Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-23T10:46:47.799Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  29 December 2010

Tibor J. Dunai
Affiliation:
University of Edinburgh
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Cosmogenic Nuclides
Principles, Concepts and Applications in the Earth Surface Sciences
, pp. 155 - 179
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ackert, R. P., Singer, B. S., Guillou, H., Kaplan, M. R. and Kurz, M. D., 2003. Long-term cosmogenic He-3 production rates from Ar-40/Ar-39 and K-Ar dated Patagonian lava flows at 47 degrees S, Earth Planet. Sci. Lett. 210 119–136.CrossRefGoogle Scholar
Agnew, H. M., Bright, W. C. and Froman, D., 1947. Distribution of neutrons in the atmosphere, Phys. Rev. 72 203.CrossRefGoogle Scholar
Albrecht, A., Herzog, G., Klein, J., Dezfouly-Arjomandy, B. and Goff, F., 1993. Quaternary erosion and cosmic ray exposure history drived from 10Be and 26Al produced in situ – An example from Pajarito Plateau, Valles Caldera region, Geology 21 551–554.Google Scholar
Albrecht, A., Schnabel, C., Vogt, S., Xue, S., Herzog, G. F., Begemann, F., Weber, H. W., Middleton, R., Fink, D. and Klein, J., 2000. Light noble gases and cosmogenic radionuclides in Estherville, Budulan, and other mesosiderites: Implications for exposure histories and production rates, Meteoritics Planet. Sci. 35 975–986.CrossRefGoogle Scholar
Alvarez-Marron, J., Hetzel, R., Niedermann, S., Menendez, R. and Marquinez, J., 2008. Origin, structure and exposure history of a wave-cut platform more than 1 Ma in age at the coast of northern Spain: A multiple cosmogenic nuclide approach, Geomorphology 93 316–334.CrossRefGoogle Scholar
Anderson, R. K., Miller, G. H., Briner, J. P., Lifton, N. A. and DeVogel, S. B., 2008. A millennial perspective on Arctic warming from C-14 in quartz and plants emerging from beneath ice caps, Geophys. Res. Lett. 35 L01502.CrossRefGoogle Scholar
Anderson, R. S., Repka, J. L. and Dick, G. S., 1996. Explicit treatment of inheritance in dating depositional surfaces using in situ10Be and 26Al, Geology 24 47–51.2.3.CO;2>CrossRefGoogle Scholar
Andrews, J. N., 1985. The isotopic composition of radiogenic helium and its use to study groundwater movements in confined aquifers, Chem. Geol. 49 339–351.CrossRefGoogle Scholar
Andrews, J. N., Davis, S. N., Fabryka-Martin, J., Fontes, J.-C., Lehmann, B. E., Loosli, H. H., Michelot, J.-L., Moser, H., Smith, B. and Wolf, M., 1989. The in situ production of radioisotopes in rock matrices with particular reference to the Stripa granite, Geochim. Cosmochim. Acta 53 1803–1815.CrossRefGoogle Scholar
Andrews, J. N. and Kay, R. L. F., 1982. Natural production of tritium in permeable rocks, Nature 298 361–363.CrossRefGoogle Scholar
,ASTM, 2008. Standard Practice for Dealing with Outlying Observations, West Conshohocken: ASTM International, 18 pp.
Audi, G., Bersillon, O., Blachot, J. and Wapstra, A. H., 2003. The NUBASE evaluation of nuclear and decay properties, Nucl. Phys. A 729 3–128.CrossRefGoogle Scholar
Badenhoop, J. K. and Weinhold, F., 1997. Natural steric analysis: Ab initio van der Waals radii of atoms and ions, J. Chem. Phys. 107 5422–5432.CrossRefGoogle Scholar
Baglin, C. M., 2008. Nuclear Data Sheets for A = 81, Nucl. Data Sheets 109 2257–2437.CrossRefGoogle Scholar
Bähr, R., Lippolt, H. J. and Wernicke, R. S., 1994. Temperature-induced 4He degassing of specularite and botryoidal hematite: A 4He retentivity study, J. Geophys. Res. 99 17695–17707.CrossRefGoogle Scholar
Balco, G., Briner, J., Finkel, R., Rayburn, J. A., Ridge, J. C. and Schaefer, J. M., 2009. Regional beryllium-10 production rate calibration for late-glacial northeastern North America, Quat. Geochronol. 4 93–107.CrossRefGoogle Scholar
Balco, G. and Rovey, C. W., 2008. An isochron method for cosmogenic nuclide dating of buried soils and sediments, Am. J. Sci. 308 1083–1114.CrossRefGoogle Scholar
Balco, G., Rovey, C. W. and Stone, J. O., 2005. The first glacial maximum in North America, Science 307 222.CrossRefGoogle ScholarPubMed
Balco, G. and Schaefer, J. M., 2006. Cosmogenic-nuclide and varve chronologies for the deglaciation of southern New England, Quat. Geochronol. 1 15–28.CrossRefGoogle Scholar
Balco, G. and Shuster, D. L., 2009. Production rate of cosmogenic 21Ne in quartz estimated from 10Be, 26Al, and 21Ne concentrations in slowly eroding Antarctic bedrock surfaces, Earth Planet. Sci. Lett. 281 48–58.CrossRefGoogle Scholar
Balco, G., Stone, J. O., Lifton, N. A. and Dunai, T. J., 2008. A complete and easily accessible means of calculating surface exposure ages or erosion rates from 10Be and 26Al measurements, Quat. Geochronol. 3 174–195.CrossRefGoogle Scholar
Ballentine, C. J. and Burnard, P. G., 2002. Production, release and transport of noble gases in the continental crust. In: Porcelli, D., Ballentine, C. J. and Wieler, R., (Eds), Noble Gases in Geochemistry and Cosmochemistry, Reviews in Mineralogy and Geochemistry 47, Washington: The Mineralogical Society of America, pp. 481–538.Google Scholar
Barford, N. C. and Davis, G., 1952. The angular distribution and attenuation of the star-producing component of cosmic rays, Proc. Royal Soc. London A 214 225–237.CrossRefGoogle Scholar
Barg, E., Lal, D., Pavich, M. J., Caffee, M. and Southon, J. R., 1997. Beryllium geochemistry in soils: evaluation of Be-10/Be-9 ratios in authigenic minerals as a basis for age models, Chem. Geol. 140 237–258.CrossRefGoogle Scholar
Barker, D. L., Jull, A. J. T. and Donahue, D. J., 1985. Excess 14C abundances in uranium ores – possible evidence for emission from uranium-series isotopes, Geophys. Res. Lett. 12 737–740.CrossRefGoogle Scholar
Benedetti, L., Finkel, R., King, G., Papanastassiou, D., Ryerson, F., Flerit, F., Farber, D. and Stavrakakis, , G., 2003. Motion on the Kaparelli fault (Greece) prior to the 1981 earthquake sequence determined from 36Cl cosmogenic dating, Terra Nova 15 118–124.CrossRefGoogle Scholar
Benedetti, L., Finkel, R., Papanastassiou, D., King, G., Armijo, R., Ryerson, F. J., Farber, D. and Flerit, F., 2002. Postglacial slip history of the Sparta fault (Greece) determined by 36Cl cosmogenic dating: evidence for non-periodic earthquakes, Geophys. Res. Lett. 29 8701–8704.CrossRefGoogle Scholar
Bernatorwicz, T., Brannon, J., Cowsik, R., Hohenberg, C. and Podosek, F. A., 1993. Precise determination of relative and absolute β-decay rates of 128Te and 130Te, Phys. Rev. C 47 806–825.CrossRefGoogle Scholar
Bhattacharyya, A. and Mitra, B., 1997. Changes in cosmic ray cut-off rigidities due to secular variations of the geomagnetic field, Ann. Geophys. 15 734–739.CrossRefGoogle Scholar
Bierman, P. and Steig, E. J., 1996. Estimating rates of denudation using cosmogenic isotope abundances in sediment, Earth Surf. Landforms 21 125–139.3.0.CO;2-8>CrossRefGoogle Scholar
Bierman, P. R. and Caffee, M., 2001. Slow rates of rock surface erosion and sediment production across the Namib Desert and escarpment, southern Africa, Am. J. Sci. 301 326–358.CrossRefGoogle Scholar
Bierman, P. R., Gillespie, A. R., Caffee, M. W. and Elmore, D., 1995. Estimating erosion rates and exposure ages with 36Cl produced by neutron activation, Geochim. Cosmochim. Acta 59 3779–3798.CrossRefGoogle Scholar
Binnie, S. A., Phillips, W. M., Summerfield, M. A. and Fifield, L. K., 2006. Sediment mixing rapidly and basin-wide cosmogenic nuclide analysis in eroding mountainous environments, Quat. Geochronol. 1 4–14.CrossRefGoogle Scholar
Binnie, S. A., Phillips, W. M., Summerfield, M. A. and Fifield, L. K., 2007. Tectonic uplift, threshold hillslopes, and denudation rates in a developing mountain range, Geology 35 743–746.CrossRefGoogle Scholar
Binnie, S. A., Phillips, W. M., Summerfield, M. A., Fifield, L. K. and Spotila, J. A., 2008. Patterns of denudation through time in the San Bernardino Mountains, California: Implications for early-stage orogenesis, Earth Planet. Sci. Lett. 278 62–72.CrossRefGoogle Scholar
Blard, P. H., Bourlès, D., Pik, R. and Lave, J., 2008a. In situ cosmogenic Be-10 in olivines and pyroxenes, Quat. Geochronol. 3 196–205.CrossRefGoogle Scholar
Blard, P. H. and Farley, K. A., 2008. The influence of radiogenic 4He on cosmogenic 3He determinations in volcanic olivine and pyroxene, Earth Planet. Sci. Lett. 276 20–29.CrossRefGoogle Scholar
Blard, P. H., Lave, J., Pik, R., Quindelleur, X., Bourles, D. L. and Kieffer, G., 2005. Fossil cosmogenic 3He record from K–Ar dated basaltic flows of Mount Etna volcano (Sicily, 38°N): Evaluation of a new paleoaltimeter, Earth Planet. Sci. Lett. 236 613–631.CrossRefGoogle Scholar
Blard, P. H., Pik, R., Lavé, J., Bourlès, D., Bunard, P. G., Yokochi, R., Marty, B. and Trusdell, F., 2006. Cosmogenic 3He production rates revisited from evidences of grain size dependent release of matrix sited helium, Earth Planet. Sci. Lett. 247 222–234.CrossRefGoogle Scholar
Blard, P. H., Puchol, N. and Farley, K. A., 2008b. Constraints on the loss of matrix-sited helium during vacuum crushing of mafic phenocrysts, Geochim. Cosmochim. Acta 72 3788–3803.CrossRefGoogle Scholar
Blau, M. and Wambacher, H., 1937. Disintegration processes by cosmic-rays with simultaneous emission of several heavy particles, Nature 140 585.CrossRefGoogle Scholar
Boaretto, E., Berkovits, D., Hass, M., Hui, S., Kaufman, A., Paul, M. and Weiner, S., 2000. Dating of prehistoric caves sediments and flints using 10Be and 26Al in quartz from Tabun Cave (Israel), Nucl. Instr. Meth. Phys. Res. B 172 767–771.CrossRefGoogle Scholar
Boezio, M., Carlson, P., Francke, T., Weber, N., Suffert, M., Hof, M., Menn, W., Simon, M., Stephens, S. A., Bellotti, R., Cafagna, F., Circella, M., Marzo, C., Finetti, N., Papini, P., Piccardi, S., Spillantini, P., Ricci, M., Casolino, M., Pascala, M. P., Morselli, A., Picozza, P., Sparvoli, R., Barbiellini, G., Schiavon, P., Vacchi, A., Zampa, N., Grimani, C., Mitchel, J. W., Ormes, J. F., Streitmatter, R. E., Bravar, U., Golden, R. L. and Stochaj, S. J., 2000. Measurement of the flux of atmospheric muons with the CAPRICE94 apparatus, Phys. Rev. D 63 032007.Google Scholar
Bramblett, R. L., Ewing, R. I. and Bonner, T. W., 1960. A new type of neutron spectrometer, Nucl. Instr. Meth. Phys. Res. 9 1–12.CrossRefGoogle Scholar
Braucher, R., Benedetti, L., Bourlès, D., Brown, R. T. and Chardon, D., 2005. Use of in situ-produced Be-10 in carbonate-rich environments: A first attempt, Geochim. Cosmochim. Acta 69 1473–1478.CrossRefGoogle Scholar
Braucher, R., Bourlès, D. L., Brown, E. T., Colin, F., Muller, J.-P., Braun, J.-J., Delaune, M., Edou Minko, A., Lescouet, C., Raisbeck, G. M. and Yiou, F., 2000. Application of in situ-produced cosmogenic 10Be and 26Al to the study of lateritic soil development in tropical forest: theory and examples from Cameroon and Gabon, Chem. Geol. 170 95–111.CrossRefGoogle Scholar
Braucher, R., Bourlès, D. L. and Colin, F., 1998a. Use of in situ-produced cosmogenic 10-Be for the study of Brazilian lateritic soil evolution, Annual Meeting of the Geological Society of America, GSA, Toronto.
