Skip to main content Accessibility help
×
Home
  • Print publication year: 2009
  • Online publication date: February 2010

10 - Brittle failure of ice under tension

Summary

Introduction

Ice fractures under tension in a number of engineering and geophysical situations. Examples include ice breaking by ships (Michel, 1978), the bending of floating ice sheets against offshore structures (Riska and Tuhkuri, 1995), the formation of thermal cracks (Evans and Untersteiner, 1971) and the building of pressure ridges (Hopkins et al., 1999) within the sea ice cover on the Arctic Ocean. Other examples include the fracture of pancake ice within the southern Atlantic Ocean (Dai et al., 2004), the calving of icebergs (Nye, 1957; Nath and Vaughan, 2003) and the crevassing of ice shelves (Rist et al., 1999, 2002; Weiss, 2004). Extra-terrestrial tensile failures include the initiation of polygonal features within the ground ice on Mars (Mellon, 1997; Mangold, 2005) and the formation of long lineaments within the icy crust of Europa (e.g., Greenberg et al., 1998; Greeley et al., 2000). In many cases, fast crack propagation is at play, which is to say that crack growth occurs so rapidly that the dissipation of mechanical energy through creep deformation is not a major consideration. Linear elastic fracture mechanics is then a valid method of analysis. In other cases, such as the formation of crevasses and the slow propagation of cracks within ice shelves, analysis based upon non-linear processes and/or sub-critical crack growth may be more useful (Weiss, 2004). In still other cases, more in the laboratory than in the field, tensile strength is limited by crack nucleation, as will become apparent.

