Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T22:40:59.078Z Has data issue: false hasContentIssue false

4 - The Role of Magnetic Fields in AGN Activity and Feedback

Published online by Cambridge University Press:  21 April 2018

Rony Keppens
Affiliation:
KU Leuven, Belgium
Oliver Porth
Affiliation:
KU Leuven, Belgium & School of Mathematics, University of Leeds,
Hans J. P. Goedbloed
Affiliation:
FOM Institute DIFFER, Nieuwegein, The Netherlands
Jorge Sánchez Almeida
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
María Jesús Martínez González
Affiliation:
Instituto de Astrofísica de Canarias, Tenerife
Get access

Summary

Abstract

Active galactic nuclei (AGNs), the luminous, compact core regions of galaxies where accretion occurs onto supermassive black holes, can dramatically influence their entire host galaxy evolution by a process referred to as AGN feedback. Energy feedback to the galaxy is the result of combined radiation fields and directed outflows, and especially radio-loud active galaxies show pronounced jets and lobes. Their synchrotron radio emission indicates that dynamically important magnetic fields are at play in AGN jet collimation, stability, energy transfer to the intergalactic medium and their overall morphological appearance. Current knowledge on the launching mechanisms for such highly energetic relativistic jets, as well as the near black-hole accretion processes themselves, all invoke magnetic fields as active agents in angular momentum, mass and energy redistributions. In this review, we cover aspects of AGN feedback and the role played by magnetic fields, almost necessarily studied at vastly different length and timescales. We emphasize how typical large-scale galaxy interaction studies rely on parametric prescriptions for feedback, while detailed dedicated studies for near black-hole dynamics and relativistic jet propagation exist which take full account of magnetic field influences. We discuss representative hydro to magnetohydrodynamic (MHD) numerical simulations that exploit analogies with less energetic X-ray binary sources or even protostellar accretion-ejection systems, emphasize relativistic MHD descriptions, and point out that magnetic fields in accretion disks yield many linear instability routes to turbulence that have scarcely been recognized in the astrophysical community. In combination, they serve to show that magnetic field influences in AGN accretion, jet launch, energy feedback, and overall evolution are still far from completely understood, although many aspects have been disclosed by advanced analytical and numerical relativistic MHD studies.

Motivation: Astrophysical Jets

Radio galaxies confront us with dramatic views on energy redistributions at all scales, as mediated by central massive black holes lurking in their nucleus. A clear example is provided by the elliptical galaxy NGC5532, a nearby (red shift z = 0.0237, type S0) galaxy where the stellar distribution is in sharp contrast with its double-jetted appearance in radio images.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2018

