson HC. Calculation of the thermodynamic properties of aqueous species at high pressures and temperatures – effective electrostatic radii, dissociation constants and standard partial molal properties to 1000°C and 5 kbar. J Chem Soc Faraday Trans. 1992;88:803–826.
82.Helgeson HC, Kirkham DH. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 1. Summary of thermodynamic–electrostatic properties of the solvent. Am J Sci. 1974;274:1089–1198.
83.Helgeson HC, Kirkham DH. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 2. Debye–Hückel parameters for activity coefficients and relative partial molal properties. Am J Sci. 1974;274:1199–1261.
84.Helgeson HC, Kirkham DH. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 3. Equation of state for aqueous species at infinite dilution. Am J Sci. 1976;276:97–240.
85.Helgeson HC, Kirkham DH, Flowers GC. Theoretical prediction of thermodynamic behavior of aqueous electrolytes at high pressures and temperatures: 4. Calculation of activity coefficients, osmotic coefficients, and apparent molal and standard and relative partial molal properties to 600°C and 5 kb. Am J Sci. 1981;281:1249–1516.
86.Helgeson HC, Delany JM, Nesbitt HW, Bird DK. Summary and critique of the thermodynamic properties of rock-forming minerals. Am J Sci. 1978;278:1–229.
87.Sverjensky D, Shock EL, Helgeson HC. Prediction of the thermodynamic properties of aqueous metal complexes to 1000°C and 5 kb. Geochim Cosmochim Acta. 1997;61:1359–1412.
88.Dick JM. Calculation of the relative metastabilities of proteins using the CHNOSZ software package. Geochem Trans. 2008;9:10.
89.Amend JP, Shock EL. Energetics of overall metabolic reactions of thermophilic and hyperthermophilic Archaea and Bacteria. FEMS Microbiol Rev. 2001;25:175–243.
90.Canovas III PA, Shock EL. Geobiochemistry of metabolism: standard state thermodynamic properties of the citric acid cycle. Geochim Cosmochim Acta. 2016;195:293–322.
91.Wadsö I, Gutfreund H, Privalov P, Edsall JT, Jencks WP, Armstrong GT, et al. Recommendations for measurement and presentation of biochemical equilibrium data. J Biol Chem. 1976;251:6879–6885.
92.Thauer RK, Jungermann K, Decker K. Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev. 1977;41:100–180.
93.Amend JP, Teske A. Expanding frontiers in deep subsurface microbiology. Palaeogeogr Palaeoclimatol Palaeoecol. 2005;219:131–155.
94.Lewis GN, Randall M. Thermodynamics and the Free Energy of Chemical Substances. New York: McGraw Hill, 1923.
95.Pytkowicz RM. Activity Coefficients in Electrolyte Solutions. Boca Raton, FL: CRC Press, 1979.
96.Helgeson HC. Thermodynamics of hydrothermal systems at elevated temperatures and pressures. Am J Sci. 1969;267:729–804.
97.Appelo CAJ, Parkhurst DL, Post VEA. Equations for calculating hydrogeochemical reactions of minerals and gases such as CO2 at high pressures and temperatures. Geochim Cosmochim Acta. 2014;125:49–67.
98.Rowe AR, Yoshimura M, LaRowe DE, Bird LJ, Amend JP, Hashimoto K, et al. In situ electrochemical enrichment and isolation of a magnetite-reducing bacterium from a high pH serpentinizing spring. Environ Microbiol. 2017;19:2272–2285.
99.Amend JP, McCollom TM, Hentscher M, Bach W. Catabolic and anabolic energy for chemolithoautotrophs in deep-sea hydrothermal systems hosted in different rock types. Geochim Cosmochim Acta. 2011;75:5736–5748.
100.McCollom TM. Geochemical constraints on sources of metabolic energy for chemolithoautotrophy in ultramafic-hosted deep-sea hydrothermal systems. Astrobiology. 2007;7:933–950.
101.Shock EL, Holland ME. Geochemical energy sources that support the subseafloor biosphere. The subseafloor biosphere at mid-ocean ridges. In: Wilcock WSD, DeLong EF, Kelley DS, Baross JA, Cary SC, eds. Geophysical Monograph 144. Washington, DC: American Geophysical Union, 2004, pp. 153–165.