Braucher, R., Bourlès, D. L., Colin, F., Brown, E. T. and Boulangé, B., 1998b. Brazilian laterite dynamics using in situ-produced 10Be, Earth Planet. Sci. Lett. 163 197–205.CrossRefGoogle Scholar
Braucher, R., Colin, F., Brown, E. T., Bourles, D. L., Bamba, O., Raisbeck, G. M., Yiou, F. and Koud, J. M., 1998c. African laterite dynamics using in situ-produced Be-10, Geochim. Cosmochim. Acta 62 1501–1507.CrossRefGoogle Scholar
Braucher, R., Del Castillo, P., Siame, L., Hidy, A., J. and Bourlès, D., 2009. Determination of both exposure time and denudation rate from an in situ-produced 10Be depth profile: A mathematical proof of uniqueness. Model sensitivity and applications to natural cases, Quat. Geochronol. 4 56–67.Google Scholar
Briner, J. P., Miller, G. H., Davis, P. T. and Finkel, R. C., 2005. Cosmogenic exposure dating in arctic glacial landscapes: implications for the glacial history of northeastern Baffin Island, Arctic Canada, Can. J. Earth Sci. 42 67–84.CrossRefGoogle Scholar
Briner, J. P., Miller, G. H., Davis, P. T. and Finkel, R. C., 2006. Cosmogenic radionuclides from fiord landscapes support differential erosion by overriding ice sheets, Geol. Soc. Am. Bull. 118 406–420.CrossRefGoogle Scholar
Brook, E. J., Brown, E. T., Kurz, M. D., Ackert, R. P., Raisbeck, G. M. and Yiou, F., 1995a. Constraints on age, erosion and uplift of Neogene glacial deposits in the Transantarctic Mountains determined from in situ cosmogenic 10Be and 26Al, Geology 23 1063–1066.2.3.CO;2>CrossRefGoogle Scholar
Brook, E. J., Kurz, M. D., Ackert, J. R. P., Denton, G. H., Brown, E. T., Raisbeck, G. M. and Yiou, F., 1993. Chronology of Taylor Glacier advances in Arena Valley, Antarctica, using in situ cosmogenic 3He and 10Be, Quat. Res. 39 11–23.CrossRefGoogle Scholar
Brook, E. J., Kurz, M. D., Ackert, R. P., Raisbeck, G. M. and Yiou, F., 1995b. Cosmogenic nuclide exposure ages and glacial history of late Quaternary Ross Sea drift in McMurdo Sound, Antarctica, Earth Planet. Sci. Lett. 131 41–56.CrossRefGoogle Scholar
Brown, E. T., Edmont, J. M., Raisbeck, G. M., Yiou, F., Kurz, M. D. and Brook, E. J., 1991. Examination of surface exposure ages of Antarctic moraines using in situ produced 10Be and 26Al, Geochim. Cosmochim. Acta 55 2269–2283.CrossRefGoogle Scholar
Brown, E. T., Stallard, R. F., Larsen, M. C., Raisbeck, G. M. and Yiou, F., 1995. Denudation rates determined from the accumulation of in situ produced 10Be in the Luquillo Experimental forest, Puerto Rico, Earth Planet. Sci. Lett. 129 193–202.CrossRefGoogle Scholar
Brown, E. T., Trull, W. T., Jean-Baptiste, P., Raisbeck, G., Bourlès, D., Yiou, F. and Marty, B., 2000. Determination of cosmogenic production rates of 10Be, 3He, and 3H in water, Nucl. Inst. Meth. Phys. Res. B 172 873–883.CrossRefGoogle Scholar
Brown, R. T., Brook, E. J., Raisbeck, G. M., Yiou, F. and Kurz, M. D., 1992. Effective attenuation length of cosmic rays producing 10Be and 26Al in quartz: implications for exposure dating, Geophys. Res. Lett. 19 369–372.CrossRefGoogle Scholar
Browne, J. C. and Berman, B. L., 1973. Neutron-capture cross-sections for 128Te and 130Te and the xenon anomaly in old tellurium ores, Phys. Rev. C 8 154–154.CrossRefGoogle Scholar
Bruno, L. A., Baur, H., Graf, T., Schlüchter, C., Signer, P. and Wieler, R., 1997. Dating of Sirius Group tillites in the Antarctic Dry valleys with cosmogenic 3He and 21Ne, Earth Planet. Sci. Lett. 147 37–54.CrossRefGoogle Scholar
Burbank, D. W., Leland, J., Fielding, E., Anderson, R. S., Brozovic, N., Reid, M. R. and Duncan, C., 1996. Bedrock incision, rock uplift and threshold hillslope in the northwestern Himalayas, Nature 379 505–510.CrossRefGoogle Scholar
Burke, B. C., Heimsath, A. M. and White, A. F., 2007. Coupling chemical weathering with soil production across soil-mantled landscapes, Earth Surf. Process. Landforms 32 853–873.CrossRefGoogle Scholar
Carizzo, D., González, G. and Dunai, T. J., 2008. Constricción neógena en la Cordillera de la Costa, norte de Chile: neotectónica y datación de superficies con 21Ne cosmogénico, Revista Geol. Chile 35 1–38.Google Scholar
Cerling, T. E. and Craig, H., 1994a. Cosmogenic 3He production rates from 39°N to 46°N lattitude, western USA and France, Geochim. Cosmochim. Acta 58 249–255.CrossRefGoogle Scholar
Cerling, T. E. and Craig, H., 1994b. Geomorphology and in-situ cosmogenic isotopes, Annu. Rev. Earth Planet. Sci. 22 273–317.CrossRefGoogle Scholar
Cerling, T. E., Webb, R. H., Poreda, R. J., Rigby, A. D. and Melis, T. S., 1999. Cosmogenic 3He ages and frequency of late Holocene debris flows from Prospect Canyon, Grand Canyon, USA, Geomorphol. 27 93–111.Google Scholar
Chadwick, M. B., Obložinský, P., Herman, M., Greene, N. M., McKnight, R. D., Smith, D. L., Young, P. G., MacFarlane, R. E., Hale, G. M., Frankle, S. C., Kahler, A. C., Kawano, T., Little, R. C., Madland, D. G., Moller, P., Mosteller, R. D., Page, P. R., Talou, P., Trellue, H., White, M. C., Wilson, W. B., Arcilla, R., Dunford, C. L., Mughabghab, S. F., Pritychenko, B., Rochman, D., Sonzogni, A. A., Lubitz, C. R., Trumbull, T. H., Weinman, J. P., Brown, D. A., Cullen, D. E., Heinrichs, D. P., McNabb, D. P., Derrien, H., Dunn, M. E., Larson, N. M., Leal, L. C., Carlson, A. D., Block, R. C., Briggs, J. B., Cheng, E. T., Huria, H. C., Zerkle, M. L., Kozier, K. S., Courcelle, A., Pronyaev, V. and Marck, S. C., 2006. ENDF/B-VII.0: Next Generation Evaluated Nuclear Data Library for Nuclear Science and Technology, Nucl. Data Sheets 107 2931–3060.CrossRefGoogle Scholar
Charalambus, S., 1971. Nuclear transmutation by negative stopped muons and the activity induced by the cosmic-ray muons, Nucl. Phys. A166 145–161.CrossRefGoogle Scholar
Chemeleff, J., Blanckenburg, F., Kossert, K. and Jakob, D., 2009. Determination of the 10Be half-life by Multi Collector ICP-Mass Spectrometry and Liquid Scintillation Counting, Geochim. Cosmochim. Acta. 73 A221.Google Scholar
Clark, D. H., Bierman, P. R. and Larsen, P., 1995. Inproving in situ cosmogenic chronometers, Quat. Res. 44 367–377.CrossRefGoogle Scholar
Clarke, W. B., Beg, M. A. and Craig, H., 1969. Excess 3He in the sea: evidence for terrestrial primordial helium, Earth Planet. Sci. Lett. 6 213–220.CrossRefGoogle Scholar
Clem, J. M. and Dorman, L. I., 2000. Neutron monitor response functions, Space Sci. Rev. 93 335–359.CrossRefGoogle Scholar
Codilean, A. T., 2006. Calculation of the cosmogenic nuclide production topographic shielding scaling factor for large areas using DEMs, Earth Surf. Process. Landforms 31 785–794.CrossRefGoogle Scholar
Codilean, A. T., Bishop, P., Stuart, F. M., Hoey, T. B., Fabel, D. and Freeman, S. P. H. T., 2008. Single-grain cosmogenic 21Ne concentrations in fluvial sediments reveal spatially variable erosion rates, Geology 36 159–162.CrossRefGoogle Scholar
Conversi, M. and Rothwell, P., 1954. Angular distribution in cosmic ray stars at 3500 meters, Nuovo Cimiento 12 191.CrossRefGoogle Scholar
Craig, H. and Poreda, R. J., 1986. Cosmogenic 3He in terrestrial rocks: the summit lavas of Maui, Proc. Natl. Acad. Sci. 83 1970–1974.CrossRefGoogle Scholar
Daeron, M., Benedetti, L., Tapponnier, P., Sursock, A. and Finkel, R. C., 2004. Constraints on the post-25-ka slip rate of the Yammouneh fault (Lebanon) using in situ cosmogenic Cl-36 dating of offset limestone-clast fans, Earth Planet. Sci. Lett. 227 105–119.CrossRefGoogle Scholar
Dalrymple, G. B. and Lanphere, M. A., 1969 Potassium-Argon Dating, Freeman, San Francisco, 258 pp.Google Scholar
Damon, P. E. and Jirikowic, J. L., 1992. The sun as a low-frequency harmonic oscillator, Radiocarbon 34 199–205.CrossRefGoogle Scholar
Davis, P. T., Bierman, P. R., Marsella, K. A., Caffee, M. W. and Southon, J. R., 1999. Cosmogenic analysis of glacial terrains in the eastern Canadian Arctic: a test for inherited nuclides and the effectiveness of glacial erosion, Ann. Glaciol. 28 181–188.CrossRefGoogle Scholar
Davis, R. and Schaeffer, O. A., 1955. Chlorine-36 in nature, Ann. NY Acad. Sci. 62 105–122.CrossRefGoogle Scholar
Laeter, J. R., 1998. Mass spectrometry and geochronology, Mass Spec. Rev. 17 97–125.3.0.CO;2-J>CrossRefGoogle Scholar
Deer, W. A., Howie, R. A. and Zussman, J., 1992. The Rock Forming Minerals, New York: John Wiley & Sons, Inc., 696 pp.Google Scholar
Desilets, D. and Zreda, M., 2003. Spatial and temporal distribution of secondary cosmic-ray nucleon intensities and applications to in situ cosmogenic dating, Earth Planet. Sci. Lett. 206 21–42.CrossRefGoogle Scholar
Desilets, D., Zreda, M., Almasi, P. F. and Elmore, D., 2006a. Determination of cosmogenic 36Cl in rocks by isotope dilution: innovations, validation and error propagation, Chem. Geol. 233 185–195.CrossRefGoogle Scholar
Desilets, D., Zreda, M. and Lifton, N. A., 2001. Comment on “Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation” by Tibor J. Dunai, Earth Planet. Sci. Lett. 188 283–287.CrossRefGoogle Scholar
Desilets, D., Zreda, M. and Prabu, T., 2006b. Extended scaling factors for in situ cosmogenic nuclides: New measurements at low latitude, Earth Planet. Sci. Lett. 246 265–276.CrossRefGoogle Scholar
Desilets, D., Zreda, M. and Terré, T., 2007. Scientist water equivalent measured with cosmic rays at 2006 AGU Fall Meeting, Eos Trans. AGU 88 521–536.CrossRefGoogle Scholar
Diehl, R., Halloin, H., Kretschmer, K., Lichti, G. G., Schönfelder, V., Strong, A. W., Kienlin, A., Wang, W., Jean, P., Knödlseder, J., Roques, J. P., Weidenspointner, G., Schanne, S., Hartmann, D. H., Winkler, C. and Wunderer, C., 2006. Radioactive Al-26 from massive stars in the Galaxy, Nature 439 45–47.CrossRefGoogle Scholar
Dixit, K. R., 1955. The statistics of 29000 stars observed in nuclear emulsions in Kenya, Z. Naturforschung 10 339–341.Google Scholar
Dorman, L. I., Valdés-Galicia, J. F. and Dorman, I. V., 1999. Numerical simulation and analytical description of solar neutron transport in the Earth's atmosphere, J. Geophys. Res. 104 22417–22426.CrossRefGoogle Scholar
Dorman, L. I., Villoresi, G., Iucci, N., Parisi, M., Tyasto, M. I., Danilova, , , O. A. and Ptitsyna, N. G., 2000. Cosmic ray survey to Antarctica and coupling functions for neutron component near solar minimum (1996–1997) 3. Geomagnetic effects and coupling functions, J. Geophys. Res. 105 21047–21056.Google Scholar
