Skip to main content Accessibility help
  • Print publication year: 2014
  • Online publication date: April 2014

Chapter 5 - Essential features in media development for spermatozoa, oocytes, and embryos

from Section 1 - Culture media and solutions


1. Bavister BD. Culture of preimplantation embryos: facts and artifacts. Hum Reprod Update 1995;1:91–148.
2. Harrison RAP. Capacitation mechanisms, and the role of capacitation as seen in Eutherian mammals. Reprod Fertil Dev 1996;8:581–94.
3. Scott LA. Oocyte and embryo culture. In: Keel BA, May JV, De Jonge CJ, eds. Handbook of the Assisted Reproduction Laboratory. Boca Raton, CRC Press. 2000;197–219.
4. Bavister BD. How animal embryo research led to the first documented human IVF. Reprod BioMed Online 2002;4(Suppl 1):24–9.
5. Biggers JD. Thoughts on embryo culture condition. Reprod BioMed Online 2001;4:30–8.
6. Leese HJ. What does an embryo need? Hum Fertil 2003;6:180–5.
7. Quinn P. Media used in assisted reproductive technologies laboratories. In: Patrizio P, Guelman V, Tucker M., eds. A Color Atlas for Human Assisted Reproduction: Laboratory and Clinical Insights. Philadelphia, Williams & Wilkins. 2003;241–56.
8. Pool TB. An update on embryo culture for human assisted reproductive technology: media, performance, and safety. Semin Reprod Med 2005;23:309–18.
9. Biggers JD, Summers MC. Choosing a culture medium: making informed choices. Fertil Steril 2008;90:473–83.
10. Gardner DK. Dissection of culture media for embryos: the most important and less important components and characteristics. Reprod Fertil Dev 2008;20:9–18.
11. Vajta G, Rienzi L, Cobo A, Yovich J. Embryo culture: can we perform better than nature? Reprod Biomed Online 2010;20:453–69.
12. FDA. PHS Guideline on Infectious Disease Issues in Xenotransplantation, January 29, 2001. (accessed September 14, 2011).
13. FDA. Information and Recommendations for Physicians Involved in the Co-Culture of Human Embryos with Non-Human Animal Cells. (accessed September 14, 2011).
14. Gardner DK, Lane M. Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod 1996;11:2703–12.
15. Mortimer D, Henman MJ, Jansen RPS. Development of an Improved Embryo Culture System for Clinical Human IVF. Eight Mile Plains, Australia, William A. Cook, 2002.
16. Lawitts JA, Biggers JD. Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil 1991;91:543–56.
17. Mortimer D. Elaboration of a new culture medium for physiological studies on human sperm motility and capacitation. Hum Reprod 1986;1:247–50.
18. Leese HJ. The formation and function of oviduct fluid. J Reprod Fertil 1988;82:843–56.
19. Menezo Y. Milieu synthétique pour la survie et la maturation des gamètes et pour la culture de l’oeuf fécondé. CR Acad Sci Paris Série D 1976;282:1967–70.
20. Tervit HR, Whittingham DG, Rowson LE. Successful culture in vitro of sheep and cattle ova. J Reprod Fertil 1972;30:493–7.
21. Quinn P, Kerin JF, Warnes GM. Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 1985;44:493–8.
22. Barnes FL, Crombie A, Gardner DK, et al. Blastocyst development and birth after in-vitro maturation of human primary oocytes, intracytoplasmic sperm injection and assisted hatching. Hum Reprod 1995;10:3243–7.
23. Gardner DK, Lane M. Culture and selection of viable blastocysts: a feasible proposition for human IVF? Hum Reprod Update 1997;3:367–82.
24. Gardner DK, Lane M, Schoolcraft WB. Physiology and culture of the human blastocyst. J Reprod Immunol 2002;55:85–100.
25. Eagle H. Amino acid metabolism in mammalian cell cultures. Science 1959;130:432–7.
26. Australian Institute of Health and Welfare National Perinatal Statistics Unit. Assisted Conception Australia and New Zealand 1991. Sydney, 1993. ISSN 1038–7234.
27. Mortimer D, Quinn P. Bicarbonate-buffered media and CO2. Alpha Newsletter 1996;5:10.
28. Mortimer D. Human blastocyst development media. Hum Reprod 2001;16:2725–6.
29. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 1997;109:153–64.
30. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 1995;41:232–8.
31. Walker SK, Hill JL, Kleemann DO, Nancarrow CD. Development of ovine embryos in synthetic oviductal fluid containing amino acids at oviductal fluid concentrations. Biol Reprod 1996;55:703–8.
32. Biggers JD, Racowsky C. The development of fertilized human ova to the blastocyst stage in KSOM(AA) medium: is a two-step protocol necessary? Reprod Biomed Online 2002;5:133–40.
33. Ali J, Whitten WK, Shelton JN. Effect of culture systems on mouse early embryo development. Hum Reprod 1993;8:1110–14.
34. Lawitts JA, Biggers JD. Joint effects of sodium chloride, glutamine, and glucose in mouse preimplantation embryo culture media. Mol Reprod Dev 1992;31:189–94.
35. Chatot CL, Ziomek CA, Bavister BD, et al. An improved culture medium supports development of random-bred 1-cell mouse embryos in vitro. J Reprod Fertil 1989;86:679–88.
36. Van Winkle LJ, Haghighat N, Campione AL. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool 1990;253:215–19.
37. Lee ES, Fukui Y. Synergistic effect of alanine and glycine on bovine embryos cultured in a chemically defined medium and amino acid uptake by vitro-produced bovine morulae and blastocysts. Biol Reprod 1996;55:1383–9.
38. Spindle A. Beneficial effects of taurine on mouse zygotes developing in protein-free culture medium. Theriogenology 1995;44:761–72.
39. Liu Z, Foote RH, Yang X. Development of early bovine embryos in co-culture with KSOM and taurine, superoxide dismutase or insulin. Theriogenology 1995;44:741–50.
40. Ecker DJ, Stein P, Xu Z, et al. Long-term effects of culture of preimplantation mouse embryos on behavior. Proc Natl Acad Sci U S A 2004;101:1595–600.
41. Rinaudo P, Schultz RM. Effects of embryo culture on global pattern of gene expression in preimplantation mouse embryos. Reproduction 2004;128:301–11.
42. Lane M, Gardner DK. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J Reprod Fertil 1994;102:305–12.
43. Thompson J, Lane M, Robertson S. Adaptive responses of early embryos to the microenvironment and consequences for post-implantation development. In: Wintour EM, Owens JA, eds. Early Life Origins of Health and Disease (Adv Exp Biol Med 573). New York, Springer Science+Business Media. 2006;58–69.
44. Guérin P, El Mouatassim S, Ménézo Y. Oxidative stress and protection against reactive oxygen species in the pre-implantation embryo and its surroundings. Hum Reprod Update 2001;7:175–89.
45. Agarwal A, Gupta S, Sharma RK. Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2005;3:28, doi:10.1186/1477-7827-3-28.
46. Mortimer D. Sperm preparation techniques and iatrogenic failures of in-vitro fertilization. Hum Reprod 1991;6:173–6.
47. Aitken RJ, Gordon E, Harkiss D, et al. Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 1998;59:1037–46.
48. Aitken RJ, De Iuliis GN. On the possible origins of DNA damage in human spermatozoa. Mol Hum Reprod 2010;16:3–13.
49. Aitken RJ, Baker MA, De Iuliis GN, Nixon B. New insights into sperm physiology and pathology. Handbook Exp Pharmacol 2010;198:99–115.
50. Mortimer D. Sperm preparation methods. J Androl 2000;21:357–66.
51. Björndahl L, Mortimer D, Barratt CLR, et al. A Practical Guide to Basic Laboratory Andrology. Cambridge, Cambridge University Press, 2010.
52. Fischer B, Bavister BD. Oxygen tension in the oviduct and uterus of rhesus monkeys, hamsters and rabbits. J Reprod Fertil 1993;99:673–9.
53. Rinaudo PF, Giritharan G, Talbi S, et al. Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril 2006;86:1252–65.
54. Bain NT, Madan P, Betts DH. The early embryo response to intracellular reactive oxygen species is developmentally regulated. Reprod Fertil Dev 2011;23:561–75.
55. Arias ME, Sanchez R, Felmer R. Evaluation of different culture systems with low oxygen tension on the development, quality and oxidative stress-related genes of bovine embryos produced in vitro. Zygote 2012;20:209–17.
56. Deleuze S, Goudet G. Cysteamine supplementation of in vitro maturation media: a review. Reprod Domest Anim 2010;45:e476–82.