102.McCollom TM, Shock EL. Geochemical constraints on chemolithoautotrophic metabolism by microorganisms in seafloor hydrothermal systems. Geochim Cosmochim Acta. 1997;61:4375–4391.
103.McCollom TM. Geochemical constraints on primary productivity in submarine hydrothermal vent plumes. Deep-Sea Res Part I Oceanogr Res Pap. 2000;47:85–101.
104.Houghton JL, Seyfried Jr. WE. An experimental and theoretical approach to determing linkages between geochemical variability and microbial biodiversity in seafloor hydrothermal chimneys. Geobiology. 2010;8:457–470.
105.Shock EL, McCollom TM, Schulte MD. Geochemical constraints on chemolithoautotrophic reactions in hydrothermal systems. Orig Life Evol Biosph. 1995;25:141–159.
106.LaRowe DE, Dale AW, Aguilera DR, L’Heureux I, Amend JP, Regnier P. Modeling microbial reaction rates in a submarine hydrothermal vent chimney wall. Geochim Cosmochim Acta. 2014;124:72–97.
107.Sylvan JB, Wankel SD, LaRowe DE, Charoenpong CN, Huber H, Moyer CL, et al. Evidence for micorbial mediation of subseafloor nitrogen redox processes at Loihi Seamount, Hawaii. Geochim Cosmochim Acta. 2017;198:131–150.
108.Reed DC, Breier JA, Jiang H, Anantharaman K, Klausmeier CA, Toner BM, et al. Predicting the response of the deep-ocean microbiome to geochemical perturbation by hydrothermal vents. ISME J. 2015;9:1857–1869.
109.Dahle H, Økland I, Thorseth IH, Pedersen RB, Steen IH. Energy landscapes shape micorbial communities in hydrothermal systems on the Arctic Mid-Ocean Ridge. ISME J. 2015;9:1593–1606.
110.Price RE, LaRowe DE, Italiano F, Savov I, Pichler T, Amend JP. Subsurface hydrothermal processes and the bioenergetics of chemolithoautotrophy at the shallow-sea vents off Panarea Island (Italy). Chem Geol. 2015;407–408:21–45.
111.Amend JP, Rogers KL, Shock EL, Gurrieri S, Inguaggiato S. Energetics of chemolithoautotrophy in the hydrothermal system of Vulcano Island, southern Italy. Geobiology. 2003;1:37–58.
112.Rogers KL, Amend JP. Energetics of potential heterotrophic metabolisms in the marine hydrothermal system of Vulcano Island, Italy. Geochim Cosmochim Acta. 2006;70:6180–6200.
113.Akerman NH, Price RE, Pichler T, Amend JP. Energy sources for chemolithotrophs in an arsenic- and iron-rich shallow-sea hydrothermal system. Geobiology. 2011;9:436–445.
114.Rogers KL, Amend JP, Gurrieri S. Temporal changes in fluid chemistry and energy profiles in the Vulcano island hydrothermal system. Astrobiology. 2007;7:905–932.
115.Rogers KL, Amend JP. Archaeal diversity and geochemical energy yields in a geothermal well on Vulcano Island, Italy. Geobiology. 2005;3:319–332.
116.Skoog A, Vlahos P, Rogers KL, Amend JP. Concentrations, distributions, and energy yields of dissolved neutral aldoses in a shallow hydrothermal vent system of Vulcano, Italy. Org Geochem. 2007;38:1416–1430.
117.Lu G-S, LaRowe DE, Gilhooly III WP, Druschel GK, Fike DA, Amend JP. Chemolithoautotrophic energetics in a shallow-sea hydrothermal system, Milos Island, Greece. Manuscript in preparation.
118.Inskeep W, Ackerman GG, Taylor WP, Kozubal M, Korf S, Macur RE. On the energetics of chemolithotrophy in nonequilibrium systems: case studies of geothermal springs in Yellowstone National Park. Geobiology. 2005;3:297–317.
119.Inskeep WP, McDermott TR. Geomicrobiology of acid–sulfate–chloride springs in Yellowstone National Park. In: Inskeep WP, McDermott TR, eds. Geothermal Biology and Geochemistry in Yellowstone National Park. Bozeman, MT: Montana State University Publications, 2005, pp. 143–162.
120.Shock EL, Holland M, Meyer-Dombard D, Amend JP, Osburn GR, Fischer TP. Quantifying inorganic sources of geochemical energy in hydrothermal ecosystems, Yellowstone National Park, USA. Geochim Cosmochim Acta. 2010;74:4005–4043.