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bacciotti, F., Ray, T. P., Mundt, R., Eislöfel, J., and Solf, J.: 2002, ApJ 576, 222–231CrossRef
Balbus, S. A., and Hawley, J. F.: 1991, ApJ 376, 214–222CrossRef
Baty, H., and Keppens, R.: 2002, ApJ 580, 800–814CrossRef
Beckwith, K., Armitage, P. J., and Simon, J. B.: 2011, MNRAS 416, 361–382
Beliën, A. J. C., Botchev, M. A., Goedbloed, J. P., van der Holst, B. and Keppens, R.: 2002, JCP 182, 91–117
Blandford, R. D., and Payne, D. G.: 1982, MNRAS 199, 883–903CrossRef
Blandford, R. D., and Znajek, R. L.: 1977, MNRAS 179, 433–456CrossRef
Blokland, J. W. S., Keppens, R., and Goedbloed, J. P.: 2007a, A&A 467, 21–35
Blokland, J. W. S., van del Holst, B., Keppens, R., and Goedbloed, J. P.: 2007b, JCP 226, 509–533
Boettcher, M., Harris, D. E., and Krawczynski, H.: 2012, in M., Boettcher, D. E., Harris, and H., Krawczynski (Ed.), Relativistic Jets From Active Galactic Nuclei, Wiley-VCH, ISBN 978-3-527-41037-8CrossRefGoogle Scholar
Bondi, H.: 1952, MNRAS 112, 195–204CrossRef
Case, K. M.: 1960, Phys. Fluids 3, 43–148
Casse, F., and Keppens, R.: 2002, ApJ 581, 988–1001CrossRef
Casse, F., and Keppens, R.: 2004, ApJ 601, 90–103CrossRef
Chaplin, W. J., and Basu, S.: 2008, SPh 251, 53–75
Donati, J. F., Paletou, F., Bouvier, J., and Ferreira, J.: 2005, Nat. 438, 466–469CrossRef
Dougados, C., Cabrit, S., Ferreira, J., et al.: 2004, Astrophys. Space Sci. 293, 45–52CrossRef
Fabian, A. C.: 1999, MNRAS 308, L39–L43
Fabian, A. C.: 2012, ARA&A 50, 455
Fabian, A. C., Sanders, J. S., Allen, S. W., et al.: 2003, MNRAS 344, L43–L47
Fanaroff, B. L., and Riley, J. M.: 1974, MNRAS 167, 31–35CrossRef
Fendt, C.: 1997, A&A 319, 1025–1035
Fendt, C., and Sheikhnezami, S.: 2013, ApJ 774, 12CrossRef
Ferrarese, L., and Merritt, D.: 2000, ApJ 539, 9–12CrossRef
Field, G. B.: 1965, ApJ 142, 531–567
Fishbone, L. G., and Moncrief, V.: 1976, ApJ 207, 962–976CrossRef
Frieman, E., and Rotenberg, M.: 1960, Rev. Modern Phys. 32, 898–902CrossRef
Goedbloed, J. P.: 2009a, Phys. of Plasmas 16, 13
Goedbloed, J. P.: 2009b, Phys. of Plasmas 16, 14
Goedbloed, J. P., and Poedts, S.: 2004, in Principles of MHD. With Application to Laboratory and Astrophysical Plasmas, Cambridge University PressGoogle Scholar
Goedbloed, J. P., Beliën, A. J. C., van der Holst, B., and Keppens, R.: 2004a, Phys. of Plasmas 11, 28–54
Goedbloed, J. P., Beliën, A. J. C., van der Holst, B., and Keppens, R.: 2004b, Phys. of Plasmas 11, 4332–4340
Goedbloed, J. P., Keppens, R., and Poedts, S.: 2010, in Advanced MHD. With application to Laboratory and Astronomical Plasmas, Cambridge University PressGoogle Scholar
Gopal-Krishna, , and Wiita, P. J.: 2002, NewAR 46, 357–360CrossRef
Graham, A. W., Onken, C. A., Athanassoula, E., and Combes, F.: 2011, MNRAS 412, 2211–2228CrossRef
Hawley, J. F.: 2000, ApJ 528, 468–479CrossRef
Keppens, R., and Meliani, Z.: 2008, Phys. of Plasmas 15, 102103CrossRef
Keppens, R., and Tóth, G.: 1999, Phys. of Plasmas 6, 1461–1469CrossRef
Keppens, R., Casse, F., and Goedbloed, J. P.: 2002, ApJ 569, L121–L126CrossRef
Keppens, R., Meliani, Z., van der Holst, B., and Casse, F.: 2008, A&A 486, 663–678
Keppens, R., Meliani, Z., van Marle, A. J., et al.: 2012, JCP 231, 718
Komissarov, S. S.: 2006, MNRAS 368, 993–1000CrossRef
Komissarov, S. S., Barkov, M. V., Vlahakis, N., and Königl, A.: 2007, MNRAS 380, 51CrossRef
Krause, M., Alexander, P., Riley, J., and Hopton, D.: 2012, MNRAS 427, 3196CrossRef
Marscher, A. P.: 2006, Relativistic Jets: The Common Physics of AGN, Microquasars, and Gamma-Ray Bursts, AIPC, 856, 1
McKinney, J. C., Tchekhovskoy, A., and Blandford, R. D.: 2012, MNRAS 423, 3083CrossRef
McKinney, J. C., Tchekhovskoy, A., and Blandford, R. D.: 2013, Science 339, 49CrossRef
Meliani, Z. and Keppens, R.: 2009, ApJ 705, 1594CrossRef
Meliani, Z., Casse, F., and Sauty, C.: 2006a, A&A 460, 1
Meliani, Z., Sauty, C., Vlahakis, N., Tsinganos, K., and Trussoni, E.: 2006b, A&A 447, 797
Meliani, Z., Keppens, R., and Giacomazzo, B.: 2008, A&A 491, 321
Mendygral, P. J., Jones, T. W., and Dolag, K.: 2012, ApJ 750, 166CrossRef
Merloni, A., Heinz, S., and di Matteo, T.: 2003, MNRAS 345, 1057CrossRef
Mignone, A., Rossi, P., Bodo, G., Ferrari, A., and Massaglia, S.: 2010, MNRAS 402, 7CrossRef
Mirabel, I. F. and Rodríguez, L. F.: 1998, Nat. 392, 673CrossRef
Mizuno, Y., Hardee, P., and Nishikawa, K.-I.: 2007, ApJ 662, 835CrossRef
Mizuno, Y., Lyubarsky, Y., Nishikawa, K.-I., and Hardee, P. E.: 2009, ApJ 700, 684CrossRef
Moll, R.: 2009, A&A 507, 1203
Monceau-Baroux, R., Keppens, R., and Meliani, Z.: 2012, A&A 545, A62
Monceau-Baroux, R., Porth, O., Meliani, Z., and Keppens, R.: 2014, A&A 561, A30
O'Ieill, S. M., Beckwith, K., and Begelman, M. C.: 2012, MNRAS 422, 1436
Papaloizou, J. C. B. and Pringle, J. E.: 1984, MNRAS 208, 721CrossRef
Parker, E. N.: 1958, ApJ 128, 664
Pessah, M. E. and Psaltis, D.: 2005, ApJ 628, 879CrossRef
Plotkin, R. M., Markoff, S., Kelly, B. C., Körding, E., and Anderson, S. F.: 2012, MNRAS 419, 267CrossRef
Porth, O.: 2013, MNRAS 429, 2482CrossRef
Reynolds, C. S., Heinz, S., and Begelman, M. C.: 2002, MNRAS 332, 271CrossRef
Salvesen, G., Beckwith, K., Simon, J. B., O'Ieill, S. M., and Begelman, M. C.: 2014, MNRAS 438, 1355CrossRef
Shakura, N. I. and Sunyaev, R. A.: 1973, A&A 24, 337
Sheikhnezami, S., Fendt, C., Porth, O., Vaidya, B., and Ghanbari, J.: 2012, ApJ 757, 65CrossRef
Silk, J. and Rees, M. J.: 1998, A&A 331, L1
Sutter, P. M., Yang, H.-Y. K., Ricker, P. M., Foreman, G., and Pugmire, D.: 2012, MNRAS 419, 2293CrossRef
Tonry, J. and Davis, M.: 1979, AJ 84, 1511CrossRef
van der Swaluw, E., Blokland, J. W. S., and Keppens, R.: 2005, A&A 444, 347
Velikhov, E. P., Soviet Phys.-JETP Lett. 36, 995
Weibel, E. S.: 1959, Phys. Rev. Lett. 2, 83CrossRef
Wurster, J. and Thacker, R. J.: 2013, MNRAS 431, 2513
Zanni, C., Ferrari, A., Rosner, R., Bodo, G., and Massaglia, S.: 2007, A&A 469, 811

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×