Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-t5pn6 Total loading time: 0 Render date: 2024-04-24T23:07:36.590Z Has data issue: false hasContentIssue false

6 - Dark energy and supernovae

Published online by Cambridge University Press:  05 July 2014

Pilar Ruiz-Lapuente
Affiliation:
University of Barcelona
Pilar Ruiz-Lapuente
Affiliation:
Universitat de Barcelona
Get access

Summary

Introduction

The use of SNe Ia as calibrated candles has led to a fundamental discovery: that the rate of the cosmic expansion of the universe is accelerating (Perlmutter et al., 1999; Riess et al., 1998). At present, the data gathered on the expansion rate do not disclose whether the acceleration is due to a component formally equivalent to the cosmological constant introduced by Einstein (1917), whether it is due to a scalar field or other component of the universe unaccounted for so far, or whether we are finding the effective behavior of a theory of a wider scope whose low energy limit slightly departs from general relativity. The presence of an energy component with negative pressure (still undistinguishable from the cosmological constant Λ) and the nature of this new component, commonly termed dark energy, is a major challenge in cosmology and in fundamental physics.

The bare Einstein's equations (without cosmological constant) for a universe with a Friedmann–Robertson–Walker (FRW) metric and dust-like matter imply a continuous deceleration of the expansion rate. However, a universe containing a fluid with an equation of state p = with index w − 1/3 overcomes the deceleration when the density of this fluid dominates over that of the dust-like matter. In this context, the cosmological constant, if it is positive and added to the equations, balances the deceleration by acting as a fluid with an equation of state p = −ρ.

