Skip to main content Accessibility help
×
Home
  • Print publication year: 2014
  • Online publication date: April 2014

Chapter 8 - Amino acids and ammonium

from Section 1 - Culture media and solutions

References

1. Perkins JL, Goode L. Free amino acids in the oviduct fluid of the ewe. J Reprod Fertil 1967;14(2):309–11.
2. Fahning ML, Schultz RH, Graham EF. The free amino acid content of uterine fluids and blood serum in the cow. J Reprod Fertil 1967;13(2):229–36.
3. Menezo Y, Laviolette P. [Amino constituents of tubal secretions in the rabbit. Zymogram–proteins–free amino acids]. Ann Biol Anim Biochim Biophys 1972;12(3):383–96.
4. Stanke DF, Sikes JD, DeYoung DW, Tumbleson ME. Proteins and amino acids in bovine oviducal fluid. J Reprod Fertil 1974;38(2):493–6.
5. Miller JG, Schultz GA. Amino acid content of preimplantation rabbit embryos and fluids of the reproductive tract. Biol Reprod 1987;36(1):125–9.
6. Casslen BG. Free amino acids in human uterine fluid. Possible role of high taurine concentration. J Reprod Med 1987;32(3):181–4.
7. Elhassan YM, Wu G, Leanez AC, et al. Amino acid concentrations in fluids from the bovine oviduct and uterus and in KSOM-based culture media. Theriogenology 2001;55(9):1907–18.
8. Schultz GA, Kaye PL, McKay DJ, Johnson MH. Endogenous amino acid pool sizes in mouse eggs and preimplantation embryos. J Reprod Fertil 1981;61(2):387–93.
9. Jaszczak S, Hafez ES, Moghissi KS, Kurrie DA. Concentration gradients of amino acids between the uterine and blastocoelic fluid in the rabbit. Fertil Steril 1972;23(6):405–9.
10. Eagle H. Amino acid metabolism in mammalian cell cultures. Science 1959;130(3373):432–7.
11. Richards T, Wang F, Liu L, Baltz JM. Rescue of postcompaction-stage mouse embryo development from hypertonicity by amino acid transporter substrates that may function as organic osmolytes. Biol Reprod 82(4):769–77.
12. Steeves CL, Hammer MA, Walker GB, et al. The glycine neurotransmitter transporter GLYT1 is an organic osmolyte transporter regulating cell volume in cleavage-stage embryos. Proc Natl Acad Sci U S A 2003;100(24):13982–7.
13. Van Winkle LJ, Campione AL, Farrington BH. Development of system B0,+ and a broad-scope Na(+)-dependent transporter of zwitterionic amino acids in preimplantation mouse conceptuses. Biochim Biophys Acta. 1990;1025(2):225–33.
14. Anas MK, Lee MB, Zhou C, et al. SIT1 is a betaine/proline transporter that is activated in mouse eggs after fertilization and functions until the 2-cell stage. Development 2008;135(24):4123–30.
15. Anas MK, Hammer MA, Lever M, Stanton JA, Baltz JM. The organic osmolytes betaine and proline are transported by a shared system in early preimplantation mouse embryos. J Cell Physiol 2007;210(1):266–77.
16. Van Winkle LJ. Amino acid transport regulation and early embryo development. Biol Reprod 2001;64(1):1–12.
17. Van Winkle LJ, Dickinson HR. Differences in amino acid content of preimplantation mouse embryos that develop in vitro versus in vivo: in vitro effects of five amino acids that are abundant in oviductal secretions. Biol Reprod 1995;52(1):96–104.
18. Van Winkle LJ, Mann DF, Weimer BD, Campione AL. Na(+)-dependent transport of anionic amino acids by preimplantation mouse blastocysts. Biochim Biophys Acta 1991;1068(2):231–6.
19. Gardner DK, Lane M. Alleviation of the ‘2-cell block’ and development to the blastocyst of CF1 mouse embryos: role of amino acids, EDTA and physical parameters. Hum Reprod 1996;11(12):2703–12.