Dugan, B., Lifton, N. and Jull, A. J. T., 2008. New production rate estimates for in situ cosmogenic 14C, Geochim. Cosmochim. Acta 72 A231.Google Scholar
Duhnforth, M., Densmore, A. L., Ivy-Ochs, S., Allen, P. A. and Kubik, P. W., 2007. Timing and patterns of debris flow deposition on Shepherd and Symmes creek fans, Owens Valley, California, deduced from cosmogenic Be-10, J. Geophys. Res. Earth Surf. 112 F03S15.CrossRefGoogle Scholar
Dunai, T. J., 2000. Scaling factors for production rates of in-situ produced cosmogenic nuclides: a critical reevaluation, Earth Planet. Sci. Lett. 176 157–169.CrossRefGoogle Scholar
Dunai, T. J., 2001a. Influence of secular variation of the geomagnetic field on production rates of in-situ produced cosmogenic nuclides, Earth Planet. Sci. Lett. 193 197–212.CrossRefGoogle Scholar
Dunai, T. J., 2001b. Reply to comment on “Scaling factors for production rates of in situ produced cosmogenic nuclides: a critical reevaluation” by Darin Desilets, Marek Zreda and Nathaniel Lifton, Earth Planet. Sci. Lett. 188 289–298.CrossRefGoogle Scholar
Dunai, T. J., González López, G. A. and Juez-Larré, J., 2005. Oligocene-Miocene age of aridity in the Atacama Desert revealed by exposure dating of erosion-sensitive landforms, Geology 33 311–324.CrossRefGoogle Scholar
Dunai, T. J. and Porcelli, D., 2002. Storage and transport of noble gases in the subcontinental lithosphere. In: Porcelli, D., Ballentine, C. and Wieler, R., (Eds), Noble Gases in Cosmochemistry and Geochemistry, Reviews in Mineralogy and Geochemistry 47, Washington: The Mineralogical Society of America, pp. 371–410.Google Scholar
Dunai, T. J. and Roselieb, K., 1996. Sorption and diffusion of helium in garnet: implications for volatile tracing and dating, Earth Planet. Sci. Lett. 139 411–421.CrossRefGoogle Scholar
Dunai, T. J. and Stuart, F. M., 2009. Reporting of cosmogenic nuclide data for exposure age and erosion rate determinations, Quat. Geochronol. doi:10.1016/j.quageo.2009.1004.1003.CrossRef
Dunai, T. J., Stuart, F. M., Pik, R., Burnard, P. G. and Gayer, E., 2007. Production of 3He in crustal rocks by cosmogenic thermal neutrons, Earth Planet. Sci. Lett. 258 228–236.CrossRefGoogle Scholar
Dunai, T. J. and Wijbrans, J. R., 2000. Long-term cosmogenic 3He production rates (152 ka–1.35 Ma) from 40Ar/39Ar dated basalt flows at 29ºN latitude, Earth Planet. Sci. Lett. 176 147–156.CrossRefGoogle Scholar
Dunne, J., Elmore, D. and Muzikar, P., 1999. Scaling factors for the rates of production of cosmogenic nuclides for geometric shielding and attenuation at depth on sloped surfaces, Geomorphol. 27 3–11.CrossRefGoogle Scholar
Eberhardt, P., Eugster, O. and Marti, K., 1965. A redetermination of the isotopic composition of atmospheric neon, Z. Naturforschung 20a 623–624.Google Scholar
Eidelman, S., Hayes, K. G., Olive, K. A., Aguilar-Benitez, M., Amsler, C., Asner, D., Babu, K. S., Barnett, R. M., Beringer, J., Burchat, P. R., Carone, C. D., Caso, C., Conforto, G., Dahl, O., D'Ambrosio, G., Doser, M., Feng, J. L., Gherghetta, T., Gibbons, L., Goodman, M., Grab, C., Groom, D. E., Gurtu, A., Hagiwara, K., Hernandez-Rey, J. J., Hikasa, K., Honscheid, K., Jawahery, H., Kolda, C., Kwon, Y., Mangano, M. L., Manohar, A. V., March-Russell, J. and Masoni, A., 2004. Review of particle physics, Phys. Lett. B 592 1–1109.CrossRefGoogle Scholar
Elsasser, W., Ney, E. P. and Winckler, J. R., 1956. Cosmic-ray intensity and geomagnetism, Nature 178 1226–1227.CrossRefGoogle Scholar
Eugster, O., 1988. Cosmic-ray production-rates for He-3, Ne-21, Ar-38, Kr-83, and Xe-126 in chondrites based on 81Kr exposure ages, Geochim. Cosmochim. Acta 52 1649–1662.CrossRefGoogle Scholar
Evans, J. M., 2002. Calibration of the Production Rates of Cosmogenic 36Cl from Potassium, Ph.D. dissertation, Australian National University.Google Scholar
Evans, J. M., Stone, J. O. H., Fifield, L. K. and Cresswell, R. G., 1997. Cosmogenic chlorine-36 production in K-feldspar, Nucl. Instr. Meth. Phys. Res. B 123 334–340.CrossRefGoogle Scholar
Evenstar, L. A., Hartley, A. J., Stuart, F. M., Mather, A. E., Rice, C. M. and Chong, G., 2009. Multiphase development of the Atacama Planation Surface recorded by cosmogenic He-3 exposure ages: Implications for uplift and Cenozoic climate change in western South America, Geology 37 27–30.CrossRefGoogle Scholar
Fabel, D., Stroeven, A. P., Harbor, J., Kleman, J., Elmore, D. and Fink, D., 2002. Landscape preservation under Fennoscandian ice sheets determined from in situ produced Be-10 and Al-26, Earth Planet. Sci. Lett. 201 397–406.CrossRefGoogle Scholar
Farber, D. L., Meriaux, A. S. and Finkel, R. C., 2008. Attenuation length for fast nucleon production of 10Be derived from near-surface production profiles, Earth Planet. Sci. Lett. 274 295–300.CrossRefGoogle Scholar
Farley, K. A., 2007. He diffusion systematics in minerals: Evidence from synthetic monazite and zircon structure phosphates, Geochim. Cosmochim. Acta 71 4015–4052.CrossRefGoogle Scholar
Farley, K. A., Libarkin, J., Mukhopadhyay, S. and Amidon, W., 2006. Cosmogenic and nucleogenic 3He in apatite, titanite, and zircon, Earth Planet. Sci. Lett. 248 451–461.CrossRefGoogle Scholar
Farley, K. A., Wolf, R. A. and Silver, L. T., 1996. The effects of long alpha-stopping distances on (U-Th)/He ages, Geochim. Cosmochim. Acta 60 4223–4229.CrossRefGoogle Scholar
Faure, G. and Mensing, T. M., 2004. Isotopes: Principles and Applications, Chichester: John Wiley & Sons, Ltd, 928 pp.Google Scholar
Filges, D., Goldenbaum, F., Enke, M., Galin, J., Herbach, C. M., Hilscher, D., Jahnke, U., Letourneau, A., Lott, B., Neef, R. D., Nunighoff, K., Paul, N., Peghaire, A., Pienkowski, L., Schaal, H., Schroder, U., Sterzenbach, G., Tietze, A., Tishchenko, V., Toke, J. and Wohlmuther, M., 2001. Spallation neutron production and the current intra-nuclear cascade and transport codes, Eur. Phys. J. A 11 467–490.CrossRefGoogle Scholar
Fodor, L., Bada, G., Csillag, G., Horváth, E., Ruszkiczay-Rüdiger, Z., Palotás, K., Síkhegyi, F., Timár, G., Cloetingh, S. and Horváth, F., 2005. An outline of neotectonics and morphotectonics of the western and central Pannonian Basin, Tectonophys. 410 15–41.CrossRefGoogle Scholar
Fortier, S. M. and Giletti, B. J., 1989. An empirical model for predicting diffusion coefficients in silicate minerals, Science 245 1481–1484.CrossRefGoogle ScholarPubMed
Frankel, K. L., Brantley, K. S., Dolan, J. F., Finkel, R. C., Klinger, R. E., Knott, J. R., Machette, M. N., Owen, L. A., Phillips, F. M., Slate, J. L. and Wernicke, B. P., 2007. Cosmogenic Be-10 and Cl-36 geochronology of offset alluvial fans along the northern Death Valley fault zone: Implications for transient strain in the eastern California shear zone, J. Geophys. Res. Earth Surf. 112 B06407.CrossRefGoogle Scholar
Gao, X., Gao, B., Shen, G. and Granger, D., 2009. Age of Zhoukoudian determined with 26Al/10Be burial dating, Nature 458 198–200.Google Scholar
Gayer, E., Mukhopadhyay, S. and Meade, B. J., 2008. Spatial variability of erosion rates inferred from the frequency distribution of cosmogenic He-3 in olivines from Hawaiian river sediments, Earth Planet. Sci. Lett. 266 303–315.CrossRefGoogle Scholar
Gilbert, G. K., 1877. Report on the Geology of the Henry Mountains, Washington DC: Government Printing Office, 160 pp.Google Scholar
Gladkis, L. G., Fifield, L. K., Morton, C., Barrows, T. T. and Tims, S. G., 2007. Manganese-53: Development of the AMS technique for exposure-age dating applications, Nucl. Instr. Meth. Phys. Res. B 259 236–240.CrossRefGoogle Scholar
Goethals, M., Hetzel, R., Niedermann, S., Wittmann, H., Fenton, C. R., Christl, M., Kubik, P. and Blanckenburg, F., 2009a. An improved experimental determination of cosmogenic 10Be/21Ne and 26Al/21Ne production ratios in quartz, Earth Planet. Sci. Lett. doi:10.1016/j.epsl.2009.1004.1027.CrossRef
Goethals, M., Niedermann, S., Hetzel, R. and Fenton, C. R., 2009b. Determining the impact of faulting on the rate of erosion in a low-relief landscape: A case study using in situ produced Ne-21 on active normal faults in the Bishop Tuff, California, Geomorphol. 103 401–413.CrossRefGoogle Scholar
Goldhagen, P., Reginatto, M., Kniss, T., Wilson, J. W., Singleterry, R. C., Jones, I. W. and Steveninck, W., 2002. Measurement of the energy spectrum of cosmic-ray induced neutrons aboard an ER-2 high-altitude airplane, Nucl. Instr. Methods Phys. Res. A 476 42–51.CrossRefGoogle ScholarPubMed
Goldstein, S. L., Deines, P., Oelkers, E. H., Rudnick, R. L. and Walter, L. M., 2003. Standards for publication of isotopic ratio and chemical data in Chemical Geology, Chem. Geol. 202 1–4.Google Scholar
González, G., Dunai, T. J., Carrizo, D. and Allmendinger, R., 2006. Young displacements on the Atacama Fault System, northern Chile from field observations and cosmogenic Ne-21 concentrations, Tectonics 25 TC3006.CrossRefGoogle Scholar
Gordon, M. S., Goldhagen, P., Rodbell, K. P., Zabel, T. H., Tang, H. H. K., Clem, J. M. and Bailey, P., 2004. Measurement of the flux and energy spectrum of cosmic-ray induced neutrons on the ground, IEEE Trans. Nucl. Sci. 51 3427–3434.CrossRefGoogle Scholar
Gosse, J. C. and Phillips, F. M., 2001. Terrestrial in situ cosmogenic nuclides: theory and application, Quat. Sci. Rev. 20 1475–1560.CrossRefGoogle Scholar
Gosse, J. C., Reedy, R. C., Harrington, C. D. and Poths, J., 1996. Overview of the workshop on secular variations in production rates of cosmogenic nuclides on Earth, Radiocarbon 38 135–147.CrossRefGoogle Scholar
Gosse, J. C. and Stone, J. O., 2001. Terrestrial cosmogenic nuclide methods passing milestones toward paleo-altimetry, EOS, Trans. Am. Geophys. Union 82 82.CrossRefGoogle Scholar
Gould, B. A., 1855. On Peirce's criterion for the rejection of doubtful observations, with tables for facilitating its application, Astronom. J. 4 81–87.CrossRefGoogle Scholar
Graf, A. A., Strasky, S., Ivy-Ochs, S., Akcar, N., Kubik, P., Burkhard, M. and Schlüchter, C., 2007. First results of cosmogenic dated pre-Last Glaciation erratics from the Montoz area, Jura Mountains, Switzerland, Quat. Int. 164–165 43–52.