57. Bavister B. Oxygen concentration and preimplantation development. Reprod Biomed Online 2004;9:484–6.
58. Thompson JG, Simpson AC, Pugh PA, et al. Effect of oxygen concentration on in-vitro development of preimplantation sheep and cattle embryos. J Reprod Fertil 1990;89:573–8.
59. Petersen A, Mikkelsen AL, Lindenberg S. The impact of oxygen tension on developmental competence of post-thaw human embryos. Acta Obstet Gynecol Scand 2005;84:1181–4.
60. Kovacic B, Vlaisavljevic V. Influence of atmospheric versus reduced oxygen concentration on development of human blastocysts in vitro: a prospective study on sibling oocytes. Reprod Biomed Online 2008;17:229–36.
61. Waldenström U, Engström AB, Hellberg D, Nilsson S. Low-oxygen compared with high-oxygen atmosphere in blastocyst culture, a prospective randomized study. Fertil Steril 2009;91:2461–5.
62. Meintjes M, Chantilis SJ, Douglas JD, et al. A controlled randomized trial evaluating the effect of lowered incubator oxygen tension on live births in a predominantly blastocyst transfer program. Hum Reprod 2009;24:300–7.
63. Bilska A, Wlodek L. Lipoic acid – the drug of the future? Pharmacol Rep 2005;57:570–7.
64. Umbreit WW. Carbon dioxide and bicarbonate. In: Umbreit WW, Burris RH, Stauffer JF, eds. Manometric Techniques. Minneapolis, Burgess Publishing Co. 1957;18–27.
65. Lassalle B, Testart J, Renard JP. Human embryo features that influence the success of cryopreservation with the use of 1,2 propanediol. Fertil Steril, 1985;44:645–51.
66. Palasz AT, Breña PB, De la Fuente J, Gutiérrez-Adán A. The effect of different zwitterionic buffers and PBS used for out-of-incubator procedures during standard in vitro embryo production on development, morphology and gene expression of bovine embryos. Theriogenology 2008;70:1461–70.
67. Cullinan RT, Catt JW, Fussell S, Henman M, Mortimer D. Improved implantation rates of cryopreserved human embryos thawed in a phosphate-free medium. Hum Reprod 1998;13(Abstract Book 1):59–60.
68. Swain JE. Back to basics: pH for the ARTisan. J Clin Embryol 2010;13(2):9–28.
69. Swain JE. Optimizing the culture environment in the IVF laboratory: impact of pH and buffer capacity on gamete and embryo quality. Reprod Biomed Online 2010;21:6–16.
70. Mahadevan MM, Fleetham J, Church RB, Taylor PJ. Growth of mouse embryos in bicarbonate media buffered by carbon dioxide, hepes, or phosphate. J In Vitro Fert Embryo Transf 1986;3:304–8.
71. Swain JE, Pool TB. New pH-buffering system for media utilized during gamete and embryo manipulations for assisted reproduction. Reprod Biomed Online 2009;18:799–810.
72. Abramczuk J, Solter D, Koprowski H. The beneficial effect of EDTA on development of mouse one-cell embryos in chemically defined medium. Dev Biol 1977;61:378–83.
73. Lane M, Gardner DK. Inhibiting 3-phosphoglycerate kinase by EDTA stimulates the development of the cleavage stage mouse embryo. Mol Reprod Dev 2001;60:233–40.
74. Davis BK. Timing of fertilization in mammals: sperm cholesterol/phospholipid ratio as a determinant of the capacitation interval. Proc Natl Acad Sci U S A 1981;78:7560–4.
75. Langlais J, Kan FW, Granger L, et al Identification of sterol acceptors that stimulate cholesterol efflux from human spermatozoa during in vitro capacitation. Gamete Res 1988;20:185–201.
76. Lippes J, Krasner J, Alfonso LA, et al. Human oviductal fluid proteins. Fertil Steril 1981;36:623–9.
77. Mortimer D, Mortimer ST. ICSI for all? In: Kovacs G, ed. How to Improve your ART Success Rates: An Evidence-Based Review of Adjuncts to IVF. Cambridge, Cambridge University Press. 2011;135–40.