References
Ahmad, S. and Whitworth, R. W. (1988). Dislocation-motion in ice – a study by synchrotron x-ray topography. Phil. Mag. A, 57, 749–766.
Anderson, D. L. and Weeks, W. F. (1958). A theoretical analysis of sea ice strength. Trans. Amer. Geophys. Union, 39, 632–640.
Ashby, M. and Jones, D. R. H. (2005). Engineering Materials 2: An Introduction to Microstructures, Processing and Design, 3rd edn. Oxford: Butterworth-Heinemann.
Assur, A. (1958). Composition of sea ice and its tensile strength. In Arctic Sea Ice. Washington, D.C.: U.S. National Academy of Sciences, pp. 106–138.
Butkovich, T. R. (1954). Ultimate strength of ice. U.S. Snow, Ice and Permafrost Research Establishment, Research Paper, 15.
Butkovich, T. R. (1958). Recommended standards for small-scale ice strength tests. Trans. Eng. Inst. Can., 2, 112–115.
Carter, D. (1971). Lois et mechanismes de l'apparente fracture fragile de la glace de rivière et de lac. Ph.D. thesis, University of Laval.
Cole, D. M. (1988). Crack nucleation in polycrystalline ice. Cold Reg. Sci. Technol., 15, 79–87.
Cole, D. M. (1990). Reversed direct-stress testing of ice: initial experimental results and analysis. Cold Reg. Sci. Technol., 18, 303–321.
Currier, J. H. and Schulson, E. M. (1982). The tensile strength of ice as a function of grain size. Acta Metall., 30, 1511–1514.
Dai, M. R., Shen, H. H., Hopkins, M. A. and Ackley, S. F. (2004). Wave rafting and the equilibrium pancake ice cover thickness. J. Geophys. Res., 109, C07023.
Dash, J. G., Haiying, F. and Wettlaufer, J. S. (1995). The premelting of ice and its environmental consequences. Rep. Prog. Phys., 58, 115–167.
Druez, J., Cloutier, J. and Claveau, L. (1987). Etude comparative de la résistance à la traction et à la compression de la glace atmospherique. J. Physique Coll., 49, C1-337–C331-343.
Duval, P., Ashby, M. F. and Anderman, I. (1983). Rate-controlling processes in the creep of polycrystalline ice. J. Phys. Chem., 87, 4066–4074.
Dykins, J. E. (1970). Ice Engineering: Tensile Properties of Sea Ice Grown in a Confined System. Naval Civil Engineering Laboratory.
Evans, R. J. and Untersteiner, N. (1971). Thermal cracks in floating ice sheets. J. Geophys. Res., 76, 694–703.
Friedel, J. (1964). Dislocations. Addison-Wesley Series in Metallurgy and Materials. New York: Pergamon Press.
Frost, H. J. (2001). Crack nucleation in ice. Eng. Fract. Mech., 68, 1823–1837.
Frost, H. J. and Gupta, V. (1993). Crack nucleation mechanisms and fracture toughness measurements in freshwater ice. ASME, AMD, Vol. 163.
Gold, L. W. (1963). Deformation mechanisms of ice. In Ice and Snow, ed. Kingery, W. D.. Cambridge, Mass.: MIT Press, pp. 8–27.
Greeley, R., Figueredo, P. H., Williams, D. A.et al. (2000). Geologic mapping of Europa. J. Geophys. Res., 105 (E9), 22,559–22,578.
Greenberg, R., Geissler, P., Hoppa, G.et al. (1998). Tectonic processes on Europa: tidal stresses, mechanical response, and visible features. Icarus, 135, 64–78.
Gupta, V. and Archer, P. (1999). Measurement of the grain-boundary tensile strength in columnar freshwater ice. Phil. Mag. Lett., 79, 503–509.
Hawkes, I. and Mellor, M. (1972). Deformation and fracture of ice under uniaxial stress. J. Glaciol., 11, 103–131.
Hopkins, M. A., Tuhkuri, J. and Lensu, M. (1999). Rafting and ridging of thin ice sheets. J. Geophys. Res., 104, 13,605–13,613.
Jaeger, J. C. and Cook, N. G. W. (1979). Fundamentals of Rock Mechanics, 3rd edn. London: Chapman and Hall.
Jones, S. J. and Glen, J. W. (1969). The mechanical properties of single crystals of pure ice. J. Glaciol., 8, 463–473.
Kermani, M., Farzaneh, M. and Gagnon, R. (2008). Bend strength and effective modulus of atmospheric ice. Cold Reg. Sci. Technol., 53, 162–169.
Kuehn, G. A. and Schulson, E. M. (1994). Ductile saline ice. J. Glaciol., 40, 566–568.
Kuehn, G. A., Lee, R. W., Nixon, W. A. and Schulson, E. M. (1990). The structure and tensile behavior of first-year sea ice and laboratory-grown saline ice. J. Offshore Mech. Arctic Eng., 112, 357–363.
Lange, M. A. and Ahrens, T. J. (1983). The dynamic tensile-strength of ice and ice-silicate mixtures. J. Geophys. Res. 88 (B2), 1197–1208.
Lee, R. W. and Schulson, E. M. (1988). The strength and ductility of ice under tension. J. Offshore Mech. Arctic Eng., 110, 187–191.
Liu, F., Baker, I. and Dudley, M. (1995). Dislocation-grain boundary interactions in ice crystals. Phil. Mag. A, 71, 15–42.
Louchet, F. (2006). From individual dislocation motion to collective behaviour. J. Mater. Sci., 41, 2641–2646.
Louchet, F., Weiss, J. and Richeton, T. (2006). Hall-Petch law revisited in terms of collective dislocation dynamics. Phys. Rev. Lett., 97, 0775504.
Mangold, N. (2005). High latitude patterned grounds on Mars: Classification, distribution and climatic control. Icarus, 174, 336–359.
Mellon, M. T. (1997). Small-scale polygonal features on Mars: Seasonal thermal contraction cracks in permafrost. J. Geophys. Res., 102, 25,617–25,628.