Graham, D. W., 2002. Noble gas isotopic geochemistry of mid-ocean ridge and ocean island basalts: Characterization of mantle source reservoirs, Rev. Mineral. Geochem. 47 247–318.CrossRefGoogle Scholar
Granger, D., 2006. A review of burial dating methods using 26Al and 10Be. In: Siame, L., Bourles, D. L. and Brown, E. T., (Eds) In Situ-Produced Cosmogenic Nuclides and Quantification of Geological SurfacesSpecial paper 415, Boulder: The Geological Society of America, pp. 1–16.Google Scholar
Granger, D., Fabel, D. and Palmer, A. N., 2001. Pliocene-Pleistocene incision of the Green River, Kentucky, determined from radioactive decay of cosmogenic Al-26 and Be-10 in Mammoth Cave sediments, Geol. Soc. Am. Bull. 113 825–836.2.0.CO;2>CrossRefGoogle Scholar
Granger, D. and Riebe, C. S., 2007. Cosmogenic nuclides in weathering and erosion, Treatise on Geochemistry, Amsterdam: Elsevier, Chapter 5.19, pp. 11–43.Google Scholar
Granger, D. E., Kirchner, J. W. and Finkel, R., 1996. Spatially averaged long-term erosion rates measured from in-situ produced cosmogenic nuclides in alluvial sediment, J. Geol. 104 249–257.CrossRefGoogle Scholar
Granger, D. E., Kirchner, J. W. and Finkel, R. C., 1997. Quaternary downcutting rate of the New River, Virginia, measured from differential decay of cosmogenic 26Al and 10Be in cave-deposited alluvium, Geology 25 107–110.2.3.CO;2>CrossRefGoogle Scholar
Granger, D. E. and Muzikar, P. F., 2001. Dating sediment burial with in-situ produced cosmogenic nuclides: theory, techniques, and limitations, Earth Planet. Sci. Lett. 1888 269–281.Google Scholar
Granger, D. E. and Smith, A. L., 1998. Early Laurentide glaciation and creation of the Ohio river dated by radioactive decay of cosmogenic Al-26 and Be-10 in proglacial sediments, Annual Meeting of the Geological Society of America, GSA, Toronto.Google Scholar
Granger, D. E. and Smith, A. L., 2000. Dating buried sediments using radioactive decay and muogenic production of 26Al and 10Be, Nucl. Instr. Meth. Phys. Res. B 172 822–826.CrossRefGoogle Scholar
Groom, D. E., Mokhov, N. V. and Striganov, S. I., 2001. Muon stopping-power and range tables, Atom. Data Nucl. Data Tables 78 183–356.CrossRefGoogle Scholar
Grosse, A., 1934. An unknown radioactivity, J. Am. Chem. Soc. 56 1922–1924.CrossRefGoogle Scholar
Guedes, S., Jonckheere, R., Iunes, P. J. and Hadler, J. C., 2007. Projected-length distributions of fission-fragment tracks from U and Th thin film sources in muscovite, Nucl. Instr. Meth. Phys. Res. B 266 786–790.CrossRefGoogle Scholar
Guyodo, Y. and Valet, J.-P., 1999. Global changes in intensity of the Earth's magnetic field during the past 800 kyr, Nature 399 249–252.CrossRefGoogle Scholar
Haeuselmann, P., Granger, D. E., Jeannin, P. Y. and Lauritzen, S. E., 2007. Abrupt glacial valley incision at 0.8 Ma dated from cave deposits in Switzerland, Geology 35 143–146.CrossRefGoogle Scholar
Hancock, G. S., Anderson, R. S., Chadwick, O. A. and Finkel, R. C., 1999. Dating fluvial terraces with 10Be and 26Al profiles: application to the Wind River, Wyoming, Geomorphol. 27 41–60.CrossRefGoogle Scholar
Handwerger, D. A., Cerling, T. E. and Bruhn, R. L., 1999. Cosmogenic 14C in carbonate rocks, Geomorphol. 27 13–24.CrossRefGoogle Scholar
Harbor, J., Stroeven, A. P., Fabel, D., Clarhall, A., Kleman, J., Li, Y. K., Elmore, D. and Fink, D., 2006. Cosmogenic nuclide evidence for minimal erosion across two subglacial sliding boundaries of the late glacial Fennoscandian ice sheet, Geomorphol. 75 90–99.CrossRefGoogle Scholar
Hatton, C. J., 1971. The neutron monitor. In: Wilson, J. G. and Wouthuysen, S. A., (Eds), Progress in Elementary Particle and Cosmic Ray Physics 10, Amsterdam: North Holland, pp. 3–100.Google Scholar
Hatton, C. J. and Carmichael, H., 1964. Experimental investigation of NM-64 neutron monitor, Can. J. Phys. 42 2443–2472.CrossRefGoogle Scholar
Heidbreder, E., Pinkau, K., Reppin, C. and Schönfelder, V., 1971. Measurements of the distribution in energy and angle of high-energy neutrons in the lower atmosphere, J. Geophys. Res. 76 2905–2916.CrossRefGoogle Scholar
Heimsath, A. M., Chappell, J., Spooner, N. A. and Questiaux, D. G., 2002. Creeping soil, Geology 30 111–114.2.0.CO;2>CrossRef
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. and Finkel, R. C., 1999. Cosmogenic nuclides, topography, and the spatial variation of soil depth, Geomorphol. 27 151–172.CrossRefGoogle Scholar
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. and Finkel, R. C., 2001. Stochastic processes of soil production and transport: Erosion rates, topographic variation and cosmogenic nuclides in the Oregon Coast Range, Earth Surf. Process. Landforms 26 531–552.CrossRefGoogle Scholar
Heimsath, A. M., Dietrich, W. E., Nishiizumi, K. and Finkel, R. C., 1997. The soil production function and landscape equilibrium, Nature 388 358–361.CrossRefGoogle Scholar
Heimsath, A. M., Furbish, D.J and Dietrich, W. E., 2005. The illusion of diffusion: Field evidence for depth-dependent sediment transport, Geology 33 949–952.CrossRefGoogle Scholar
Hein, A. S., Hulton, N. R. J., Dunai, T. J., Schnabel, C., Kaplan, M. R., Xu, S. and Naylor, M., 2009. Middle Pleistocene glaciation in Patagonia dated by cosmogenic-nuclide measurements on outwash gravels, Earth Planet. Sci. Lett. doi:10.1016/j.epsl.2009.06.026.CrossRef
Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Knie, K. and Nolte, E., 2002a. Production of selected cosmogenic radionuclides by muons: 2. Capture of negative muons, Earth Planet. Sci. Lett. 200 357–369.Google Scholar
Heisinger, B., Lal, D., Jull, A. J. T., Kubik, P., Ivy-Ochs, S., Neumaier, S., Knie, K., Lazarev, V. and Nolte, E., 2002b. Production of selected cosmogenic radionuclides by muons 1. Fast muons, Earth Planet. Sci. Lett. 200 345–355.CrossRefGoogle Scholar
Hellborg, R. and Skog, G., 2008. Accelerator mass spectrometry, Mass Spec. Rev. 27 398–427.CrossRefGoogle ScholarPubMed
Herber, L. J., 1969. Separation of feldspar from quartz by flotation, Am. Mineral. 54 1212–1214.Google Scholar
Hermanns, R. L., Niedermann, S., Garcia, A. V., Gomes, J. S. and Strecker, M. R., 2001. Neotectonics and catastrophic failure of mountain fronts in the southern intra-Andean Puna Plateau, Argentia, Geology 29 619–622.2.0.CO;2>CrossRefGoogle Scholar
Hetzel, R., Niedermann, S., Ivy-Ochs, S., Kubik, P. W., Tao, M. X. and Gao, B., 2002a. Ne-21 versus Be-10 and Al-26 exposure ages of fluvial terraces: the influence of crustal Ne in quartz, Earth Planet. Sci. Lett. 201 575–591.CrossRefGoogle Scholar
Hetzel, R., Niedermann, S., Tao, M., Kubik, P. W., Ivy-Ochs, S., Bao, B. and Strecker, M. R., 2002b. Low slip rates and long-term preservation of geomorphic features in Central Asia, Nature 417 428–432.CrossRefGoogle ScholarPubMed
Hewawasam, T., Blanckenburg, F. and Schaller, M., 2003. Increase of human over natural erosion rates in tropical highlands constrained by cosmogenic isotopes, Geology 31 597–600.2.0.CO;2>CrossRefGoogle Scholar
Hilton, D. R., Hammerschmidt, K., Teufel, S. and Friedrichsen, H., 1993. Helium isotope characteristics of Andean geothermal fluids and lavas, Earth Planet. Sci. Lett. 120 265–282.CrossRefGoogle Scholar
Hiyagon, H., 1994. Retention of solar helium and neon in IDPs in deep sea sediment, Science 263 1257–1259.CrossRefGoogle ScholarPubMed
Hofmann, H. J., Beer, J., Bonani, G., Gunten, H. R., Raman, S., Suter, M., Walker, R. L., Wölfli, W. and Zimmermann, D., 1987. 10Be: half life and AMS-standards, Nucl. Instr. Meth. Phys. Res. B29 32–36.CrossRefGoogle Scholar
Hohenberg, C. M., Marti, K., Podosek, F. A., Reedy, R. C. and Shirck, J. R., 1978. Comparisons between observed and predicted cosmogenic noble gases in lunar samples, Proceedings of the 9th Lunar and Planetary Science Conference, LPI, Houston, pp. 2311–2344.Google Scholar
Holden, N. E., 1990. Total half-lives for selected nuclides, Pure Appl. Chem. 62 941–958.CrossRefGoogle Scholar
Honda, M. and Imamura, M., 1971. Half-life of 53Mn, Phys. Rev. C 4 1182–1188.CrossRefGoogle Scholar
Humphreys, G. S. and Wilkinson, M. T., 2007. The soil production function: A brief history and its rediscovery, Geoderma 139 73–78.CrossRefGoogle Scholar
Ivy-Ochs, S., Kober, F., Alfimov, V., Kubik, P. and Synal, H. A., 2007. Cosmogenic 10Be, 21Ne and 36Cl in sanidine and quartz from Chilean ignimbrites, Nucl. Instr. Meth. Phys. Res. B 259 588–594.CrossRefGoogle Scholar
Jamieson, S. S. R., Hulton, N. R. J. and Hagdorn, M., 2008. Modelling landscape evolution under ice sheets, Geomorphol. 97 91–108.CrossRefGoogle Scholar
Jull, A. J. T., Barker, D. L. and Donahue, D. J., 1987. On the 14C content in radioactive ores, Chem. Geol. 66 35–40.Google Scholar
Jull, A. J. T., Lifton, N., Phillips, W. M. and Quade, J., 1994. Studies of the production rate of cosmic-ray produced 14C in rock surfaces, Nucl. Instr. Meth. Phys. Res. B 92 308–310.Google Scholar
Jull, A. J. T., Wilson, A. E., Donahue, D. J., Toolin, L. J. and Burr, G. S., 1992. Measurement of cosmogenic 14C produced by spallation in high-altitude rocks, Radiocarbon 34 737–744.CrossRefGoogle Scholar
Kaste, J. M., Heimsath, A. M. and Bostick, B. C., 2007. Short-term soil mixing quantified with fallout radionuclides, Geology 35 243–246.CrossRefGoogle Scholar
Kennedy, B. M., Hiyagon, H. and Reynolds, J. H., 1990. Crustal neon: a striking uniformity, Earth Planet. Sci. Lett. 98 277–286.CrossRefGoogle Scholar
Kim, K. J., Lal, D., Englert, P. A. J. and Southon, J., 2007. In situ C-14 depth profile of subsurface vein quartz samples from Macraes Flat New Zealand, Nucl. Instr. Meth. Phys. Res. B 259 632–636.CrossRefGoogle Scholar
Klein, J., Giegengack, R., Middleton, R., Sharma, P., Underwood, J. R. and Weeks, W. A., 1986. Revealing histories of exposure using in-situ produced 26Al and 10Be in Libyan desert glass, Radiocarbon 28 547–555.CrossRefGoogle Scholar
Knight, J., 2008. The environmental significance of ventifacs: A critical review, Earth Sci. Rev. 86 89–105.CrossRefGoogle Scholar
Knudsen, M. F., Riisager, P., Donadini, F., Snowball, I., Muscheler, R., Korhonen, K. and Pesonen, L. J., 2008. Variations in the geomagnetic dipole moment during the Holocene and the past 50 kyr, Earth Planet. Sci. Lett. 272 319–329.CrossRefGoogle Scholar
Kober, F., Ivy-Ochs, S., Leya, I., Baur, H., Magna, T., Wieler, R. and Kubik, P. W., 2005. In situ cosmogenic 10Be and 21Ne in sanidine and in situ cosmogenic 3He in Fe-Ti-oxide minerals, Earth Planet. Sci. Lett. 236 404–418.CrossRefGoogle Scholar
Kober, F., Ivy-Ochs, S., Schlunegger, F., Baur, H., Kubik, P. W. and Wieler, R., 2007. Denudation rates and a topography-driven rainfall threshold in northern Chile: Multiple cosmogenic nuclide data and sediment yield budgets, Geomorphol. 83 97–120.CrossRefGoogle Scholar
Kohl, C. P. and Nishiizumi, K., 1992. Chemical isolation of quartz for measurement of in-situ-produced cosmogenic nuclides, Geochim. Cosmochim. Acta 56 3583–3587.CrossRefGoogle Scholar
Kong, P., Granger, D., Wu, F., Caffee, M. W., Wang, Y., Zhao, X. and Zheng, Y., 2009. Cosmogenic nuclide burial ages and provenance of the Xigeda paleo-lake: Implications for evolution of the Middle Yangtze River, Earth Planet. Sci. Lett. 278 131–141.CrossRefGoogle Scholar
Koppers, A. A. P., Staudigel, H. and Wijbrans, J. R., 2000. Dating crystalline groundmass separates of altered Cretaceous seamount basalts by the 40Ar/39Ar incremental heating technique, Chem. Geol. 166 139–158.CrossRefGoogle Scholar
Korschinek, G., Bergmaier, A., Dillmann, I., Faestermann, T., Gerstmann, U., Knie, K., Gostomski, C. L., Maiti, M., Poutivtsev, M., Remmert, A., Rugel, G. and Wallner, A., 2009. Determination of the 10Be half-life by HI-IRD and liquid scintillation counting, Geochim. Cosmochim. Acta. 73 A685.Google Scholar
Korte, M. and Constable, C., 2005. Continuous geomagnetic field models for the past 7 millennia: 2. CALS7K, Geochem. Geophys. Geosyst. 6 1–18.Google Scholar
Kowatari, M., Nagaoka, K., Satoh, S., Ohta, Y., Abukawa, J., Tachimori, S. and Nakamura, T., 2005. Evaluation of the altitude variation of the cosmic-ray induced environmental neutrons in the Mt. Fuji area, J. Nucl. Sci. Technol. 42 495–502.CrossRefGoogle Scholar
Kubik, P. W., Ivy-Ochs, S., Masarik, J., Frank, M. and Schlüchter, C., 1998. 10Be and 26Al production rates deduced from an instantaneous event within the dendro-calibration curve, the landslide of Köfels, Ötz Valley, Austria, Earth Planet. Sci. Lett. 161 231–241.CrossRefGoogle Scholar
Kurz, M. D., 1986a. Cosmogenic helium in terrestrial igneous rock, Nature 320 435–439.CrossRefGoogle Scholar
Kurz, M. D., 1986b. In situ production of terrestrial cosmogenic helium and some applications to geochronology, Geochim. Cosmochim. Acta 50 2855–2862.CrossRefGoogle Scholar
Kurz, M. D., Colodner, D., Trull, T. W., Moore, R. B. and O'Brien, K., 1990. Cosmic ray exposure dating with in situ produced cosmogenic 3He: results from young Hawaiian lava flows, Earth Planet. Sci. Lett. 97 177–189.CrossRefGoogle Scholar
Kutschera, W., 2005. Progress in isotope analysis at ultra-trace level by AMS, Int. J. Mass Spec. 242 145–160.CrossRefGoogle Scholar
Kutschera, W., Ahmad, I. and Paul, M., 1992. Half-life determinations of 41Ca and some other radioisotopes, Radiocarbon 34 436–446.CrossRefGoogle Scholar
Lahiri, S., Nayak, D. and Korschinek, G., 2006. Separation of no-carrier-added 52Mn from bulk chromium: A simulation study for accelerator mass spectrometry measurement of 53Mn, Anal. Chem. 78 7517–7521.CrossRefGoogle ScholarPubMed
Lal, D., 1958. Investigations of Nuclear Interactions Produced by Cosmic Rays, PhD Thesis, Bombay University.
