Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T04:17:34.415Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  05 February 2015

Malcolm S. Longair
Affiliation:
University of Cambridge
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
The Cosmic Century
A History of Astrophysics and Cosmology
, pp. 453 - 509
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Aaronson, M. and Mould, J. (1983). A distance scale from the infrared magnitude/H I velocity-width relation. IV – The morphological type dependence and scatter in the relation; the distances to nearby groups, Astrophysical Journal, 265, 1-17.CrossRefGoogle Scholar
Abbot, C. G. (1924). Radiometer observations of stellar energy spectra, Astrophysical Journal, 60, 87-107.CrossRefGoogle Scholar
Abdurashitov, J. N., Bowles, T. J., Cleveland, B. T.et al. (2002). Results of the SAGE experiment, Journal of Experimental and Theoretical Physics, 95, 181-193.Google Scholar
Abdurashitov, J. N., Bowles, T. J., Cleveland, B. T.et al. (2003). Measurement of the solar neutrino capture rate, Nuclear Physics B Proceedings Supplements, 118, 39-46.CrossRefGoogle Scholar
Abell, G. O. (1958). The distribution of rich clusters of galaxies, Astrophysical Journal Supplement, 3, 221-288.CrossRefGoogle Scholar
(1962). Membership of clusters of galaxies, in Problems of Extragalactic Research, ed. McVittie, G. C. (New York: Macmillan), pp. 213-238.
Abell, G. O., Corwin, H. G. Jr. and Olowin, R. P. (1989). A catalogue of rich clusters of galaxies, Astrophysical Journal Supplement, 70, 1-138.CrossRefGoogle Scholar
Abraham, R. G., Tanvir, N. R., Santiago, B., Ellis, R. S., Glazebrook, K. and van den Bergh, S. (1996). Galaxy morphology to I = 25 mag in the Hubble Deep Field, Monthly Notices of the Royal Astronomical Society, 279, L47-L52.CrossRefGoogle Scholar
Abramowicz, M. A., Jaroszyiiski, M. and Sikora, M. (1978). Relativistic, accreting disks, Astronomy and Astrophysics, 63, 221-224.Google Scholar
Adams, F. C., Lada, C. J. and Shu, F. H. (1987). Spectral evolution of young stellar objects, Astrophysical Journal, 312, 788-806.CrossRefGoogle Scholar
Adams, W. S. (1914). An A-type star of very low luminosity, Publications of the Astronomical Society of the Pacific, 26, 198.CrossRefGoogle Scholar
(1915). The spectrum of the companion of Sirius, Publications of the Astronomical Society of the Pacific, 27, 236-237.
(1925a). The relativity displacement of the spectral lines in the companion of Sirius, Proceedings of the National Academy of Sciences, 11, 382-387.
(1925b). The relativity displacement of the spectral lines in the companion of Sirius, Observatory, 48, 336-342.