121.Spear JR, Walker JJ, McCollom TM, Pace NR. Hydrogen and bioenergetics in the Yellowstone geothermal ecosystem. Proc Natl Acad Sci. 2005;102:2555–2560.
122.Vick TJ, Dodsworth JA, Costa KC, Shock EL, Hedlund BP. Microbiology and geochemistry of Little Hot Creek, a hot spring environment in the Long Valley Caldera. Geobiology. 2010;8:140–154.
123.Windman T, Zolotova N, Schwandner F, Shock EL. Formate as an energy source for microbial metabolism in chemosynthetic zones of hydrothermal ecosystems. Astrobiology. 2007;7:873–890.
124.Costa KC, Navarro JB, Shock EL, Zhang CL, Soukup D, Hedlund BP. Microbiology and geochemistry of great boiling and mud hot springs in the United States Great Basin. Extremophiles. 2009;13:447–459.
125.LaRowe DE, Dale AW, Regnier P. A thermodynamic analysis of the anaerobic oxidation of methane in marine sediments. Geobiology. 2008;6:436–449.
126.Teske A, Callaghan AV, LaRowe DE. Biosphere frontiers: deep life in the sedimented hydrothermal system of Guaymas Basin. Front Extr Microbiol. 2014;5:362.
127.LaRowe DE, Amend JP. Energetic constraints on life in marine deep sediments. In: Kallmeyer J, Wagner K, eds. Life in Extreme Environments: Microbial Life in the Deep Biosphere. Berlin: de Gruyter, 2014, pp. 279–302.
128.Wang G, Spivack AJ, D’Hondt S. Gibbs energies of reaction and microbial mutualism in anaerobic deep subseafloor sediments of ODP Site 1226. Geochim Cosmochim Acta. 2010;74:3938–3947.
129.Kiel Reese B, Zinke LA, Sobol MS, LaRowe DE, Orcutt BN, Zhang X, et al. Nitrogen cycling of active bacteria within oligotrophic sediment of the Mid-Atlantic Ridge Flank. Geomicrobiol J. 2018;35:468–483.
130.Glombitza C, Jaussi M, Røy H. Formate, acetate, and propionate as substrates for sulfate reduction in sub-arctic sediments of Southwest Greenland. Front Microbiol. 2015;6:846.
131.Beulig F, Røy H, Glombitza C, Jørgensen BB. Control on rate and pathway of anaerobic organic carbon degradation in the seabed. Proc Natl Acad Sci. 2018;155:367–372.
132.Schrum HN, Spivack AJ, Kastner M, D’Hondt S. Sulfate-reducing ammonium oxidation: a thermodynamically feasible metabolic pathway in subseafloor sediment. Geology. 2009;37:939–942.
133.Osburn MR, LaRowe DE, Momper L, Amend JP. Chemolithotrophy in the continental deep subsurface: Sanford Underground Research Facility (SURF), USA. Front Extr Microbiol. 2014;5:610.
134.Jin Q, Bethke CM. Cellular energy conservation and the rate of microbial sulfate reduction. Geology. 2009;37:1027–1030.
135.Kirk MF, Jin Q, Haller BR. Broad-scale evidence that pH influences the balance between microbial iron and sulfate reduction. Groundwater. 2015;54:406–413.
136.Canovas III PA, Hoehler TM, Shock EL. Geochemical bioenergetics during low-temperature serpentinization: an example from the Samail ophiolite, Sultanate of Oman. J Geophys Res Biogeosci. 2017;122:1821–1847.
137.Amend JP, Saltikov C, Lu G-S, Hernandez J. Micorbial arsenic metabolism and reaction energetics. Rev Mineral Geochem. 2014;79:391–433.
138.Edwards KJ, Bach W, McCollom TM. Geomicrobiology in oceanography: microbe–mineral interactions at and below the seafloor. Trends Microbiol. 2005;13:449–456.
139.Bach W, Edwards KJ. Iron and sulfide oxidation within the basaltic ocean crust: implications for chemolithoautotrophic microbial biomass production. Geochim Cosmochim Acta. 2003;67:3871–3887.
140.Cowen JP. The microbial biosphere of sediment-buried oceanic basement. Res Microbiol. 2004;155:497–506.