Lal, D., 1987. Production of 3He in terrestial rocks, Chem. Geol. 66 89–98.Google Scholar
Lal, D., 1988. In situ-produced cosmogenic isotopes in terrestrial rocks, Ann. Rev. Earth Planet. Sci. 16 355–388.CrossRefGoogle Scholar
Lal, D., 1991. Cosmic ray labeling of erosion surfaces: in situ nuclide production rates and erosion models, Earth Planet. Sci. Lett. 104 424–439.CrossRefGoogle Scholar
Lal, D. and Arnold, J. R., 1985. Tracing quartz through the environment, Proc. Indian Acad. Sci. Earth Planet. Sci. 94 1–5.Google Scholar
Lal, D. and Jull, A. J. T., 1994. Studies of cosmogenic in-situ (CO)-C-14 and (CO2)-C-14 produced in terrestrial and extraterrestrial samples – experimental procedures and applications, Nucl. Instr. Meth. Phys. Res. B 94 291–296.CrossRefGoogle Scholar
Lal, D., Malhotra, P. K. and Peters, B., 1958. On the production of radioisotopes in the atmosphere by cosmic radiation and their application to meteorology, J. Atmos. Terrest. Phys. 12 306–328.CrossRefGoogle Scholar
Lal, D. and Peters, B., 1962. Cosmic ray produced isotopes and their application to problems in geophysics. In: Wilson, J. G. and Wouthuysen, S. A., (Eds), Progress in Elementary Particle and Cosmic Ray Physics6, Amsterdam: North Holland Publishing Company, pp. 77–243.Google Scholar
Lal, D. and Peters, B., 1967. Cosmic ray produced radioactivity on Earth. In: Flugg, S., (Ed), Handbook of Physics46/2, Berlin: Springer, pp. 551–612.Google Scholar
Lancaster, N., Kocurek, G., Singhvi, A., Pandey, V., Deynoux, M., Ghienne, J. F. and Lo, K., 2002. Late Pleistocene and Holocene dune activity and wind regimes in the western Sahara Desert of Mauritania, Geology 30 991–994.2.0.CO;2>CrossRefGoogle Scholar
Lebatard, A. E., Bourles, D. L., Duringer, P., Jolivet, M., Braucher, R., Carcaillet, J., Schuster, M., Arnaud, N., Monie, P., Lihoreau, F., Likius, A., Mackaye, H. T., Vignaud, P. and Brunet, M., 2008. Cosmogenic nuclide dating of Sahelanthropus tchadensis and Australopithecus bahrelghazali: Mio-Pliocene hominids from Chad, Proc. Natl. Acad. Sci. USA 105 3226–3231.CrossRefGoogle ScholarPubMed
Lederer, C. M., Shirley, V. S., Browne, W., Diairiki, J. M., Doebler, R. E., Shihab-Eldin, A. A., Jardine, L. J., Tuli, J. K. and Buyrn, A. B., 1978. Table of Isotopes, New York: John Wiley & Sons, Inc., 690 pp.Google Scholar
Leya, I., Busemann, H., Baur, H., Wieler, R., Gloris, M., Neurmann, S., Michel, R., Sudbrock, F. and Herpers, U., 1998. Cross sections for the proton-induced production of He and Ne isotopes from magnesium, aluminium, and silicon, Nucl. Instr. Meth. Phys. Res. B 145 449–458.CrossRefGoogle Scholar
Leya, I., Lange, H. J., Neumann, S., Wieler, R. and Michel, R., 2000. The production of cosmogenic nuclides in stony meteorites by galactic cosmic ray particles, Meteoritics Planet. Sci. 35 259–286.CrossRefGoogle Scholar
Li, Y. K., Fabel, D., Stroeven, A. P. and Habor, J., 2008. Unraveling complex exposure-burial histories of bedrock surfaces under ice sheets by integrating cosmogenic nuclide concentrations with climate proxy records, Geomorphol. 99 139–149.CrossRefGoogle Scholar
Libby, W., 1946. Atmospheric helium three and radiocarbon from cosmic radiation, Phys. Rev. 69 671–672.CrossRefGoogle Scholar
Libby, W., Anderson, E. C. and Arnold, J. R., 1949. Age determination by radiocarbon content – world wide essay of natural radiocarbon, Science 109 227–228.CrossRefGoogle Scholar
Licciardi, J. M., Denoncourt, C. L. and Finkel, R. C., 2008. Cosmogenic 36Cl production rates from Ca spallation in Iceland, Earth Planet. Sci. Lett. 267 365–377.CrossRefGoogle Scholar
Licciardi, J. M., Kurz, M. D., Clark, P. U. and Brook, E. J., 1999. Calibration of cosmogenic 3He production rates from Holocene lava flows in Oregon, USA, and effects of the Earth's magnetic field, Earth Planet. Sci. Lett. 172 261–271.Google Scholar
Lifton, N., 2008. In situ cosmogenic C-14 from surfaces at secular equilibrium, Geochim. Cosmochim. Acta 72 A552.Google Scholar
Lifton, N., Bieber, J. W., Clem, J. M., Duldig, M. L., Evenson, P., Humble, J. E. and Pyle, R., 2005. Addressing solar modulation and long-term uncertainties in scaling secondary cosmic rays for in situ cosmogenic nuclide applications, Earth Planet. Sci. Lett. 239 140–161.CrossRefGoogle Scholar
Lifton, N., Jull, A. J. T. and Quade, J., 2001. A new extraction technique and production rate estimate for in situ cosmogenic 14C in quartz, Geochim. Cosmochim. Acta 65 1953–1969.CrossRefGoogle Scholar
Lifton, N. A., Smart, D. F. and Shea, M. A., 2008. Scaling time-integrated in situ cosmogenic nuclide production rates using a continuous geomagnetic model, Earth Planet. Sci. Lett. 268 190–201.CrossRefGoogle Scholar
Lippolt, H. J. and Weigel, E., 1988. 4He diffusion in 40Ar-retentive minerals, Geochim. Cosmochim. Acta 52 1449–1458.CrossRefGoogle Scholar
Liu, B., Phillips, F. M., Fabryka-Martin, J. T., Fowler, M. M. and Stone, W. D., 1994a. Cosmogenic 36Cl accumulation in unstable landforms: 1. Effects of the thermal neutron distribution, Water Resour. Res. 30 3115–3125.CrossRefGoogle Scholar
Liu, B. L., Phillips, F. M., Elmore, D. and Sharma, P., 1994b. Depth dependence of soil carbonate accumulation based on cosmogenic 36Cl dating, Geology 22 1071–1074.2.3.CO;2>CrossRefGoogle Scholar
Lucas, L. L. and Unterweger, M. P., 2000. Comprehensive review and critical evaluation of the half-life tritium, J. Res. Natl. Inst. Stand. Technol. 105 541–549.CrossRefGoogle ScholarPubMed
Mamyrin, B. A., Anufriyev, G. S., Kamensky, I. L. and Tolstikhin, I. N., 1970. Determination of the isotopic composition of helium, Geochem. Int. 7 498–505.Google Scholar
Margerison, H. R., Phillips, F. M., Stuart, F. M. and Sugden, D. E., 2004. Cosmogenic 3He concentrations in ancient flood deposits from the Coombs Hills, Northern Dry Valleys, East Antarctica: interpreting exposure ages and erosion rates, Earth Planet. Sci. Lett. 230 163–175.CrossRefGoogle Scholar
Marquette, G. C., Gray, J. T., Gosse, J. C., Courchesne, F., Stockli, L., Macpherson, G. and Finkel, R., 2004. Felsenmeer persistence under non-erosive ice in the Torngat and Kaumajet mountains, Quebec and Labrador, as determined by soil weathering and cosmogenic nuclide exposure dating, Can. J. Earth Sci. 41 19–38.CrossRefGoogle Scholar
Martel, D. J., O'Nions, R. K., Hilton, D. R. and Oxburgh, E. R., 1990. The role of element distribution in production and release of radiogenic helium: The Carnmenellis Granite, southwest England, Chem. Geol. 88 207–221.CrossRefGoogle Scholar
Marti, K. and Craig, H., 1987. Cosmic-ray-produced neon and helium in the summit lavas of Maui, Nature 325 335–337.CrossRefGoogle Scholar
Masarik, J., 2002. Numerical simulation of in situ production of cosmogenic nuclides, Geochim. Cosmochim. Acta 66 A491.Google Scholar
Masarik, J. and Beer, J., 1999. Simulation of particle fluxes and cosmogenic nuclide production in the Earth's atmosphere, J. Geophys. Res. 104 D 12099–12111.CrossRefGoogle Scholar
Masarik, J., Frank, M., Schäfer, J. M. and Wieler, R., 2001. 800 kyr calibration of in-situ cosmogenic nuclide production for geomagnetic field intensity variations, Geochim. Cosmochim. Acta 65 2995–3003.CrossRefGoogle Scholar
Masarik, J., Kollar, D. and Vanua, S., 2000. Numerical simulations of in situ production of cosmogenic nuclides: Effects of radiation geometry, Nucl. Instr. Meth. Phys. Res. B 172 786–789.CrossRefGoogle Scholar
Masarik, J. and Reedy, R. C., 1994. Effects of bulk composition on nuclide production processes in meteorites, Geochim. Cosmochim. Acta 58 5307–5317.CrossRefGoogle Scholar
Masarik, J. and Reedy, R. C., 1995. Terrestrial cosmogenic-nuclide production systematics calculated from numerical simulations, Earth Planet. Sci. Lett. 136 381–395.CrossRefGoogle Scholar
Masarik, J. and Reedy, R. C., 1996. Monte Carlo simulation of in-situ produced cosmogenic nuclides, Radiocarbon 38 163–164.Google Scholar
Matmon, A., Crouvi, O., Enzel, Y., Bierman, P., Larsen, J., Porat, N., Amit, R. and Caffee, M., 2003. Complex exposure histories of chert clasts in the late Pleistocene shorelines of Lake Lisan, southern Israel, Earth Surf. Process. Landforms 28 493–506.CrossRefGoogle Scholar
Matmon, A., Schwartz, D. P., Haeussler, P. J., Finkel, R., Lienkaemper, J. J., Stenner, H. D. and Dawson, T. E., 2006. Denali fault slip rates and Holocene-late Pleistocene kinematics of central Alaska, Geology 34 645–648.CrossRefGoogle Scholar
McDougall, I. and Harrison, T. M., 1999. Geochronology and Thermochronology by the 40Ar/39Ar Method, Oxford: Oxford University Press, 269 pp.Google Scholar
Merchel, S., Arnold, M., Aumitre, G., Benedetti, L., Bourlès, D. L., Braucher, R., Alfimov, V., Freeman, S. P. H. T., Steier, P. and Wallner, A., 2008a. Towards more precise 10Be and 36Cl data from measurements at the 10–14 level: Influence of sample preparation, Nucl. Instr. Meth. Phys. Res. B 266 4921–4926.CrossRefGoogle Scholar
Merchel, S., Braucher, R., Benedetti, L., Grauby, O. and Bourlès, D., 2008b. Dating carbonate rocks with in-situ produced cosmogenic Be-10: Why it often fails, Quat. Geochronol. 3 299–307.CrossRefGoogle Scholar
Meriaux, A. S., Sieh, K., Finkel, R. C., Rubin, C. M., Taylor, M. H., Meltzner, A. J. and Ryerson, F. J., 2009. Kinematic behavior of southern Alaska constrained by westward decreasing postglacial slip rates on the Denali Fault, Alaska, J. Geophys. Res. Solid Earth 114 B03404.Google Scholar
Merrill, R. T., McElhinny, M. W. and McFadden, P. L., 1998. The Magnetic Field of the Earth, San Diego: Academic Press, 531 pp.Google Scholar
Michel, R., Leya, I. and Borges, L., 1996. Production of cosmogenic nuclides in meteoroids: accelerator experiments and model calculations to decipher the cosmic ray record in extraterrestrial matter, Nucl. Inst. Meth. Phys. Res. B 113 434–444.CrossRefGoogle Scholar
Michel, R. and Neumann, S., 1998. Interpretation of cosmogenic nuclides in meteorites on the basis of accelerator experiments and physical model calculations, Proc. Indian Acad. Sci. Earth Planet. Sci. 107 441–457.Google Scholar
Miller, G. H., Birner, J. P., Lifton, N. A. and Finkel, R. C., 2006. Limited ice-sheet erosion and complex in situ cosmogenic Be-10, Al-26, and C-14 on Baffin Island, Arctic Canada, Quat. Geochronology 1 74–85.CrossRefGoogle Scholar
Minasny, B., McBratney, A. B. and Salvador-Blanes, S., 2008. Quantitative models for pedogenesis: A review, Geoderma 144 140–157.CrossRefGoogle Scholar
Mitchell, S. G., Matmon, A., Bierman, P. R., Enzel, Y., Caffee, , , M. and Rizzo, D., 2001. Displacement history of a limestone normal fault scarp, northern Israel, from cosmogenic 36Cl, J. Geophys. Res. 106(B3) 4247–4264.CrossRefGoogle Scholar
Mook, W. G. and Plicht, J., 1999. Reporting 14C activities and concentrations, Radiocarbon 41 227–239.CrossRefGoogle Scholar