20. Gwatkin RB, Haidri AA. Requirements for the maturation of hamster oocytes in vitro. Exp Cell Res 1973;76(1):1–7.
21. Bae IH, Foote RH. Utilization of glutamine for energy and protein synthesis by cultured rabbit follicular oocytes. Exp Cell Res 1975;90(2):432–6.
22. Juetten J, Bavister BD. The effects of amino acids, cumulus cells, and bovine serum albumin on in vitro fertilization and first cleavage of hamster eggs. J Exp Zool 1983;227(3):487–90.
23. Bavister BD, Leibfried ML, Lieberman G. Development of preimplantation embryos of the golden hamster in a defined culture medium. Biol Reprod 1983;28(1):235–47.
24. Bavister BD, Arlotto T. Influence of single amino acids on the development of hamster one-cell embryos in vitro. Mol Reprod Dev 1990;25(1):45–51.
25. McKiernan SH, Clayton MK, Bavister BD. Analysis of stimulatory and inhibitory amino acids for development of hamster one-cell embryos in vitro. Mol Reprod Dev 1995;42(2):188–99.
26. Gardner DK, Lane M. Amino acids and ammonium regulate mouse embryo development in culture. Biol Reprod 1993;48(2):377–85.
27. Ho Y, Wigglesworth K, Eppig JJ, Schultz RM. Preimplantation development of mouse embryos in KSOM: augmentation by amino acids and analysis of gene expression. Mol Reprod Dev 1995;41(2):232–8.
28. Lane M, Gardner DK. Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 1997;109(1):153–64.
29. Nakazawa T, Ohashi K, Yamada M, et al. Effect of different concentrations of amino acids in human serum and follicular fluid on the development of one-cell mouse embryos in vitro. J Reprod Fertil 1997;111(2):327–32.
30. Summers MC, McGinnis LK, Lawitts JA, Raffin M, Biggers JD. IVF of mouse ova in a simplex optimized medium supplemented with amino acids. Hum Reprod 2000;15(8):1791–801.
31. Biggers JD, McGinnis LK, Raffin M. Amino acids and preimplantation development of the mouse in protein-free potassium simplex optimized medium. Biol Reprod 2000;63(1):281–93.
32. Kane MT, Bavister BD. Protein-free culture medium containing polyvinylalcohol, vitamins, and amino acids supports development of eight-cell hamster embryos to hatching blastocysts. J Exp Zool 1988;247(2):183–7.
33. Kane MT, Carney EW, Bavister BD. Vitamins and amino acids stimulate hamster blastocysts to hatch in vitro. J Exp Zool 1986;239(3):429–32.
34. Lee ES, Fukui Y. Synergistic effect of alanine and glycine on bovine embryos cultured in a chemically defined medium and amino acid uptake by vitro-produced bovine morulae and blastocysts. Biol Reprod 1996;55(6):1383–9.
35. Gardner DK, Lane M, Spitzer A, Batt PA. Enhanced rates of cleavage and development for sheep zygotes cultured to the blastocyst stage in vitro in the absence of serum and somatic cells: amino acids, vitamins, and culturing embryos in groups stimulate development. Biol Reprod 1994;50(2):390–400.
36. Devreker F, Hardy K, Van den Bergh M, et al. Amino acids promote human blastocyst development in vitro. Hum Reprod 2001;16(4):749–56.
37. Lane M, Gardner DK. Nonessential amino acids and glutamine decrease the time of the first three cleavage divisions and increase compaction of mouse zygotes in vitro. J Assist Reprod Genet 1997;14(7):398–403.
38. Pinyopummintr T, Bavister BD. Effects of amino acids on development in vitro of cleavage-stage bovine embryos into blastocysts. Reprod Fertil Dev 1996;8(5):835–41.
39. Steeves TE, Gardner DK. Temporal and differential effects of amino acids on bovine embryo development in culture. Biol Reprod 1999;61(3):731–40.
40. Thompson JG, Gardner DK, Pugh PA, McMillan WH, Tervit HR. Lamb birth weight is affected by culture system utilized during in vitro pre-elongation development of ovine embryos. Biol Reprod 1995;53(6):1385–91.