78. Pemble LB, Kaye PL. Whole protein uptake and metabolism by mouse blastocysts. J Reprod Fertil 1986;78:149–57.
79. Thompson JG. In vitro culture and embryo metabolism of cattle and sheep embryos – a decade of achievement. Anim Reprod Sci 2000;60–61:263–75.
80. Leese HJ. Quiet please, do not disturb: a hypothesis of embryo metabolism and viability. Bioessays 2002;24:845–9.
81. Leese HJ, Sturmey RG, Baumann CG, McEvoy TG. Embryo viability and metabolism: obeying the quiet rules. Hum Reprod 2007;22:3047–50.
82. Leese HJ, Baumann CG, Brison DR, McEvoy TG, Sturmey RG. Metabolism of the viable mammalian embryo: quietness revisited. Mol Hum Reprod 2008;14:667–72.
83. Quinn P. Enhanced results in mouse and human embryo culture using a modified human tubal fluid medium lacking glucose and phosphate. J Assist Reprod Genet 1995;12:97–105.
84. Conaghan J, Handyside AH, Winston RM, Leese HJ. Effects of pyruvate and glucose on the development of human preimplantation embryos in vitro. J Reprod Fertil 1993;99:87–95.
85. Barnett DK, Clayton MK, Kimura J, Bavister BD. Glucose and phosphate toxicity in hamster preimplantation embryos involves disruption of cellular organization, including distribution of active mitochondria. Mol Reprod Dev 1997;48:227–37.
86. Gardner DK, Lane M, Calderon I, Leeton J. Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril 1996;65:349–53.
87. Lane M, Gardner DK. Blastomere homeostasis. In: Gardner DK, Lane M, eds. ART and the Human Blastocyst. New York, Springer-Verlag. 2001;69–90.
88. Van Winkle LJ, Haghighat N, Campione AL. Glycine protects preimplantation mouse conceptuses from a detrimental effect on development of the inorganic ions in oviductal fluid. J Exp Zool 1990;253:215–19.
89. Dawson KM, Baltz JM. Organic osmolytes and embryos: substrates of the Gly and beta transport systems protect mouse zygotes against the effects of raised osmolarity. Biol Reprod 1997;56:1550–8.
90. Dumoulin JCM, van Wissen LCP, Menheere PPCA, et al. Taurine acts as an osmolyte in human and mouse oocytes and embryos. Biol Reprod 1997;56:739–44.
91. Richards T, Wang F, Liu L, et al. Rescue of postcompaction-stage mouse embryo development from hypertonicity by amino acid transporter substrates that may function as organic osmolytes. Biol Reprod 2010;82:769–77.
92. Baltz JM, Tartia AP. Cell volume regulation in oocytes and early embryos: connecting physiology to successful culture media. Hum Reprod Update 2010;16:166–76.
93. Barratt CL, Björndahl L, Menkveld R, Mortimer D. ESHRE special interest group for andrology basic semen analysis course: a continued focus on accuracy, quality, efficiency and clinical relevance. Hum Reprod 2011;26:3207–12.
94. Pool TB. Optimizing pH in clinical embryology. Clin Embryologist 2004;7(3):1–17.
95. Barnett DK, Bavister BD. What is the relationship between the metabolism of preimplantation embryos and their developmental competence? Mol Reprod Dev 1996;43:105–33.
96. Phillips KP, Léveillé MC, Claman P, Baltz JM. Intracellular pH regulation in human preimplantation embryos. Hum Reprod 2000;15:896–904.
97. Dale B, Menezo Y, Cohen J, et al. Intracellular pH regulation in the human oocyte. Hum Reprod 1998;13:964–70.
98. Squirrell JM, Lane M, Bavister BD. Altering intracellular pH disrupts development and cellular organization in preimplantation hamster embryos. Biol Reprod 2001;64:1845–54.
99. Zander-Fox DL, Mitchell M, Thompson JG, Lane M. Alterations in mouse embryo intracellular pH by DMO during culture impair implantation and fetal growth. Reprod Biomed Online 2010;21:219–29.
100. Mortimer D, Mortimer ST. Quality and Risk Management in the IVF Laboratory. Cambridge, Cambridge University Press, 2005.
101. Katz-Jaffe MG, Gardner DK. Embryology in the era of proteomics. Theriogenology 2007;68(1):S125–30.
102. Iliadou AN, Janson PC, Cnattingius S. Epigenetics and assisted reproductive technology. J Intern Med 2011;270:414–20.