Morris, J. D., Leeman, W. P. and Tera, F., 1990. The subducted component in island arc lavas: constraints from Be-isotopes and B-Be systematics, Nature 344 31–36.CrossRefGoogle ScholarPubMed
Morrison, P. and Pine, J., 1955. Radiogenic origin of the helium isotopes in rock, Ann. N.Y. Acad. Sci. 62 71–92.CrossRefGoogle Scholar
Mursula, K., Usoskin, I. G. and Kovaltsov, G. A., 2002. A 22-year cycle in sunspot activity, Adv. Space Res. 29 1979–1984.CrossRefGoogle Scholar
Muscheler, R., Joos, F., Beer, J., Müller, S. A., Vonmoos, M. and Snowball, I., 2007. Solar activity during the last 1000 yr inferred from radionuclide records, Quat. Sci. Rev. 26 82–97.CrossRefGoogle Scholar
Muscheler, R., Joos, F., Müller, S. A. and Snowball, I., 2005. How unusual is today's solar activity?, Nature 436 E3–E4.CrossRefGoogle ScholarPubMed
Nakamura, T., Uwamino, Y., Ohkubo, T. and Hara, A., 1987. Altitude variation of cosmic ray neutrons, Health Phys. 53 509–517.CrossRefGoogle ScholarPubMed
Ney, P., 1986. Gesteinsaufbereitung im Labor, Stuttgart: Enke, 154 pp.Google Scholar
Nichols, K. K., Bierman, P. R., Eppes, M. C., Caffee, M., Finkel, R. and Larsen, J., 2007. Timing of surficial process changes down a Mojave Desert piedmont, Quat. Res. 68 151–161.CrossRefGoogle Scholar
Niedermann, S., 2000. The 21Ne production rate in quartz revisited, Earth Planet. Sci. Lett. 183 361–364.CrossRefGoogle Scholar
Niedermann, S., 2002. Cosmic-ray-produced noble gases in terrestrial rocks: dating tools for surface processes, Rev. Mineral. Geochem. 47 731–784.CrossRefGoogle Scholar
Niedermann, S., Graf, T., Kim, J. S., Kohl, C. P., Marti, K. and Nishiizumi, K., 1994. Cosmic-ray-produced 21Ne in terrestrial quartz: the neon inventory of Sierra Nevada quartz separates, Earth Planet. Sci. Lett. 125 341–355.CrossRefGoogle Scholar
Niedermann, S., Graf, T. and Marti, K., 1993. Mass spectrometric identification of cosmic-ray-produced neon in terrestrial rocks with multiple neon components, Earth Planet. Sci. Lett. 118 65–73.CrossRefGoogle Scholar
Niedermann, S., Schaefer, J. M., Wieler, R. and Naumann, R., 2007. The production of cosmogenic 38Ar from calcium in terrestrial pyroxene, Earth Planet. Sci. Lett. 257 596–608.CrossRefGoogle Scholar
Niemi, N. A., Oskin, O., Burbank, D., Heimsath, A. M. and Gabet, E. J., 2005. Effects of bedrock landslides on cosmogenically determined erosion rates, Earth Planet. Sci. Lett. 237 480–498.CrossRefGoogle Scholar
Nier, A. O., 1947. A mass spectrometer for isotope and gas analysis, Rev. Sci. Instrum. 18 398–411.CrossRefGoogle ScholarPubMed
Nier, A. O., 1950. A redetermination of the relative abundances of the isotopes of carbon, nitrogen, oxygen, argon and potassium, Phys. Rev. 77 789–793.CrossRefGoogle Scholar
Nishiizumi, K., 2004. Preparation of 26Al AMS standards, Nucl. Instr. Meth. Phys. Res. B 223 388–392.CrossRefGoogle Scholar
Nishiizumi, K., Caffee, M. W. and DePaolo, D. J., 2000. Preparation of 41Ca AMS standards, Nucl. Instr. Meth. Phys. Res. B 172 399–403.CrossRefGoogle Scholar
Nishiizumi, K., Caffee, M. W., Finkel, R. C., Brimhall, G. and Mote, G., 2005. Remnants of a fossil alluvial fan landscape of Miocene age in the Atacama desert of northern Chile using cosmogenic nuclide exposure age dating, Earth Planet. Sci. Lett. 237 499–507.CrossRefGoogle Scholar
Nishiizumi, K., Finkel, R. C., Caffee, M. W., Southon, J. R., Kohl, C. P., Arnold, J. R., Olinger, C. T., Poths, J. and Klein, J., 1994. Cosmogenic production of 10Be and 26Al on the surface of the Earth and underground, Proceedings of the 8th International Conference on Geochronology, Cosmochronology and Isotope Geology, US Geological Survey Circular 1107 234.Google Scholar
Nishiizumi, K., Finkel, R. C., Klein, J. and Kohl, C. P., 1996. Cosmogenic production of 7Be and 10Be in water targets, J. Geophys. Res. 101 22225–22232.CrossRefGoogle Scholar
Nishiizumi, K., Kohl, C. P., Arnold, J. R., Klein, J., Fink, D. and Middleton, R., 1991a. Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history, Earth Planet. Sci. Lett. 104 440–454.CrossRefGoogle Scholar
Nishiizumi, K., Imamura, M., Caffee, M. W., Southon, J. R., Finkel, R. C. and McAninch, J., 2007. Absolute calibration of Be-10 AMS standards, Nucl. Instr. Meth. Phys. Res. B 258 403–413.CrossRefGoogle Scholar
Nishiizumi, K., Klein, J., Middleton, R. and Craig, H., 1987. In situ produced 10Be and 26Al in olivine from Maui, EOS 68 1268.Google Scholar
Nishiizumi, K., Klein, J., Middleton, R. and Craig, H., 1990. Cosmogenic 10Be, 26Al and 3He in olivine from Maui lavas, Earth Planet. Sci. Lett. 98 263–266.CrossRefGoogle Scholar
Nishiizumi, K., Kohl, C. P., Arnold, J. R., Dorn, R., Klein, J., Fink, D. and Middleton, R., 1993. Role of in situ cosmogenic nuclides 10Be and 26Al in the study of diverse geomorphic processes, Earth Surf. Process. Landforms 18 407–425.CrossRefGoogle Scholar
Nishiizumi, K., Kohl, C. P., Arnold, J. R., Klein, J., Fink, D. and Middleton, R., 1991b. Cosmic ray produced 10Be and 26Al in Antarctic rocks: exposure and erosion history, Earth Planet. Sci. Lett. 104 440–454.CrossRefGoogle Scholar
Nishiizumi, K., Lal, D., Klein, J., Middleton, R. and Arnold, J. R., 1986. Production of 10Be and 26Al by cosmic rays in terrestrial quartz in situ and implications for erosion rates, Nature 319 134–135.CrossRefGoogle Scholar
Nishiizumi, K., Welten, K. C., Matsumura, H., Caffee, M., Ninomiya, K., Omoto, T., Nakagaki, R., Shima, T., Takahashi, N., Sekimoto, S., Yashima, H., Shibata, S., Bajo, K., Nagao, K., Kinoshita, N., Imamura, M., Sisterson, J. M., Shinohara, A. 2009. Measurements of high-energy neutron cross sections for accurate cosmogenic nuclide production rates, Geochim. Cosmochim. Acta. 73 A945.Google Scholar
Nishiizumi, K., Winterer, E. L., Kohl, C. P., Klein, J., Middleton, R., Lal, D. and Arnold, J. R., 1989. Cosmic ray production rates of 10Be and 26Al in quartz from glacially polished rocks, J. Geophys. Res. 94 17907–17915.CrossRefGoogle Scholar
Norton, K. P. and Vanacker, V., 2009. Effects of terrain smoothing on topographic shielding correction factors for cosmogenic nuclide-derived estimates of basin-averaged denudation rates, Earth Surf. Process. Landforms 34 145–154.CrossRefGoogle Scholar
Ochs, M. and Ivy-Ochs, S., 1997. The chemical behavior of Be, Al, Fe, Ca, and Mg during AMS target preparation from terrestrial silicates modeled with chemical speciation calculations, Nucl. Instr. Meth. Phys. Res. B 123 235–240.CrossRefGoogle Scholar
Ohno, M. and Hamano, Y., 1993. Global analysis of the geomagnetic field: Time variation of the dipole moment and the geomagnetic pole in the Holocene, J. Geomag. Geoeletr. 45 1455–1466.CrossRefGoogle Scholar
Onuchin, A. A. and Burenina, T. A., 1996. Climatic and geographic patterns in snow density dynamics, N. Eurasia Arctic Alpine Res. 28 99–103.CrossRefGoogle Scholar
Owen, L. A., Bright, J., Finkel, R. C., Jaiswal, M. K., Kaufman, D. S., Mahan, S., Radtke, U., Schneider, J. S., Sharp, W., Singhvi, A. K. and Warren, C. N., 2007. Numerical dating of a Late Quaternary spit-shoreline complex at the northern end of Silver Lake playa, Mojave Desert, California: A comparison of the applicability of radiocarbon, luminescence, terrestrial cosmogenic nuclide, electron spin resonance, U-series and amino acid racemization methods, Quat. Int. 166, 87–110.CrossRefGoogle Scholar
Ozima, M. and Podosek, F. A., 2001 Noble Gas Geochemistry, Cambridge: Cambridge University Press, 300 pp.CrossRefGoogle Scholar
Palumbo, L., Benedetti, L., Bourlès, D., Cinque, A. and Finkel, R., 2004. Slip history of the Magnola fault (Apennines, Central Italy) from Cl-36 surface exposure dating: evidence for strong earthquakes over the Holocene, Earth Planet. Sci. Lett. 225 163–176.CrossRefGoogle Scholar
Partridge, T. C., Granger, D. E., Caffee, M. W. and Clarke, R. J., 2003. Pliocene hominid remains from Sterkfontein, Science 300 607–612.CrossRefGoogle ScholarPubMed
Perg, L., Anderson, R. S. and Finkel, R. C., 2001. Use of a new Be-10 and Al-26 inventory method to date marine terraces, Santa Cruz, California, USA, Geology 29 879–882.Google Scholar
Phillips, F. M., Leavy, B. D., Jannik, N. O., Elmore, D. and Kubik, P. W., 1986. The accumulation of cosmogenic chlorine-36 in rocks: a method for surface exposure dating, Science 231 41–43.CrossRefGoogle ScholarPubMed
Phillips, F. M. and Plummer, M. A., 1996. CHLOE: A program for interpreting in-situ cosmogenic nuclide data for surface exposure dating and erosion studies, Radiocarbon 38 98–99.Google Scholar
Phillips, F. M., Stone, W. D. and Fabryka-Martin, J. T., 2001. An improved approach to calculating low-energy cosmic ray neutron fluxes near the land/atmosphere interface, Chem. Geol. 175 689–701.CrossRefGoogle Scholar
Phillips, W. M., Hall, A. M., Mottram, R., Fifield, L. K. and Sudgen, D. E., 2006. Cosmogenic Be-10 and Al-26 exposure ages of tors and erratics, Cairngorm Mountains, Scotland: Timescales for the development of a classic landscape of selective linear glacial erosion, Geomorphol. 73 222–245.CrossRefGoogle Scholar
Pinti, D., Matsuda, J. and Maruyama, S., 2001. Anomalous xenon in Achean cherts from Pilbara Craton, Western Australia, Chem. Geol. 175 387–395.Google Scholar
Placzek, C., Granger, D. and Caffee, M., 2007. Radiogenic Al-26 chronometry of evaporites, Geochim. Cosmochim. Acta 71 A765.Google Scholar
Plug, L. J., Gosse, J., McIntosh, J. J. and Bigley, R., 2007. Attenuation of cosmic ray flux in temperate forest, J. Geophys. Res. Earth Surf. 112 F02022.CrossRefGoogle Scholar
Porcelli, D., Ballentine, C. J. and Wieler, R., 2002. An overview of noble gas geochemistry and cosmochemistry, Rev. Mineral. Geochem. 47 1–20.CrossRefGoogle Scholar
Powell, C. F., Fowler, P. H. and Perkins, D. H., 1959. The Study of Elementary Particles by the Photographic Method, London: Pergamon, 669 pp.Google Scholar
Putkonen, J. and Swanson, T., 2003. Accuracy of cosmogenic ages for moraines, Quat. Res. 59 255–261.CrossRefGoogle Scholar
Quezada, J., González López, G. A., Dunai, T. J. and Jensen, A., 2007. Edades 21Ne de la terraza costera mas alt del area de Caldera-Bahia Inglesa: Su relacion con el alzamiento litoral pleistoceno del Norte de Chile, Revista Geol. Chile 34 81–96.Google Scholar
Reedy, R. C., Arnold, J. R. and Lal, D., 1983. Cosmic-ray record in solar system matter, Science 219 127–134.CrossRefGoogle ScholarPubMed
Reid, J. B., Bucklin, E. P., Copenagle, L., Kidder, J., Pack, S. M., Polissar, P. J. and Williams, M. L., 1995. Sliding rocks at the racetrack, Death Valley – What makes them move, Geology 23 819–822.2.3.CO;2>CrossRefGoogle Scholar
Reiners, P. W. and Farley, K. A., 1999. Helium diffusion and (U-Th)/He thermochronometry of titanite, Geochim. Cosmochim. Acta 63 3845–3859.CrossRefGoogle Scholar
Reiners, P. W. and Farley, K. A., 2000. Helium diffusion and (U-Th)/He thermochronometry of zircon.