Type
Chapter
Information
Dark Energy
Observational and Theoretical Approaches
, pp. 177 - 201
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aldering, G., Knop, R., and Nugent, P. (2000). Astron. J. 119, 210.CrossRef
Alnes, H., and Amarzguioui, M. (2007). Phys. Rev. D 75, 023506.CrossRef
Amanullah, R., Mörtsell, E., and Goobar, A. (2003). Astron. Astrophys. 397, 819.CrossRef
Amendola, L., Baldi, M., and Wetterich, C. (2007). [arXiv:0706.3064].
Astier, P., et al.(The SNLS Collaboration) (2006). Astron. Astrophys. 447, 31 [astro-ph/0510447].CrossRef
Barris, B. J., et al.(The High Z SN Search Collaboration) (2004). Astrophys. J. 602, 571.CrossRef
Blondin, S., et al. (The ESSENCE Collaboration) (2006). Astron. J. 131, 1648.CrossRef
Bonvin, C., Durrer, R., and Kunz, M. (2006). Phys. Rev. Lett 96, 191302.CrossRef
Branch, D., Romanishin, W., and Baron, E. (1996). Astrophys. J. 465, 73.CrossRef
Brouzakis, N., Tetradis, N., and Tzavara, E. (2007). JCAP 0702, 013.
Capozziello, S., Carloni, S., and Trosi, A. (2003). Recent Res. Dev. Astron. Astrophys. 1, 625 [astro-ph/0303041].
Clocchiatti, A., et al. (The High Z SN Search Collaboration) (2006). Astrophys. J. 642, 1.CrossRef
Conley, A., et al. (The SNLS Collaboration) (2006). Astron. J. 132, 1707.CrossRef
Conley, A., Carlberg, R. G., Guy, J., et al. (2007). Astrophys. J. 664, L13.CrossRef
Conley, A., et al. (2008). Astrophys. J. 681, 482.CrossRef
Davis, T.M., et al. (2007). Astrophys. J. 666, 716 [astro-ph/0701510].CrossRef
Einstein, A. (1917). Sitzungsber. Preuss. Akad. Wiss. 142.
Eisenstein, D. J., et al. (2005). Astrophys. J. 633, 560.CrossRef
Filippenko, A. V., and Riess, A. G. (1998). Phys. Rep. 307, 31.CrossRef
Foley, R. J., et al. (2008). Astrophys. J. 684, 68.CrossRef
Freedman, W. L., et al. (2001). Astrophys. J. 553, 47.CrossRef
Garnavich, P. M., et al. (1998). Astrophys. J. 509, 74.CrossRef
Goldhaber, G., et al. (The Supernova Cosmology Project) (2001). Astrophys. J. 558, 359.CrossRef
Goobar, A., and Perlmutter, S. (1995). Astrophys. J. 450, 14.CrossRef
Heavens, A. F., Kitching, T. D., and Taylor, A. N. (2006). Mon. Not. R. Astron. Soc. 373, 105.CrossRef
Hook, I. M., et al. (The Supernova Cosmology Project) (2005). Astron. J. 130, 2788.CrossRef
Ivanov, V. D., Hamuy, M., and Pinto, P. A. (2000). Astrophys. J. 542, 588.CrossRef
Jha, S., Riess, A. G., and Kirshner, R. P. (2007). Astrophys. J. 659, 122.CrossRef
Jonsson, J., Dahlen, T., Goobar, A., Gunnarson, C., Mortsell, E., and Lee, K. (2006). Astrophys. J. 639, 991.CrossRef
Kim, A. G., Goobar, A., and Perlmutter, S. (1996). Publ. Astron. Soc. Pacif. 108, 190.CrossRef
Kim, A. G., Linder, E. V., Miquel, R., and Mostek, N. (2004). Mon. Not. R. Astron. Soc. 347, 909.CrossRef
Knop, R. A., et al. (The Supernova Cosmology Project) (2003). Astrophys. J. 598, 102.CrossRef
Komatsu, E., et al. (2009). Astrophys. J. Suppl. 180, 330.CrossRef
Kowal, C. T. (1968). Astron J. 73, 1021.CrossRef
Kowalski, M., et al. (The Supernova Cosmology Project) (2008). Astrophys. J. 686, 749.CrossRef
Larena, J., Alimi, J.-M., Buchert, T., Kunz, M., and Corasaniti, P.-S. (2008). [arXiv:0808.1161].
Leibundgut, B. (2002). Ann. Rev. Astron. Astrophys. 39, 67CrossRef
Li, C., Holz, D., and Cooray, A. (2007). Phys. Rev. D 75, 3503.
Lidman, C., et al (The Supernova Cosmology Project) (2005). Astron Astrophys 430, 843.
Maor, I., and Brustein, R. (2003). Phys.Rev. D 67, 103508.CrossRef
Matheson, T., et al. (The ESSENCE Collaboration) (2005). Astron. J. 129, 2352.CrossRef
Mena, O., Santiago, J., and Weller, J. (2006). Phys. Rev. Lett. 96, 1103.CrossRef
Nesseris, S., and Perivolaropoulos, L. (2007). JCAP 02, 25 [astro-ph/0611572].CrossRef
Nugent, P., Kim, A., and Perlmutter, S. (2002). Publ. Astron. Soc. Pacif. 114, 803.CrossRef
Percival, W. J., etal. (2007a). Astrophys. J. 657, 51.
Percival, W. J., Cole, S., Eisenstein, D., Nichol, R. C., Peacock, J. A., Pope, A. C., and Szalay, A. S. (2007b). Mon. Not. R. Astron. Soc. 381, 1053.CrossRef
Perlmutter, S. (2005). HST Proposal GO 10496.Google Scholar
Perlmutter, S., et al. (The Supernova Cosmology Project) (1998). Nature (London) 391, 51.CrossRef
Perlmutter, S., et al. (The Supernova Cosmology Project) (1999). Astrophys. J. 517, 565.CrossRef
Phillips, M. M. (1993). Astrophys. J. 413, L105.CrossRef
Phillips, M. M., et al. (1999). Astron. J. 118, 1766.CrossRef
Pskovskii, Y.P. (1977). Soviet Astron. 21, 675.
Quimby, R., et al. (The Supernova Cosmology Project) (2002). Bull. Amer. Astron. Soc. 201, 2305.
Riess, A. G. (2007). HST proposal GO 10802.Google Scholar
Riess, A. G., Press, W. H., and Kirshner, R. P. (1995a). Astrophys. J. 438, L17.CrossRef
Riess, A. G., Press, W. H., and Kirshner, R. P. (1995b). Astrophys. J. 445, L91.CrossRef
Riess, A. G., et al. (The High-Z SN Search Collaboration) (1998). Astron. J. 116, 1009.CrossRef
Riess, A. G., et al. (The Higher-Z Team) (2004). Astrophys. J. 607, 665.CrossRef
Riess, A. G., et al. (The Higher-Z Team) (2007). Astrophys. J. 659, 122CrossRef
Rubin, D., et al. (2008). [arXiv 0807.1108].
Ruiz-Lapuente, P. (1996). Astrophys. J. 465, L83 [astro-ph/9604044].CrossRef
Ruiz-Lapuente, P. (2006). Invited review at Bernard's Cosmic Stories, Valencia, June 2006.Google Scholar
Ruiz-Lapuente, P. (2007). Class. Quant. Grav. 24, 91.CrossRef
Ruiz-Lapuente, P., et al. (2002). ITP2002 on Ω and A from Supernovae, and the Physics of Supernova Explosions.
Sahlén, M., Liddle, A. R., and Parkinson, D. (2007). Phys. Rev. D. 75, 3502 [astro-ph/0610812].CrossRef
Sandage, A., et al. (2006). Astrophys. J. 653, 843.CrossRef
Schlegel, D. J., Finkbeiner, M., and Davis, M. (1998). Astrophys. J. Suppl. 500, 525.CrossRef
Sullivan, M., et al. (The Supernova Cosmology Project) (2003). Mon. Not. R. Astron. Soc. 340, 1057.CrossRef
Tegmark, M., et al. (2006). Phys. Rev. D 74, 123507.CrossRef
Tonry, J. L., et al. (The High-Z SN Search Collaboration) (2003). Astrophys. J. 594, 1.CrossRef
Wetterich, C. (2007). Phys. Lett. B 655, 201.CrossRef
Wood-Vasey, W. M., et al. (The ESSENCE Collaboration) (2007a). Astrophys. J. 666, 694 [astro-ph/0701041].CrossRef
Wood-Vasey, W. M., et al. (2007b). [arXiv:0711.2068].

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×