Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2004
  • Online publication date: August 2009

26 - Effects of super-strong magnetic fields in a core collapse supenova

Summary

Abstract

Polarization and other observations indicate that supernova explosions are aspherical and often axisymmetric, implying a necessary departure from spherical models. Akiyama et al. investigated the effects of the magneto-rotational instability (MRI) on collapsing and rotating cores. Their results indicate that the MRI dynamo generates magnetic fields of greater than the Q.E.D. limit (4.4 × 1013 G). We present preliminary results of the effects of the super-strong magnetic field on degenerate electron pressure in core collapse.

Introduction

Although core collapse cannot be observed directly, except with neutrinos, observations of explosion ejecta can provide us with information about the explosion mechanism itself. Such observations indicate that explosions of core collapse supernovae are aspherical and often bipolar. HST observations clearly show that 1987A has aspherical ejecta for which the axis aligns roughly with the small axis of the rings (Pun et al. 2001; Wang et al. 2002). Spectropolarimetry is a powerful tool for probing ejecta asphericity, and it reveals that most, if not all, core collapse supernovae possesses asphericity and often times bipolar structure (Wang et al. 1996, 2001). Explosions of Type Ib and Ic are more strongly aspherical, while the asphericity of Type II supernovae increases with time as the ejecta expand and the photosphere recedes (Wang et al. 2001; Leonard et al. 2000, 2001). The indication is that it is the core collapse mechanism itself that is responsible for the asphericity.

The observational evidence of asphericity motivates the inclusion of rotation in core collapse physics.

References
Akiyama, S., Wheeler, J. C., Meier, D. L., & Lichtenstadt, I. 2003, ApJ. 584, 954
Blandford, R. D., & Hernquist, L. 1982, J. Phys. C. 15, 6233
Canuto, V., & Ventura, J. 1977, Fundamentals of Cosmis Physics (Great Britain: Gordon and Breach Science Publishers Ltd.), 2, 203
Coburn, W., & Boggs, S. E. 2003, Nature, 423, 415
Duncan, R. C., & Thompson, C. 1992, ApJ. 392, L9
Fryer, C. L., & Heger, A. 2000, ApJ, 541, 1033
Fryer, C. L., & Warren, M. S. 2004, ApJ, 601, 391
Koide, S., Meier, D. L., Shibata, L., & Hudoh, T. 2000, ApJ, 536, 668
Kotake, K., Yamada, S., & Sato, K. 2003, ApJ, 595, 304
Kumar, P., & Panaitescu, A. 2003, MNRAS, 346, 905
LeBlanc, J. M. & Wilson, J. R. 1970, ApJ, 161, 541
Leonard, D. C., Fillippenko, A. V., Ardila, D. R. & Brotherton, M. S. 2000, ApJ, 533, 861
Leonard, D. C., Fillippenko, A. V., Barth, A. J., & Matheson, T. 2001, ApJ, 536, 239
Müller, E., & Hillebrandt, W. 1981, A&A, 103, 358
Möchmeyer, R., & Müller, E. 1989, in Timing Neutron Stars, ed. H. Ögelman & E. P. J. van den Heuvel (NATO ASI Ser. C, 262; Dordrecht: Kluwer), 549
Ott, C. D., Burrows, A., Livne, E., & Walder, R. 2004, ApJ, 600, 834
Pun, C. S. J., & The Supernova Intensive Studies (SINS) Collaboration. 2001, AAS Meeting, 199, 94.02
Shapiro, S. L., & Teukolsky, S. A. 1983, Black Holes, White Dwarfs, and Neutron Stars (New York: Wiley)
Symbalisty, E. M. D. 1984, ApJ, 285, 729
Wang, L., Wheeler, J. C., Li, Z. W., & Clocchiatti, A. 1996, ApJ, 467, 435
Wang, L., Howell, D. A., Höflich, P., & Wheeler, J. C. 2001, ApJ, 550, 1030
Wang, L., Wheeler, J. C., Höflich, P., Khokhlov, A., Baade, D., Branch, D., Challis, P., Filippenko, A. V., Fransson, C., Garnavich, P., Kirshner, R. P., Lundqvist, P., McCray, R., Panagia, N., Pun, C. S. J., Phillips, M. M., Sonneborn, G., Suntzeff, N. B. 2002, ApJ, 579, 671
Wheeler, J. C., & Hansen, C. J. 1971, Ap&SS, 11, 373
Wheeler, J. C., Yi, I., Höflich, P., & Wang, L. 2000, ApJ, 537, 810
Wheeler, J. C., Meier, D. L., & Wilson, J. R. 2002, AoJ, 568, 807
Yamada, S., & Sato, K. 1994, ApJ, 434, 268