Renne, P. R., Farley, K. A., Becker, T. A. and Sharp, W. D., 2001. Terrestrial cosmogenic argon, Earth Planet. Sci. Lett. 188 435–440.CrossRefGoogle Scholar
Repka, J. L., Anderson, R. S. and Finkel, R. C., 1997. Cosmogenic dating of fluvial terraces, Fremont River, Utah, Earth. Planet. Sci. Lett. 152 59–73.CrossRefGoogle Scholar
Reynolds, J. H., 1956. High sensitivity mass spectrometer for noble gas analysis, Rev. Sci. Instrum. 27 928–934.CrossRefGoogle Scholar
Riebe, C. S., Kirchner, J. W. and Finkel, R. C., 2004. Erosional and climatic effects on long-term chemical weathering rates in granitic landscapes spanning diverse climate regimes, Earth Planet. Sci. Lett. 224 547–562.CrossRefGoogle Scholar
Riebe, C. S., Kirchner, J. W. and Granger, D. E., 2001. Quantifying quartz enrichment and its consequences for cosmogenic measurements of erosion rates from alluvial sediment and regolith, Geomorphol. 40 15–19.CrossRefGoogle Scholar
Riihimaki, C. and Libarkin, J. C., 2007. Terrestrial cosmogenic nuclides as paleoaltimetric proxies, Rev. Mineral. Geochem. 66 269–278.CrossRefGoogle Scholar
Rinterknecht, V. R., Clark, P. U., Raisbeck, G. M., Yiou, F., Bitinas, A., Brook, E. J., Marks, L., Zelcs, V., Lunka, J. P., Pavlovskaya, I. E., Piotrowski, J. A. and Raukas, A., 2006. The last deglaciation of the Southeastern sector of the Scandinavian Ice Sheet, Science 311 1449–1452.CrossRefGoogle ScholarPubMed
Ross, S. M., 2003. Peirce's criterion for the elimination of suspect experimental data, J. Eng. Technol. 20 38–41.Google Scholar
Rothwell, P., 1958. Cosmic rays in the Earth's magnetic field, Phil. Mag. 3 961–970.CrossRefGoogle Scholar
Ruszkiczay-Rüdiger, Z., Dunai, T. J., Bada, G., Fodor, L. and Horváth, E., 2005. Middle to late Pleistocene uplift rate of the Hungarian Mountain Range at the Danube Bend (Pannonian Basin) using in situ produced 3He, Tectonophys. 410 173–187.CrossRefGoogle Scholar
Ryerson, F., Tapponnier, P., Finkel, R., Meriaux, A. S., Woerd, J., Lasserre, C., Chevalier, M. L., Xu, X., Li, H. and King, G. C. P., 2006. Applications of morphochronology to the active tectonics of Tibet. In: Siame, L., Bourles, D. L. and Brown, E. T., (Eds), In Situ-Produced Cosmogenic Nuclides and Quantification of Geological Surfaces, Special Paper 415, Boulder: The Geological Society of America, pp. 1–16.Google Scholar
Sarda, P., Staudacher, T. and Allegre, C. J., 1992. Cosmogenic 3He and 21Ne in olivines from Reunion Island: Measurement of erosion rate, EOS, Supplement 73 610.Google Scholar
Sarda, P., Staudacher, T., Allegre, C. J. and Lecomte, A., 1993. Cosmogenic neon and helium at Reunion: measurement of erosion rate, Earth Planet. Sci. Lett. 119 405–417.CrossRefGoogle Scholar
Scarsi, P., 2000. Fractional extraction of helium by crushing of olivine and clinopyroxene phenocrysts: Effects on the 3He/4He measured ratio, Geochim. Cosmochim. Acta 64 3751–3762.CrossRefGoogle Scholar
Schaefer, J. M., Denton, G., Kaplan, M. R., Putnam, A., Finkel, R. C., Barrell, J. A., Andersen, B. G., Schwartz, R., Macintosh, A., Chinn, T. and Schlüchter, C., 2009. High-frequency Holocene glacier fluctuations in New Zealand differ from the northern signature, Science 324 622–625.CrossRefGoogle ScholarPubMed
Schäfer, J. M., Faestermann, T., Herzog, G. F., Knie, K., Korschinek, G., Masarik, J., Meier, A., Poutivtsev, M., Rugel, G., Schluchter, C., Serifiddin, F. and Winckler, G., 2006. Terrestrial manganese-53 – A new monitor of Earth surface processes, Earth Planet. Sci. Lett. 251 334–345.CrossRefGoogle Scholar
Schäfer, J. M., Ivy-Ochs, S., Wieler, R., Leya, I., Baur, H., Denton, G. H. and Schlüchter, C., 1999. Cosmogenic noble gas studies in the oldest landscape on Earth: surface exposure ages of the Dry Valleys, Antarctica, Earth Planet. Sci. Lett. 167 215–226.CrossRefGoogle Scholar
Schaller, M. and Ehlers, T. A., 2006. Limits to quantifying climate driven changes in denudation rates with cosmogenic radionuclides, Earth Planet. Sci. Lett. 248 153–167.CrossRefGoogle Scholar
Schaller, M., Ehlers, T. A., Blum, J. D. and Kallenberg, M. A., 2009. Quantifying glacial moraine age, denudation, and soil mixing with cosmogenic nuclide depth profiles, J. Geophys. Res. Earth Surf. 114 F01012.CrossRefGoogle Scholar
Schaller, M., Hovius, N., Willett, S. D., Ivy-Ochs, S., Synal, H. A. and Chen, M. C., 2005. Fluvial bedrock incision in the active mountain belt of Taiwan from in situ-produced cosmogenic nuclides, Earth Surf. Process. Landforms 30 955–971.CrossRefGoogle Scholar
Schaller, M., Blanckenburg, F., Veldkamp, A., Tebbens, L. A., Hovius, N. and Kubik, P. W., 2002. A 30,000 yr record of erosion rates from cosmogenic Be-10 in Middle European river terraces, Earth Planet. Sci. Lett. 204 307–320.CrossRefGoogle Scholar
Schimmelpfennig, I., Benedetti, L., Finkel, R. C., Pik, R., Blard, P. H., Bourlès, D., Burnard, P. G. and Williams, A. J., 2009. Sources of in-situ 36Cl in basaltic rocks. Implications for calibration of production rates, Quat. Geochronology doi:10.1016/j.quageo.2009.1004.1003.CrossRef
Schroeder, P. A., Melear, N. D., Bierman, P., Kashgarian, M. and Caffee, M. W., 2001. Apparent gibbsite growth ages for regolith in the Georgia Piedmont, Geochim. Cosmochim. Acta 65 381–386.CrossRefGoogle Scholar
Seidl, M. A., Finkel, R. C., Caffee, M. W., Hudson, G. B. and Dietrich, W. E., 1997. Cosmogenic isotope analyses applied to river longitudinal profile evolution: problems and interpretations, Earth Surf. Process. Landforms 22 195–209.3.0.CO;2-0>CrossRefGoogle Scholar
Serber, R., 1947. Nuclear reactions at high energies, Phys. Rev. 72 1114–1115.CrossRefGoogle Scholar
Sharma, P. and Middleton, R., 1989. Radiogenic production of 10Be and 26Al in uranium and thorium ores: Implications for studying terrestrial samples containing low levels of 10Be and 26Al, Geochim. Cosmochim. Acta 53 709–716.CrossRefGoogle Scholar
Shim, H., 2002. Corner effect on chloride ion diffusion in rectangular concrete media, KSCE J. Civil Eng. 6 19–24.CrossRefGoogle Scholar
Shuster, D. L. and Farley, K. A., 2005. Diffusion kinetics of proton-induced Ne-21, He-3, and He-4 in quartz, Geochim. Cosmochim. Acta 69 2349–2359.CrossRefGoogle Scholar
Siame, L. L., Bourles, D. L., Sebier, M., Bellier, O., Castano, J. C., Araujo, M., Perez, M., Raisbeck, G. M. and Yiou, F., 1997. Cosmogenic dating ranging from 20 to 700 ka of a series of alluvial fan surfaces affected by the El Tigre fault, Argentina, Geology 25 975–978.2.3.CO;2>CrossRefGoogle Scholar
Simpson, J. A., 1951. Neutrons produced in the atmosphere by the cosmic radiations, Phys. Rev. 83 1175–1188.CrossRefGoogle Scholar
Simpson, J. A., 1958. Cosmic Radiation Neutron Intensity Monitor, London: Pergamon Press, 351 pp.Google Scholar
Sisterson, J. M., 2005. Cross-section measurements for proton- and neutron-induced reactions needed to understand cosmic-ray interactions on earth and in space. In: Haight, R. C., Chadwick, M. B., Kawano, T. and Talou, P., (Eds), International Conference on Nuclear Data for Science and Technology769, Santa Fe: AIP Conference Procedings, pp. 1596–1599.Google Scholar
Skelton, R. T. and Kavanagh, R. W., 1987. 26Mg(p,n)26Al and 23Na(α,n)26Al reactions, Phys. Rev. C 35 45–54.CrossRefGoogle ScholarPubMed
Small, E. E., Anderson, R. S. and Hanock, G. S., 1999. Estimates of the rate of regolith production using 10Be and 26Al from alpine hillslope, Geomorphol. 27 131–150.CrossRefGoogle Scholar
Smart, D. F., Shea, M. A. and Flückiger, E. O., 2000. Magnetospheric models and trajectory computations, Space Sci. Rev. 93 305–333.CrossRefGoogle Scholar
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. and Beer, J., 2004. Unusual activity of the Sun during recent decades compared to the previous 11 000 years, Nature 431 1084–1087.CrossRefGoogle ScholarPubMed
Solanki, S. K., Usoskin, I. G., Kromer, B., Schüssler, M. and Beer, J., 2005. How unusual is today's solar activity? (reply), Nature 436 E3–E4.Google Scholar
Srinivasan, B., 1976. Barites: anomalous xenon from spallation and neutron induced reactions, Earth Planet. Sci. Lett. 31 129–141.CrossRefGoogle Scholar
Staiger, J., Gosse, J., Toracinta, R., Oglesby, B., Fastook, J. and Johnson, J. V., 2007. Atmospheric scaling of cosmogenic nuclide production: Climate effect, J. Geophys. Res. 112 B02205.CrossRefGoogle Scholar
Steinhilber, F., Abreu, J. A. and Beer, J., 2008. Solar modulation during the Holocene, Astrophys. Space Sci. Trans. 4 1–6.CrossRefGoogle Scholar
Stock, G. S., Anderson, E. C. and Finkel, R. C., 2004. Pace of landscape evolution in the Sierra Nevada, California, revealed by cosmogenic dating of cave sediments, Geology 32 193–196.CrossRefGoogle Scholar
Stone, J., Allan, G. L., Fifield, L. K., Evans, J. M. and Chivas, A. R., 1994. Limestone erosion measurements with cosmogenic chlorine-36 in calcite – preliminary results from Australia, Nucl. Instr. Meth. B 92 311–316.CrossRefGoogle Scholar
Stone, J., Evans, J., Fifield, K., Cresswell, R. and Allan, G., 1996a. Cosmogenic chlorine-36 production rates from calcium and potassium, Radiocarbon 38 170–171.Google Scholar
Stone, J., Lambeck, K., Fifield, L. K., Evans, J. M. and Cresswell, R. G., 1996b. A late glacial age for the Main Rock Platform, western Scotland, Geology 24 707–710.2.3.CO;2>CrossRefGoogle Scholar
Stone, J. O., 1998. A rapid fusion method for separation of beryllium-10 from soils and silicates, Geochim. Cosmochim. Acta 62 555–561.CrossRefGoogle Scholar
Stone, J. O., 2000. Air pressure and cosmogenic isotope production, J. Geophys. Res. 105 23753–23759.CrossRefGoogle Scholar
Stone, J. O., 2005. Terrestrial Chlorine-36 Production from Spallation of Iron, 10th AMS Conference, Berkeley.Google Scholar
Stone, J. O., Allan, G. L., Fifield, L. K. and Cresswell, R. G., 1996c. Cosmogenic chlorine-36 from calcium spallation, Geochim. Cosmochim. Acta 60 679–692.CrossRefGoogle Scholar
Stone, J. O., Evans, J. M., Fifield, L. K., Cresswell, R. G. and Allan, G. L., 1996d. Cosmogenic Cl-36 production rates from calcium and potassium, Radiocarbon 38 170–170.Google Scholar
Stone, J. O., Evans, N. J., Fifield, L. K., Allan, G. L. and Cresswell, R. G., 1998. Cosmogenic chlorine-36 production in calcite by muons, Geochim. Cosmochim. Acta 62 433–454.CrossRefGoogle Scholar
Streckeisen, A., 1973. To each plutonic rock its proper name, Earth Sci. Rev. 12 1–33.CrossRefGoogle Scholar
Stuart, F. M., Lass-Evans, S., Fitton, J. G. and Ellam, R. M., 2003. High He-3/He-4 ratios in picritic basalts from Baffin Island and the role of a mixed reservoir in mantle plumes, Nature 424 57–59.CrossRefGoogle Scholar
Stuiver, M. and Polach, H., 1977. Reporting of 14C data, Radiocarbon 19 355–363.CrossRefGoogle Scholar
Suter, M., 2004. 25 years of AMS: A review of recent developments, Nucl. Instr. Meth. Phys. Res. B223–224 139–148.