141.Boettger J, Lin H-T, Cowen JP, Hentscher M, Amend JP. Energy yields from chemolithotrophic metabolisms in igneous basement of the Juan de Fuca ridge flank system. 2013;337–338:11–19.
142.Shock EL. High-temperature life without photosynthesis as a model for Mars. J Geophys Res Planets. 1997;102:23687–23694.
143.Zolotov MY, Shock EL. Energy for biologic sulfate reduction in a hydrothermally formed ocean on Europa. J Geophys Res Planets. 2003;108:5022.
144.Waite JH, Glein CR, Perryman RS, Teolis BD, Magee BA, Miller G, et al. Cassini finds molecular hydrogen in the Enceladus plume: evidence for hydrothermal processes. Science. 2017;356:155–159.
145.Marlow J, LaRowe DE, Ehlman BL, Amend JP, Orphan V. The potential for biologically catalyzed anaerobic methane oxidation on ancient mars. Astrobiology. 2014;14:292–307.
146.LaRowe DE, Amend JP. The energetics of fermentation in natural settings. Geomicrobiology. 2019;36:492–505.
147.Lever MA. Acetogenesis in the energy-starved deep biosphere – a paradox? Frontiers in Microbiology. 2012;2:284.
148.Lever MA, Heuer VB, Morono Y, Masui N, Schmidt F, Alperin MJ, et al. Acetogensis in deep subseafloor sediments of the Juan de Fuca Ridge Flank: a synthesis of geochemical, thermodynamic, and gene-based evidence. Geomicrobiol J. 2010;27:183–211.
149.Lu G-S. Geomicrobiology in the Shallow-Sea Hydrothermal System at Milos Island, Greece. PhD thesis. Los Angeles, CA: University of Southern California, 2018.
150.Bethke CM, Sanford RA, Kirk MF, Jin Q, Flynn TM. The thermodynamic ladder in geomicrobiology. Am J Sci. 2011;311:183–210.
151.Claypool GE, Kaplan IR. The origin and distribution of methane in marine sediments. In: Kaplan IR, ed. Natural Gases in Marine Sediments. New York: Plenum Press, 1974, pp. 99–139.
152.Froelich PN, Klinkhammer GP, Bender ML, Luedtke NA, Heath GR, Cullen D, et al. Early oxidation of organic matter in pelagic sediments of the eastern equatorial Atlantic: suboxic diagenesis. Geochim Cosmochim Acta. 1979;43:1075–1090.
153.Stumm W, Morgan JJ. Aquatic Chemistry: Chemical Equilibria and Rates in Natural Waters. 3rd edn. New York: John Wiley & Sons, 1996.
154.Reeburgh WS. Methane consumption in Cariaco Trench waters and sediments. Earth Planet Sci Lett. 1976;28:337–344.
155.Broda E. Two kinds of lithotrophs missing in nature. Z Allg Mikrobiol. 1977;17:491–493.
156.LaRowe DE, Koch BP, Robador A, Witt M, Ksionzek K, Amend JP. Identification of organic compounds in ocean basement fluids. Org Geochem. 2017;113:124–127.
157.Hertkorn N, Harir M, Koch BP, Michalke B, Schmitt-Kopplin P. High-field NMR spectroscopy and FTICR mass spectrometry: poweerful discovery tools for the molecular level characterization of marine dissolved organic matter. Biogeosciences. 2013;10:1583–1624.
158.Ball GI, Aluwihare LI. CuO-oxidized dissolved organic matter (DOM) investigated with comprehensive two dimensional gas chromatography-time of flight-mass spectrometry (GC × GC-TOF-MS). Org Geochem. 2014;75:87–98.
159.Shah Walter SR, Jaekel U, Osterholz H, Fisher AT, Huber JA, Pearson A, et al. Microbial decomposition of marine dissolved organic matter in cool oceanic crust. Nat Geosci. 2018;11:334–339.
160.LaRowe DE, Dick JM. Calculation of the standard molal thermodynamic properties of crystalline proteins. Geochim Cosmochim Acta. 2012;80:70–91.
161.Dale AW, Regnier P, Van Cappellen P. Bioenergetic controls on anaerobic oxidation of methane (AOM) in coastal marine sediments: a theoretical analysis. Am J Sci. 2006;306:246–294.
162.Dale AW, Aguilera DR, Regnier P, Fossing H, Knab NJ, Jørgensen BB. Seasonal dynamics of the depth and rate of anaerobic oxidation of methane in Aarhus Bay (Denmark) sediments. J Mar Res. 2008;66:127–155.