41. Pinyopummintr T, Bavister BD. In vitro-matured/in vitro-fertilized bovine oocytes can develop into morulae/blastocysts in chemically defined, protein-free culture media. Biol Reprod 1991;45(5):736–42.
42. Takahashi Y, First NL. In vitro development of bovine one-cell embryos: influence of glucose, lactate, pyruvate, amino acids and vitamins. Theriogenology 1992;37(5):963–78.
43. Zielke HR, Zielke CL, Ozand PT. Glutamine: a major energy source for cultured mammalian cells. Fed Proc 1984;43(1):121–5.
44. McKiernan SH, Bavister BD, Tasca RJ. Energy substrate requirements for in-vitro development of hamster 1- and 2-cell embryos to the blastocyst stage. Hum Reprod 1991;6(1):64–75.
45. Carney EW, Bavister BD. Stimulatory and inhibitory effects of amino acids on the development of hamster eight-cell embryos in vitro. J In Vitro Fert Embryo Transf 1987;4(3):162–7.
46. Suzuki C, Yoshioka K, Sakatani M, Takahashi M. Glutamine and hypotaurine improves intracellular oxidative status and in vitro development of porcine preimplantation embryos. Zygote 2007;15(4):317–24.
47. Devreker F, Winston RM, Hardy K. Glutamine improves human preimplantation development in vitro. Fertil Steril 1998;69(2):293–9.
48. Devreker F, Van den Bergh M, Biramane J, et al. Effects of taurine on human embryo development in vitro. Hum Reprod 1999;14(9):2350–6.
49. Lewis AM, Kaye PL. Characterization of glutamine uptake in mouse two-cell embryos and blastocysts. J Reprod Fertil 1992;95(1):221–9.
50. Gardner DK, Clarke RN, Lechene CP, Biggers JD. Development of a noninvasive ultramicrofluorometric method for measuring net uptake of glutamine by single preimplantation mouse embryos. Gamete Res 1989;24(4):427–38.
51. Chatot CL, Tasca RJ, Ziomek CA. Glutamine uptake and utilization by preimplantation mouse embryos in CZB medium. J Reprod Fertil 1990;89(1):335–46.
52. Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the metabolism of glucose and glutamine by cattle embryos produced and co-cultured in vitro. J Reprod Fertil 1992;95(2):585–95.
53. Rieger D, Loskutoff NM, Betteridge KJ. Developmentally related changes in the uptake and metabolism of glucose, glutamine and pyruvate by cattle embryos produced in vitro. Reprod Fertil Dev 1992;4(5):547–57.
54. Dumoulin JC, Evers JL, Bakker JA, et al. Temporal effects of taurine on mouse preimplantation development in vitro. Hum Reprod 1992;7(3):403–7.
55. Dumoulin JC, Evers JL, Bras M, Pieters MH, Geraedts JP. Positive effect of taurine on preimplantation development of mouse embryos in vitro. J Reprod Fertil 1992;94(2):373–80.
56. Reed ML, Illera MJ, Petters RM. In vitro culture of pig embryos. Theriogenology 1992;37:95–109.
57. Barnett DK, Bavister BD. Hypotaurine requirement for in vitro development of golden hamster one-cell embryos into morulae and blastocysts, and production of term offspring from in vitro-fertilized ova. Biol Reprod 1992;47(2):297–304.
58. Yancey PH, Clark ME, Hand SC, Bowlus RD, Somero GN. Living with water stress: evolution of osmolyte systems. Science 1982;217(4566):1214–22.
59. Somero GN. Protons, osmolytes, and fitness of internal milieu for protein function. Am J Physiol 1986;251(2 Pt 2):R197–213.
60. Arakawa T, Timasheff SN. The stabilization of proteins by osmolytes. Biophys J 1985;47(3):411–14.
61. Dawson KM, Baltz JM. Organic osmolytes and embryos: substrates of the Gly and beta transport systems protect mouse zygotes against the effects of raised osmolarity. Biol Reprod 1997;56(6):1550–8.
62. Hammer MA, Baltz JM. Beta-alanine but not taurine can function as an organic osmolyte in preimplantation mouse embryos cultured from fertilized eggs. Mol Reprod Dev 2003;66(2):153–61.