Mellor, M. and Hawkes, I. (1971). Measurement of tensile strength by diametral compression of discs and annuli. Eng. Geol., 5, 194–195.
Michel, B. (1978). Ice Mechanics. Quebec: Laval University Press.
Miguel, M. C., Vespignani, A., Zapperi, S., Weiss, J. and Grasso, J. R. (2001). Intermittent dislocation flow in viscoplastic deformation. Nature, 410, 667–671.
Nath, P. C. and Vaughan, D. G. (2003). Subsurface crevasse formation in glaciers and ice sheets. J. Geophys. Res., 108 (B1), 2020, doi :10.1029/2001JB000453.
Nye, J. F. (1957). The distribution of stress and velocity in glaciers and icesheets. Proc. R. Soc. Lond., Ser. A, 239, 113–133.
Orowan, E. (1954). Dislocations and mechanical properties. In Dislocations in Metals, ed. Cohen, M.. New York: American Institute of Mining and Metallurgical Engineers, pp. 69–195.
Parameswaran, V. R. (1982). Fracture criterion for ice using a dislocation model. J. Glaciol., 28, 161–169.
Parsons, B. L., Lal, M., Williams, F. M.et al. (1992). The influence of beam size on the flexural strength of sea ice, fresh-water ice and iceberg ice. Phil. Mag. A, 66, 1017–1036.
Petrenko, V. F. and Whitworth, R. W. (1999). Physics of Ice. New York: Oxford University Press.
Picu, R. C. and Gupta, V. (1995). Crack nucleation in columnar ice due to elastic anistropy and grain boundary sliding. Acta Metall. Mater., 43, 3783–3789.
Picu, R. C. and Gupta, V. (1996). Singularities at grain triple junctions in two-dimensional polycrystals with cubic and orthotropic grains. J. Appl. Mech. T. ASME, 63, 295–300.
Richeton, T., Weiss, J. and Louchet, F. (2005). Dislocation avalanches: Role of temperature, grain size and strain hardening. Acta Mater., 53, 4463–4471.
Richter-Menge, J. A. and Jones, K. F. (1993). The tensile strength of first-year sea ice. J. Glaciol., 39, 609–618.
Riska, K. and Tuhkuri, J. (1995). Application of ice cover mechanics in design and operations of marine structures. Sea Ice Mechanics and Arctic Modeling Workshop, Anchorage, Alaska, Northwest Research Associates, Inc., Bellevue, WA.
Rist, M. A., Sammonds, P. R., Murrell, S. A. F.et al. (1999). Experimental and theoretical fracture mechanics applied to Antarctic ice fracture and surface crevassing. J. Geophys. Res., 104, 2973–2987.
Rist, M. A., Sammonds, P., Oerter, H. and Doake, C. S. M. (2002). Fracture of Antarctic shelf ice. J. Geophys. Res. Solid Earth, 107 (B1), 2002, doi:10.1029/2000JB000058.
Sammonds, P. R., Murrell, S. A. F. and Rist, M. A. (1998). Fracture of multi-year sea ice. J. Geophys. Res., 103, 21,795–21,815.
Schulson, E. M. (1979). An analysis of the brittle to ductile transition in polycrystalline ice under tension. Cold Reg. Sci. Technol., 1, 87–91.
Schulson, E. M. (1987). The fracture of ice 1h. J. Physique, C1-207–C201-207.
Schulson, E. M. and Kuehn, G. A. (1993). Ductile ice. Phil. Mag. Lett., 67, 151–157.
Schulson, E. M., Lim, P. N. and Lee, R. W. (1984). A brittle to ductile transition in ice under tension. Phil. Mag. A, 49, 353–363.
Schulson, E. M., Hoxie, S. G. and Nixon, W. A. (1989). The tensile strength of cracked ice. Phil. Mag. A, 59, 303–311.
Shapiro, L. H. and Weeks, W. F. (1993). The influence of crystallographic and structural properties on the flexural strength of small sea ice beam. Ice Mechanics-1993; 1993 Joint ASME Applied Mechanics and Materials Summer Meeting AMD, New York, American Society of Mechanical Engineers.
Shapiro, L. H. and Weeks, W. F. (1995). Controls on the flexural strength of small plates and beams of first-year sea ice. Ice Mechanics; 1995 Joint ASME Applied Mechanics and Materials Summer Meeting AMD, American Society of Mechanical Engineers.
Shearwood, C. and Whitworth, R. W. (1991). The velocity of dislocations in ice. Phil. Mag. A, 64, 289–302.
Smith, E. and Barnby, J. T. (1967). Crack nucleation in crystalline solids. Met. Sci. J., 1, 56–64.
Stroh, A. N. (1957). A theory of the fracture of metals. Phil. Mag. Supp., 6, 418–465.
Sunder, S. S. and Wu, M. S. (1990). Crack nucleation due to elastic anisotropy in polycrystalline ice. Cold Reg. Sci. Technol., 18, 29–47.
Timco, G. W. and O'Brien, S. (1994). Flexural strength equation for sea ice. Cold Reg. Sci. Technol., 22, 285–298.
Weeks, W. F. (1962). Tensile strength of NaCl ice. J. Glaciol., 4, 25–52.
Weeks, W. F. and Assur, A. (1969). Fracture of lake and sea ice. U.S. Cold Regions Research and Engineering Laboratory, Research Report, 269.
Weiss, J. (2001). Fracture and fragmentation of ice: a fractal analysis of scale invariance. Eng. Fract. Mech., 68, 1975–2012.
Weiss, J. (2004). Subcritical crack propagation as a mechanism of crevasse formation and iceberg calving. J. Glaciol., 50, 109–115.
Weiss, J. and Grasso, J. R. (1997). Acoustic emission in single crystals of ice. J. Phys. Chem. B, 101, 6113–6117.
Zener, C. (1948). Elasticity and Anelasticity of Metals. Chicago: Chicago University Press.