Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 5
  • Print publication year: 2004
  • Online publication date: August 2009

37 - Gamma-Ray Bursts as a laboratory for the study of Type Ic supernovae



HETE-2 has confirmed the connection between GRBs and Type Ic supernovae. Thus we now know that the progenitors of long GRBs are massive stars. HETE-2 has also provided strong evidence that the properties of X-Ray Flashes (XRFs) and GRBs form a continuum, and therefore that these two types of bursts are the same phenomenon. We show that both the structured jet and the uniform jet models can explain the observed properties of GRBs reasonably well. However, if one tries to account for the properties of both XRFs and GRBs in a unified picture, the uniform jet model works reasonably well while the structured jet model fails utterly. The uniform jet model of XRFs and GRBs implies that most GRBs have very small jet opening angles (∼ half a degree). This suggests that magnetic fields play a crucial role in GRB jets. The model also implies that the energy radiated in gamma rays is ∼100 times smaller than has been thought. Most importantly, the model implies that there are ∼ 104–105 more bursts with very small jet opening angles for every such burst we see. Thus the rate of GRBs could be comparable to the rate of Type Ic core collapse supernovae. Accurate, rapid localizations of many XRFs, leading to identification of their X-ray and optical afterglows and the determination of their redshifts, will be required in order to confirm or rule out these profound implications.

Related content

Powered by UNSILO
Akerlof, C., et al. 1999, Nature, 398, 400
Amati, L., et al. 2002, A & A, 390, 81
Band, D. L. 2003, ApJ, in press (astro-ph/0212452)
Bloom, J., Frail, D. A. & Kulkarni, S. R. 2003, ApJ, 588, 945
Butler, N. R., et al. 2003, ApJ, in press
Coburn, W. & Boggs, S. E. 2003, Nature, 423, 415
Fillipenko, A. V. 2003, private communication
Fox, D. W., et al. 2003c, GCN Circular 2323
Frail, al. 2001, ApJ, 562, L55
Galama, T., et al. 1998, Nature, 395, 670
Granot, J., Naka, E. & Piran, T. 2003, ApJ, in press (astro-ph/0304563)
Greiner, J., et al. 2003, GCN Circular 2020
Heise, J., in't Zand, J., Kippen, R. M., & Woods, P. M., in Proc. 2nd Rome Workshop: Gamma-Ray Bursts in the Afterglow Era, eds. E. Costa, F. Frontera, J. Hjorth (Berlin: Springer-Verlag), 16
Khokhlov, A., et al. 1999, ApJ, 524, L107
Kippen, R. M., Woods, P. M., Heise, J., in't Zand, J., Briggs, M. S., & Preece, R. D. 2002, in Gamma-Ray Burst and Afterglow Astronomy, AIP Conf. Proceedings 662, ed. G. R. Ricker & R. K. Vanderspek (New York: AIP), 244
Lamb, D. Q. 1999, A&A, 138, 607
Lamb, D. Q. 2000, Physics Reports, 333–334, 505
Lamb, D. Q., Donaghy, T. Q., & Graziani, C. 2003, ApJ, to be submitted
Lamb, D. Q., et al. 2003c, to be submitted to ApJ
Lazzati, D., Ramirez-Ruiz, E. & Rees, M. J. 2002, ApJ, 572, L57
Lloyd-Ronning, N., Fryer, C., & Ramirez-Ruiz, E. 2002, ApJ, 574, 554
MacFadyen, A. I., Woosley, S. E., & Heger, A. 2001, ApJ, 550, 410
Mészáros, P., Ramirez-Ruiz, E., Rees, M. J., & Zhang, B. 2002, ApJ, 578, 812
Price, P. A., et al. 2003, Nature, 423, 844
Prigozhin, G., et al. 2003, GCN Circular 2313
Ramirez-Ruiz, E. & Lloyd-Ronning, N. 2002, New Astronomy, 7, 197
Reeves, J. N., et al. 2002, Nature, 415, 512
Rol, E., et al. 2003, A&A, 405, L23
Rossi, E., Lazzati, D., & Rees, M. J. 2002, MNRAS, 332, 945
Sakamoto, al. 2003a, ApJ, submitted
Sakamoto, al. 2003b, ApJ, to be submitted
Soderberg, A. M., et al. 2002, GCN Circular 1554
Stanek, al. 2003, ApJ, 591, L17
Vanderspek, R., et al. 2003, GCN Circular 1997
Woosley, S. E., Zhang, W. & Heger, A. 2003, ApJ, in press
Zhang, B. & Mészáros, P. 2002, ApJ, 571, 876