Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: February 2010

15 - Fracture of the ice cover on the Arctic Ocean

Summary

Prologue In the late 1980s, following a presentation by one of us during a meeting of the Advisory Board of Dartmouth's Ice Research Laboratory, R. Weaver of the University of Colorado pointed out that he had seen in Defense Meteorological Satellite images of the winter sea ice cover on the Beaufort Sea features that resembled the wing cracks that one of us had just seen in laboratory specimens and had reported to the Board. The features,Figure 15.1, were dispersed amongst a variety of leads and open cracks and had the distinct markings of wing cracks: extensions, wide at the mouth and sharp at the tip, that had formed out-of-plane from the tips of inclined primary cracks. We estimated from wing-crack mechanics (Chapter 11) that a far-field compressive stress of around 3 kPa would have been needed to create them. W. D. Hibler then calculated the probable stress within the ice cover at the time of the sighting, from the historical record of wind fields, and obtained a value of between 7 and 14 kPa. We published the results shortly thereafter (Schulson and Hibler, 1991). Thus began an enquiry that forms the basis of this chapter and continues as we write: Is the physics of fracture independent of spatial scale?

Introduction

The sea ice cover on the Arctic Ocean during winter, as revealed through satellite images, generally contains oriented features.

References
Ashby, M. F. and Hallam, S. D. (1986). The failure of brittle solids containing small cracks under compressive stress states. Acta Metall., 34, 497–510.
Barnes, P., Tabor, D., Walker, F. R. S. and Walker, J. F. C. (1971). The friction and creep of polycrystalline ice. Proc. R. Soc. Lond. A, 324, 127–155.
Cole, D. M.Johnson, R. A. and Durell, G. D. (1998). Cyclic loading and creep response of aligned first-year sea ice. J. Geophys. Res., 103, 21,751–21,758.
Coon, M. D., Maykut, G. A., Pritchard, R. S., Rothrock, D. A. and Thorndike, A. S. (1974). Modeling the pack-ice as an elastic-plastic material. AIDJEX Bull., 24, 1–105.
Coon, M. D., Knoke, G. S., Echert, D. C. and Pritchard, R. S. (1998). The architecture of an anisotropic elastic-plastic sea ice mechanics constitutive law. J. Geophys. Res., 103, 21,915–21,925.
Coon, M., Kwok, R., Levy, G.et al. (2007). Arctic ice dynamics joint experiment (AIDJEX) assumptions revisited and found inadequate. J. Geophys. Res., 112, doi: 10.1029/2005JC003393.
Cox, G. F. N. and Johnson, J. B. (1983). Stress measurements in ice. CRREL Report, No. 83–23.
Chapelle, S., Duval, P. and Baudelet, B. (1995). Compressive creep of polycrystalline ice containing a liquid phase. Scr. Metall. Mater., 33, 447–450.
Erlingsson, B. (1988). Two-dimensional deformation patterns in sea ice. J. Glaciol., 34, 301–308.
Fortt, A. (2006). The resistance to sliding along coulombic shear faults in columnar S2 ice. Ph.D. thesis, Thayer School of Engineering, Dartmouth College.
Fortt, A. L. and Schulson, E. M. (2007). The resistance to sliding along coulombic shear faults in ice. Acta Mater., 55, 2253–2264.
Heil, P. and Hibler, W. D. (2002). Modelling the high-frequency component of arctic sea-ice drift and deformation. J. Phys. Oceanogr., 32, 3039–3057.
Hibler, W. D. (1977). A viscous sea ice law as a stochastic average of plasticity. J. Geophys. Res., 82, 3932–3938.
Hibler, W. D. (1979). Dynamic thermodynamic sea ice model. J. Phys. Oceanogr., 9, 815–846.
Hibler, W. D. (2003). Modeling the dynamic response of sea ice. In Mass Balance of the Cryosphere, ed. Bamber, J.. Cambridge: Cambridge University Press.
Hibler, W. D. I. and Schulson, E. M. (2000). On modeling the anisotropic failure and flow of flawed sea ice. J. Geophys. Res., 105, 17,105–17,120.
Hunke, E. C. (2001). Viscous-plastic sea ice dynamics with the EVP model: Linearization issues. J. Comput. Phys., 170, 18–38.