63. Bavister BD, McKiernan SH. Regulation of hamster embryo development in vitro by amino acids. In: Bavister BD, ed. Preimplantation Embryo Development. New York, Plenum Press. 1993;57–72.
64. Baltz JM, Biggers JD, Lechene C. Two-cell stage mouse embryos appear to lack mechanisms for alleviating intracellular acid loads. J Biol Chem 1991;266(10):6052–7.
65. Lindenbaum A. A survey of naturally occurring chelating ligands. Adv Exp Med Biol 1973;40:67–77.
66. Gardner DK. Changes in requirements and utilization of nutrients during mammalian preimplantation embryo development and their significance in embryo culture. Theriogenology 1998;49(1):83–102.
67. Liu Z, Foote RH. Effects of amino acids on the development of in-vitro matured/in-vitro fertilization bovine embryos in a simple protein-free medium. Hum Reprod 1995;10(11):2985–91.
68. Lane M, Gardner DK. Mitochondrial malate-aspartate shuttle regulates mouse embryo nutrient consumption. J Biol Chem 2005;280(18):18361–7.
69. Martin PM, Sutherland AE. Exogenous amino acids regulate trophectoderm differentiation in the mouse blastocyst through an mTOR-dependent pathway. Dev Biol 2001;240(1):182–93.
70. Shan J, Lopez MC, Baker HV, Kilberg MS. Expression profiling after activation of the amino acid deprivation response in HepG2 human hepatoma cells. Physiol Genomics 2010 Mar 9 [Epub ahead of print].
71. Wang Y, Puscheck EE, Lewis JJ, et al. Increases in phosphorylation of SAPK/JNK and p38MAPK correlate negatively with mouse embryo development after culture in different media. Fertil Steril 2005;83(Suppl 1):1144–54.
72. Conigrave AD, Hampson DR. Broad-spectrum L-amino acid sensing by class 3 G-protein-coupled receptors. Trends Endocrinol Metab 2006;17(10):398–407.
73. Kuang D, Yao Y, Lam J, Tsushima RG, Hampson DR. Cloning and characterization of a family C orphan G-protein coupled receptor. J Neurochem 2005;93(2):383–91.
74. Nelson G, Chandrashekar J, Hoon MA, et al. An amino-acid taste receptor. Nature 2002;416(6877):199–202.
75. Ryu JM, Han HJ. L-threonine regulates G1/S phase transition of mouse embryonic stem cells via PI3K/Akt, MAPKs, and mTORC pathways. J Biol Chem 286(27):23667–78.
76. Washington JM, Rathjen J, Felquer F, et al. L-Proline induces differentiation of ES cells: a novel role for an amino acid in the regulation of pluripotent cells in culture. Am J Physiol Cell Physiol 298(5):C982–92.
77. Morgan HD, Santos F, Green K, Dean W, Reik W. Epigenetic reprogramming in mammals. Hum Mol Genet 2005;14 Spec No 1:R47–58.
78. Bird A. DNA methylation patterns and epigenetic memory. Genes Dev 2002;16(1):6–21.
79. Li E. Chromatin modification and epigenetic reprogramming in mammalian development. Nat Rev 2002;3(9):662–73.
80. Reik W, Dean W, Walter J. Epigenetic reprogramming in mammalian development. Science 2001;293(5532):1089–93.
81. Rideout WM, 3rd, Eggan K, Jaenisch R. Nuclear cloning and epigenetic reprogramming of the genome. Science 2001;293(5532):1093–8.
82. Wolff GL, Kodell RL, Moore SR, Cooney CA. Maternal epigenetics and methyl supplements affect agouti gene expression in Avy/a mice. FASEB J 1998;12(11):949–57.
83. Essien FB, Wannberg SL. Methionine but not folinic acid or vitamin B-12 alters the frequency of neural tube defects in Axd mutant mice. J Nutr 1993;123(1):27–34.
84. Ehlers K, Elmazar MM, Nau H. Methionine reduces the valproic acid-induced spina bifida rate in mice without altering valproic acid kinetics. J Nutr 1996;126(1):67–75.