163.Dale AW, Regnier P, Knab NJ, Jørgensen BB, Van Cappellen P. Anaerobic oxidation of methane (AOM) in marine sediments from the Skagerrak (Denmark): II. Reaction-transport modeling. Geochim Cosmochim Acta. 2008;72:2880–2894.
164.Dale AW, Sommer S, Haeckel M, Wallmann K, Linke P, Wegener G, et al. Pathways and regulation of carbon, sulfur and energy trasnfer in marine sediments overlying methane gas hydrates on the Opouawe Bank (New Zealand). Geochim Cosmochim Acta. 2010;74:5763–5784.
165.Dale AW, Van Cappellen P, Aguilera DR, Regnier P. Methane efflux from marine sediments in passive and active margins: estimations from bioenergetic reaction-transport simulations. Earth Planet Sci Lett. 2008;265:329–344.
166.Algar CK, Vallino JJ. Predicting microbial nitrate reduction pathways in coastal sediments. Aquatic Microbial Ecol. 2014;71:223–238.
167.André L, Pauwels H, Dictor M-C, Parmentier M, Azaroual M. Experiments and numerical modelling of microbially-catalysed denitrification reactions. Chem Geol. 2011;287:171–181.
168.Shock EL, Boyd ES. Principles of geobiochemistry. Elements. 2015;11:395–401.
169.St. Clair B. Kinetics, Thermodynamics and Habitability of Microbial Iron Redox Cycling. Phoenix, AZ: Arizona State Univesity, 2017.
170.Härtig C, Lohmayer R, Kolb S, Horn MA, Inskeep WP, Planer-Friedrich B. Chemolithotrophic growth of the aerobic hyperthermophilic bacterium Thermocrinus ruber OC 14/7/2 on monothioarsenate and arsenite. FEMS Microbiol Ecol. 2014;90:747–760.
171.Steen AD, Jørgensen BB, Lomstein BA. Abiotic racemization kinetics of amino acids in marine sediments. PLoS One. 2013;8:e71648.
172.Harder J. Species-independent maintenance energy and natural population sizes. FEMS Microbiol Ecol. 1997;23:39–44.
173.Schink B. Energetics of synthrophic cooperation in methanogenic degradation. Microbiol Mol Biol Rev. 1997;61(2):262–280.
174.Curtis GP. Comparison of approaches for simulating reactive solute transport involving organic degradation reactions by multiple terminal electron acceptors. Comp Geosci. 2003;29:319–329.
175.Hoehler TM. Biological energy requirements as quantitative boundary conditions for life in the subsurface. Geobiology. 2004;2:205–215.
176.Amend JP, LaRowe DE, McCollom TM, Shock EL. The energetics of organic synthesis inside and outside the cell. Phil Trans Royal Soc B. 2013;368:1–15.
177.Amend JP, Shock EL. Energetics of amino acid synthesis in hydrothermal ecosystems. Science. 1998;281:1659–1662.
178.Amend JP, Shock EL. Thermodynamics of amino acid synthesis in hydrothermal ecosystems on the early Earth. In: Goodfriend G, ed. Perspectives in Amino Acid and Protein Geochemistry. New York: Plenum, 2000, pp. 23–40.
179.Shock EL, Schulte MD. Organic synthesis during fluid mixing in hydrothermal systems. J Geophys Res Planets. 1998;103:28513–28527.
180.Shock EL, Canovas III PA. The potential for abiotic organic synthesis and biosynthesis at seafloor hydrothermal systems. Geofluids. 2010;10:161–192.
181.LaRowe DE, Regnier P. Thermodynamic potential for the abiotic synthesis of adenine, cytosine, guanine, thymine, uracil, ribose and deoxyribose in hydrothermal systems. Orig Life Evol Biosph. 2008;38:383–397.
182.Battley EH. An alternative method of calculating the heat of growth of Escherichia coli K-12 on succinic acid. Biotech Bioeng. 1991;38:480–492.
183.Amend JP, McCollom TM. Energetics of biomolecule synthesis on early Earth. In: Zaikowski L, Friedrich JM, Seidel SR, eds. Chemical Evolution II: From the Origins of Life to Modern Society. Washington, DC: American Chemical Society, 2009, pp. 63–94.