Hunke, E. C. and Dukowicz, J. K. (1997). An elastic-viscous-plastic model for sea ice dynamics. J. Phys. Oceanogr., 27, 1849–1867.
Hutchings, J. K. and Hibler, W. D. (2003). Modelling sea ice deformation with a viscous-plastic isotropic rheology. In Ice in the Environment, eds. Squire, V. and Langhorne, P.. Dunedin, New Zealand: University of Otago Press, pp. 358–366.
Jaeger, J. C. and Cook, N. G. W. (1979). Fundamentals of Rock Mechanics, 3rd edn. London: Chapman and Hall.
Kerr, A. D. (1978). On the determination of horizontal forces a floating ice sheet exerts on a structure. CRREL Report, 78-15.
Kwok, R. E. (1998). The radarsat geophysical processor system. In Analysis of SAR Data of the Polar Oceans, eds. Tsatsoulis, C. and Kwok, R.. Berlin: Springer-Verlag, pp. 235–257.
Kwok, R. (2001). Deformation of the Arctic Ocean sea ice cover between November 1996 and April 1997: A qualitative survey. In Scaling Laws in Ice Mechanics, eds. Dempsey, J. P. and Shen, H. H.. Dordrecht: Kluwer Academic Publishing, pp. 315–322.
Kwok, R. (2006). Contrasts in Arctic Ocean sea ice deformation and production in the seasonal and perennial ice zones. J. Geophy. Res., 111, doi:10.1029/2005JC003246.
Kwok, R. and Coon, M. D. (2006). Introduction to special section: Small-scale sea ice kinematics and dynamics. J. Geophys. Res., 111, doi:10.1029/2006JC003877.
Kwok, R., Rothrock, D. A., Stern, H. L. and Cunningham, G. F. (1995). Determination of ice age using lagrangian observations of ice motion. IEEE Trans. Geosci. Remote Sens., 33, 392–400.
Kwok, R., Cunningham, G. F. and Hibler, W. D. (2003). Sub-daily sea ice motion and deformation from radarsat observations. Geophys. Res. Lett., 30, 2218.
Laxon, S., Peacock, N. and Smith, D. (2003). High interannual variability of sea ice thickness in the arctic region. Nature, 425, 947–950.
Lindsay, R. (2002). Ice deformation near SHEBA. J. Geophys. Res., 107, 8042.
Lindsay, R. W. and Rothrock, D. A. (1995). Arctic sea-ice leads from advanced very high-resolution radiometer images. J. Geophys. Res., 100, 4533–4544.
Lockner, D. A., Byerlee, J. D., Kuksenko, V., Pnomarev, A. and Sidorin, A. (1991). Quasi-static fault growth and shear fracture energy in granite. Nature, 350, 39–42.
Marko, J. R. and Thomson, R. E. (1977). Rectilinear leads and internal motions in the ice pack of the western Arctic Ocean. J. Geophys. Res., 82, 979–987.
Marsan, D., Stern, H., Lindsay, R. and Weiss, J. (2004). Scale dependence and localization of the deformation of arctic sea ice. Phys. Rev. Lett., 93, 178501.
Maykut, G. A. (1982). Large-scale heat exchange and ice production in the central Arctic. J. Geophys. Res., 87, 7971–7984.
McNutt, S. L. and Overland, J. E. (2003). Spatial hierarchy in arctic sea ice dynamics. Tellus Ser. A, 55, 181–191.
McPhee, M. G., Kwok, R., Robins, R. and Coon, M. (2005). Upwelling of arctic pycnocline associated with shear motion of sea ice. Geophys. Res. Lett., 32, L10616.
Muehlberger, W. R. (1961). Conjugate joint sets of small dihedral angle. J. Geol., 69, 211–219.
Nye, J. F. (1973). AIDJEX Bulletin No. 21, July 1973, pp. 18–19, ed. Johnson, A.. University of Washington.
O'Neill, R. V., DeAngelis, D. L., Waide, J. B. and Allen, T. F. H. (1986). A Hierarchical Concept of Ecosystems. Princeton: Princeton University Press.
Overland, J. E. and Ukita, J. (2000). Dynamics of arctic sea ice discussed at workshop. EOS, 81, July 11, 2000.
Overland, J. E., Walter, B. A., Curtin, T. B. and Turet, P. (1995). Hierachy and sea ice mechanics: A case study from the Beaufort Sea. J. Geophys. Res., 100, 4559–4571.
Overland, J. E., McNutt, S. L., Salo, S., Groves, J. and Li, S. S. (1998). Arctic sea ice as a granular plastic. J. Geophys. Res., 103, 21,845–21,867.
Parsons, B. L. (1993). The Application of Fractal/Chaos Concepts to Ice Mechanics: A Review. NRC Canada, Institute for Marine Dynamics.