85. Shaw GM, Velie EM, Schaffer DM. Is dietary intake of methionine associated with a reduction in risk for neural tube defect-affected pregnancies? Teratology 1997;56(5):295–9.
86. Dunlevy LP, Burren KA, Mills K, et al. Integrity of the methylation cycle is essential for mammalian neural tube closure. Birth Defects Res A Clin Mol Teratol 2006;76(7):544–52.
87. Doherty AS, Mann MR, Tremblay KD, Bartolomei MS, Schultz RM. Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 2000;62(6):1526–35.
88. Bonilla L, Luchini D, Devillard E, Hansen PJ. Methionine requirements for the preimplantation bovine embryo. J Reprod Dev 2010;56(5):527–32.
89. Metayer S, Seiliez I, Collin A, et al. Mechanisms through which sulfur amino acids control protein metabolism and oxidative status. J Nutr Biochem 2008;19(4):207–15.
90. Menezo Y, Khatchadourian C, Gharib A, et al. Regulation of S-adenosyl methionine synthesis in the mouse embryo. Life Sci 1989;44(21):1601–9.
91. Coelho CN, Klein NW. Methionine and neural tube closure in cultured rat embryos: morphological and biochemical analyses. Teratology 1990;42(4):437–51.
92. Dunlevy LP, Burren KA, Chitty LS, Copp AJ, Greene ND. Excess methionine suppresses the methylation cycle and inhibits neural tube closure in mouse embryos. FEBS Lett 2006;580(11):2803–7.
93. Kwong WY, Adamiak SJ, Gwynn A, Singh R, Sinclair KD. Endogenous folates and single-carbon metabolism in the ovarian follicle, oocyte and pre-implantation embryo. Reproduction 139(4):705–15.
94. Steele W, Allegrucci C, Singh R, et al. Human embryonic stem cell methyl cycle enzyme expression: modelling epigenetic programming in assisted reproduction? Reprod Biomed Online 2005;10(6):755–66.
95. Visek W, Kolodny G, Gross P. Ammonia effects in cultures of normal and transformed 3T3 cells. J Cell Physiol 1972;80:373–81.
96. McLimans W, Blumenson L, Repasky E, Ito M. Ammonia loading in cell culture systems. Cell Biol Int Rep 1981;5:653–60.
97. Heeneman S, Deutz N, Buurman W. The concentrations of glutamine and ammonia in commercially available cell culture media. J Immunol Methods 1993;166:85–91.
98. Lane M, Gardner DK. Ammonium induces aberrant blastocyst differentiation, metabolism, pH regulation, gene expression and subsequently alters fetal development in the mouse. Biol Reprod 2003;69(4):1109–17.
99. Virant-Klun I, Tomazevic T, Vrtacnik-Bokal E, et al. Increased ammonium in culture medium reduces the development of human embryos to the blastocyst stage. Fertil Steril 2006;85(2):526–8.
100. Biggers JD, McGinnis LK, Lawitts JA. Enhanced effect of glycyl-L-glutamine on mouse preimplantation embryos in vitro. Reprod Biomed Online 2004;9(1):59–69.
101. Summers MC, McGinnis LK, Lawitts JA, Biggers JD. Mouse embryo development following IVF in media containing either L-glutamine or glycyl-L-glutamine. Hum Reprod 2005;20(5):1364–71.
102. Zander DL, Thompson JG, Lane M. Perturbations in mouse embryo development and viability caused by ammonium are more severe after exposure at the cleavage stages. Biol Reprod 2006;74(2):288–94.
103. Lane M, Gardner DK. Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and exencephaly by ammonium ions. J Reprod Fertil 1994;102(2):305–12.
104. Sinawat S, Hsaio WC, Flockhart JH, et al. Fetal abnormalities produced after preimplantation exposure of mouse embryos to ammonium chloride. Hum Reprod 2003;18(10):2157–65.
105. Hammon DS, Wang S, Holyoak GR. Effects of ammonia during different stages of culture on development of in vitro produced bovine embryos. Anim Reprod Sci 2000;59(1–2):23–30.
106. Gardner DK, Lane M. Towards a single embryo transfer. Reprod Biomed Online 2003;6(4):470–81.