Swanson, T. W. and Caffee, M., 2001. Determination of 36Cl production rates derived from the well-dated deglaciation surfaces of Whidbey and Fidalgo Islands, Washington, Quat. Research 56 366–382.CrossRefGoogle Scholar
Taggart, A. F., 1945. Handbook of Mineral Dressing, Ores and Industrial Minerals, London: Chapman & Hall, 1915 pp.Google Scholar
Taylor, J. R., 1997. An Introduction to Error Analysis, Mill Valley, CA: University Science Books, 327 pp.Google Scholar
Taylor, R. E. and Berger, R., 1967. Radiocarbon content of marine shells from Pacific Coast of Central and South America, Science 158 1180–1182.CrossRefGoogle Scholar
Teucher, M., 1952. Die Absorption der Nukleonenkomponente der kosmischen Strahlung in Luft zwischen Seehöhe und 4000 m, Z. Naturforschg. 7a 61–63.Google Scholar
Trull, T. W., Kurz, M. D. and Jenkins, W. J., 1991. Diffusion of cosmogenic 3He in olivine and quartz: implications for surface exposure dating, Earth Planet. Sci. Lett. 103 241–256.CrossRefGoogle Scholar
Usoskin, I. G., Alanko-Huotari, K., Kovaltsov, G. A. and Mursula, K., 2005. Heliospheric modulation of cosmic rays: Monthly reconstruction for 1951–2004, J. Geophys. Res. 110 A12108.CrossRefGoogle Scholar
Valet, J. P., Herrero-Bervera, E., LeMouel, J. L. and Plenier, G., 2008. Secular variations of the geomagnetic dipole during the past 2000 years, Geochem. Geophys. Geosyst. 9 Q01008.CrossRefGoogle Scholar
Valet, J. P., Meynadier, L. and Guyodo, Y., 2005. Geomagnetic dipole strength and reversal rate over the past two million years, Nature 435 802–805.CrossRefGoogle ScholarPubMed
Plicht, J. and Hogg, A., 2006. A note on reporting radiocarbon, Quat. Geochrono. 1 237–240.Google Scholar
Wateren, , , F. M. and Dunai, T. J., 2001. Late Neogene passive margin denudation history: cosmogenic isotope measurements from the Central Namib desert, Global Planet. Change 30 271–307.CrossRefGoogle Scholar
Wateren, F. M., Dunai, T. J., Balen, R. T., Klas, W., Verbers, A. L. L. M., Passchier, , , S. and Herpers, U., 1999. Contrasting neogene denudation histories of different structural regions in the Transantarctic Mountains rift flank constrained by cosmogenic isotope measurements, Global Planet. Change 23 145–172.CrossRefGoogle Scholar
Vanacker, V., Blanckenburg, F., Govers, G., Molina, A., Poesen, J., Deckers, J. and Kubik, P. W., 2007. Restoring dense vegetation can slow mountain erosion to near natural benchmark levels, Geology 35 303–306.CrossRefGoogle Scholar
Vega-Carillo, H. R., Manzanares-Acuna, E., Hernandes-Davila, V. M. and Sanchez, G. A. M., 2005. Response matrix of a multisphere neutron spectrometer with an He-3 proportional counter, Revista Mex. Fisica 51 47–52.Google Scholar
Vermeesch, P., 2007. CosmoCalc: An Excel add-in for cosmogenic nuclide calculations, Geochem. Geophys. Geosyst. 8 Q08003.CrossRefGoogle Scholar
Vermeesch, P., Heber, V., Strasky, S., Kober, F., Schaefer, J. M., Baur, H., Schlüchter, C. and Wieler, R., 2008. Cosmogenic 3He and 21Ne measured in artificial quartz targets after one year of exposure in the Swiss Alps, Geophys. Res. Abstr. 10 1607–7962/gra/EGU2008-A-08431.Google Scholar
Vidyadhar, A., Rao, K. H. and Forssberg, K. S. E., 2002. Separation of feldspar from quartz: Mechanism of mixed cationic/anionic collector adsorption on minerals and flotation selectivity, Minerals & Metallurgical Processing 19 128–136.Google Scholar
Viles, H. A. and Bourke, M. C., 2007. A Photographic Atlas of Rock Breakdown Features in Geomorphic Environments, Tucson: Planetary Science Institute.Google Scholar
Villoresi, G., Iucci, N., Re, F., Signoretti, F., Zangrilli, N., Cecchini, S., Parisi, M., Signorini, C., Tyasto, M. I., Danilova, O. A. and Ptitsyna, N. G., 1997. Latitude survey of cosmic ray nucleogenic component during 1996–1997 from Italy to Antarctica. In: Aiello, S., Iucci, N., Sironi, G., Treves, A. and Villante, U., (Eds), 8th CIFCO Conference, Cosmic Ray Physics in the Year 2000, Conference Proceedings58, Como: The Italian Physics Society, pp. 323–326.Google Scholar
Blanckenburg, F., 2005. The control mechanisms of erosion and weathering at basin scale from cosmogenic nuclides in river sediment, Earth Planet. Sci. Lett. 237 462–479.CrossRefGoogle Scholar
Blanckenburg, F., Belshaw, N. S. and O'Nions, R. K., 1996. Separation of 9Be and cosmogenic 10Be from environmental materials and SIMS isotope dilution analysis, Chem. Geol. 129 93–99.CrossRefGoogle Scholar
Vries, H. D., 1958. Atomic bomb effect variation of radiocarbon in plants, shells, and snails in the past 4 years, Science 128 250–251.CrossRefGoogle Scholar
Wells, S. G., McFadden, L. D., Poths, J. and Olinger, C. T., 1995. Cosmogenic 3He surface exposure dating of stone pavements, Geology 23 613–616.2.3.CO;2>CrossRefGoogle Scholar
Wernicke, R. and Lippolt, H. J., 1994. 4He age discordance and release behavior of a double shell botryoidal hematite from the Schwarzwald, Germany, Geochim. Cosmochim. Acta 58 421–429.CrossRefGoogle Scholar
Wiedenbeck, M. E., Davis, A. J., Leske, R. A., Binns, W. R., Cohen, C. M. S., Cummings, A. C., Nolfo, G., Israel, M. H., Labrador, A. W., Mewaldt, R. A., Scott, L. M., Stone, E. C. and Rosenvinge, T. T., 2005. The level of solar modulation of galactic cosmic rays from 1997 to 2005 as derived from ACE measurements of elemental energy spectra, Proceedings of the 29th International Cosmic Ray Conference, Prune, India, 03–10 August, 2005 2 Mumbai: Tata Institue of Fudamantal Research, pp. 277–280.Google Scholar
Wieler, R., 2002. Cosmic-ray-produced noble gases in meteorites, Reviews in Mineralogy and Geochemistry 47 125–170.CrossRefGoogle Scholar
Wilkinson, B. H. and McElroy, B. J., 2007. The impact of humans on continental erosion and sedimentation, Geol. Soc. Am. Bull. 119 140–156.CrossRefGoogle Scholar
Wilkinson, M. T. and Humphreys, G. S., 2005. Exploring pedogenesis via nuclide-based soil production rates and OSL-based bioturbation rates, Austr. J. Soil Res. 43 767–779.CrossRefGoogle Scholar
Williams, A. J., Stuart, F. M., Day, S. J. and Phillips, W. M., 2005. Using pyroxene microphenocrysts to determine cosmogenic He-3 concentrations in old volcanic rocks: an example of landscape development in central Gran Canaria, Quat. Sci. Rev. 24 211–222.CrossRefGoogle Scholar
Wolokowinsky, F. L. and Granger, D. E., 2004. Early Pleistocene incision of the San Juan River, Utah, dated with 26Al and 10Be, Geology 32 749–752.CrossRefGoogle Scholar
Yang, S., Odah, H. and Shaw, J., 2000. Variations in the geomagnetic dipole moment of the last 12000 years, Geophys. J. Int. 140 158–162.CrossRefGoogle Scholar
Yokoyama, Y., Reyss, J.-L. and Guichard, F., 1977. Production of radionuclides by cosmic rays at mountain altitudes, Earth Planet. Sci. Lett. 36 44–50.CrossRefGoogle Scholar
Youngson, J., Bennet, E., Jackson, J., Norris, R., Raisbeck, , , G. M. and Yiou, F., 2005. ‘Sarsen Stones’ at German Hill, Central Otago, New Zealand, and their potential for in situ cosmogenic isotope dating of landscape evolution, J. Geol. 113 341–354.CrossRefGoogle Scholar
Ziegler, J. F., Biersack, J. P. and Ziegler, M. D., 2008. SRIM Stopping Ranges of Ions in Matter, Morrisville: Lulu Press, 398 pp.Google Scholar
Zreda, M., Desilets, D., Ferré, T. P. A. and Scott, R. L., 2008. Measuring soil moisture content non-invasively at intermediate spatial scale using cosmic-ray neutrons, Geophys. Res. Lett. 35 L21402.CrossRefGoogle Scholar
Zreda, M. and Noller, J., 1998. Ages of prehistoric earthquakes revealed by cosmogenic chlorine-36 in a bedrock fault scarp at Hebgen Lake, Science 292 1097–1099.CrossRefGoogle Scholar
Zreda, M. G., Phillips, F. M., Elmore, D., Kubik, P. W., Sharma, P. and Dorn, R. I., 1991. Cosmogenic 36Cl production in terrestrial rocks, Earth Planet. Sci. Lett. 105 94–105.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tibor J. Dunai, University of Edinburgh
  • Book: Cosmogenic Nuclides
  • Online publication: 29 December 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804519.008
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tibor J. Dunai, University of Edinburgh
  • Book: Cosmogenic Nuclides
  • Online publication: 29 December 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804519.008
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tibor J. Dunai, University of Edinburgh
  • Book: Cosmogenic Nuclides
  • Online publication: 29 December 2010
  • Chapter DOI: https://doi.org/10.1017/CBO9780511804519.008
Available formats
×