Perovich, D. K., Andreas, E. L., Curry, J. A.et al. (1999). Year on the ice gives climate insights. EOS, Trans. Amer. Geophys. Union, 80, 481, 485–486.
Petrenko, V. F. and Gluschenkov, O. (1996). Crack velocities in freshwater and saline ice. J. Geophys. Res., 101 (B5), 11,541–11,551.
Pritchard, R. (1975). An elastic-plastic constitutive law for sea ice. J. Appl. Mech. Trans. ASME, 42, 379–384.
Rampal, P., Weiss, J., Marsan, D., Lindsay, R. and Stern, H. (2008). Scaling properties of sea ice deformation from buoy dispersion analysis. J. Geophys. Res., 113 (CO3002), doi: 10.1029/2007JC004143.
Richter-Menge, J. A. and Elder, B. C. (1998). Characteristics of pack ice stress in the Alaskan Beaufort Sea. J. Geophys. Res., 103, 21,817–21,829.
Richter-Menge, J. A., McNutt, S. L., Overland, J. E. and Kwok, R. (2002). Relating arctic pack ice stress and deformation under winter conditions. J. Geophys. Res., 107 (C10), 8040.
Russ, J. C. (1994). Fractal Surfaces. New York: Plenum Press.
Sanderson, T. J. O. (1988). Ice Mechanics: Risks to Offshore Structures. London: Graham & Trotman.
Schulson, E. M. (2001). Brittle failure of ice. Eng. Fract. Mech., 68, 1839–1887.
Schulson, E. M. (2004). Compressive shear faults within the arctic sea ice cover on scales large and small. J. Geophys. Res., 109, 1–23.
Schulson, E. M. and Hibler, W. D. (1991). The fracture of ice on scales large and small: Arctic leads and wing cracks. J. Glaciol., 37, 319–323.
Schulson, E. M. and Hibler, W. D. I. (2004). Fracture of the winter sea ice cover on the Arctic Ocean. C. R. Physique, 5, 753–767.
Schulson, E. M., Fortt, A. L., Iliescu, D. and Renshaw, C. E. (2006a). On the role of frictional sliding in the compressive fracture of ice and granite: Terminal vs. post-terminal failure. Acta Mater., 54, 3923–3932.
Schulson, E. M., Fortt, A., Iliescu, D. and Renshaw, C. E. (2006b). Failure envelope of first-year arctic sea ice: The role of friction in compressive fracture. J. Geophys. Res., 111, doi:10.1029/2005JC003234186.
Stern, H. L. and Moritz, R. E. (2002). Sea ice kinematics and surface properties from radarsat synthetic aperture radar during the SHEBA drift. J. Geophys. Res., 107, 8028–8038.
Stern, H. L. and Rothrock, D. A. (1995). Open water production in arctic sea ice: Satellite measurements and model parameterizations. J. Geophys. Res., 100, 20,601–20,612.
Sylvester, A. G. (1988). Strike-slip faults. Geol. Soc. Am. Bull., 100, 1666–1703.
Turcotte, D. L. (1992). Fractals and Chaos in Geology and Geophysics. Cambridge: Cambridge University Press.
Vavrus, S. J. and Harrison, S. P. (2003). The impact of sea ice dynamics on the arctic climate system. Climate Dynamics, 20, 741–757.
Walter, B. A. and Overland, J. E. (1993). The response of lead patterns in the Beaufort Sea to storm-scale wind forcing. Ann. Glaciol., 17, 219–226.
Walter, B. A., Overland, J. E. and Turet, P. (1995). A comparison of satellite-derived and aircraft-measured regional surface sensible heat fluxes over the Beaufort Sea. J. Geophys. Res., 100, 4584–4591.
Weiss, J. (2001a). Fracture and fragmentation of ice: A fractal analysis of scale invariance. Eng. Fract. Mech., 68, 1975–2012.
Weiss, J. (2001b). Scale invariance of fracture surfaces in ice. In IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics, eds. Dempsey, J. P. and Shen, H. H.. Dordrecht: Kluwer Academic Publishers, pp. 217–226.
Weiss, J. (2003). Scaling of fracture and faulting of ice on earth. Surv. Geophys., 24 (2), 185–227.
Weiss, J., Schulson, E. M. and Stern, H. L. (2007). Sea ice rheology in-situ, satellite and laboratory observations: Fracture and friction. Earth Planet. Sci. Lett., doi: 10.1016/j.epsl.2006.11.033.
Zhang, J. L. and Rothrock, D. A. (2005). Effect of sea ice rheology in numerical investigations of climate. J. Geophys. Res., 110 (C8), C08014.