Adams, W. S. and Joy, A. H. (1919). The motions in space of some stars of high radial velocity, Astrophysical Journal, 49, 179-185.CrossRefGoogle Scholar
Adams, W. S. and Kohlschutter, A. (1914a). The radial velocities of one hundred stars with measured parallaxes, Astrophysical Journal, 39, 341-349.CrossRefGoogle Scholar
Adams, W. S. and Kohlschutter, A. (1914b). Some spectral criteria for the determination of absolute stellar magnitudes, Astrophysical Journal, 40, 385-398.CrossRefGoogle Scholar
Afonso, C., Albert, J. N., Andersen, J.et al. (2003). Limits on Galactic dark matter with 5 years of EROS SMC data, Astronomy and Astrophysics, 400, 951-956.CrossRefGoogle Scholar
Ahmad, Q. R., Allen, R. C., Andersen, T. C.et al. (2001). Measurement of the rate of ve + d → p + p + e− interactions produced by 8B solar neutrinos at the Sudbury Neutrino Observatory, Physical Review Letters, 87, 071301(1-6).CrossRefGoogle Scholar
Aitken, D. K., Smith, C. H., James, S. D., Roche, P. F., Hyland, A. R. and McGregor, P. J. (1988). 10 micron spectral observations of SN 1987A – the first year, Monthly Notices of the Royal Astronomical Society, 235, 19P–31P.CrossRefGoogle Scholar
Akerib, D. S., Alvaro-Dean, J., Armel-Funkhouser et al. (2004). First results from the cryogenic dark matter search in the Soudan Underground Lab, Physical Review Letters, 93,211301(1-5).CrossRefGoogle Scholar
Albrecht, A. and Steinhardt, P. J. (1982). Cosmology for grand unified theories with radia-tively induced symmetry breaking, Physical Review Letters, 48, 1220-1223.CrossRefGoogle Scholar
Alcock, C., Akerlof, C. W., Allsman, R. A.et al. (1993a). Possible gravitationalmicrolensing of a star in the Large Magellanic Cloud, Nature, 365, 621-623.CrossRefGoogle Scholar
Alcock, C., Allsman, R. A., Axelrod, T. S.et al. (1993b). The MACHO project - a search for the dark matter in the Milky-Way, in Sky Surveys: Protostars to Protogalaxies, ed. Soifer, T. (San Francisco: Astronomical Society of the Pacific Conference Series), pp. 291-296.Google Scholar
Alcock, C., Allsman, R. A., Alves, D. R.et al. (2000). The MACHO project: microlensing results from 5.7 years of Large Magellanic Cloud observations, Astrophysical Journal, 542, 281-307.CrossRefGoogle Scholar
Alfven, H. and Herlofson, N. (1950). Cosmic radiation and radio stars, Physical Review, 78, 616.CrossRefGoogle Scholar
Alfven, H. and Klein, O. (1962). Matter-antimatter annihilation and cosmology, Arkiv fur Fyzik, 23, 187-194.Google Scholar
Alpher, R. A. and Herman, R. C. (1948). Evolution of the Universe, Nature, 162, 774-775.CrossRefGoogle Scholar
(1950). Theory of the origin and relative distribution of the elements, Reviews of Modern Physics, 22, 153-212.
Alpher, R. A., Bethe, H. and Gamow, G. (1948). The origin of the chemical elements, Physical Review, 73, 803-804.CrossRefGoogle Scholar
Alpher, R. A., Follin, J. W. and Herman, R. C. (1953). Physical conditions in the initial stages of the expanding Universe, Physical Review, 92, 1347-1361.CrossRefGoogle Scholar
Ambartsumian, V. A. (1947). Stellar Evolution and Astrophysics (Yerevan: Armenian Academy of Sciences).Google Scholar
Anders, E. (1963). Meteorite ages, in The Moon, Meteorites and Comets – The Solar System IV, eds Middlehurst, B. M. and Kuiper, G. P. (Chicago: University of Chicago Press), pp. 402-495.Google Scholar
Andersen, M. I., Hjorth, J., Pedersen, H.et al. (2000). VLT identification of the optical afterglow of the gamma-ray burst GRB 000131 at z = 4.50, Astronomy and Astrophysics, 364, L54–L61.Google Scholar
Anderson, C. D. (1932). The apparent existence of easily deflected positives, Science, 76, 238-239.CrossRefGoogle Scholar
Anderson, C. D. and Neddermeyer, S. H. (1936). Cloud chamber observations of cosmic rays at 4300 metres elevation and near sea-level, Physical Review, 50, 263-271.CrossRefGoogle Scholar
Anderson, W. (1929). Gewohnliche Materie und Strahlende Energie als Verschiedene ‘Phasen’ eines und Desselben Grundstoffes (Ordinary matter and radiation energy as different phases of the same underlying matter), Zeitschrift fur Physik, 54, 433-444.CrossRefGoogle Scholar
Ando, H. and Osaki, Y. (1975). Nonadiabatic nonradial oscillations: an application to the five-minute oscillation of the Sun, Publications of the Astronomical Society ofJapan, 27, 581-603.Google Scholar
Antonucci, R. R. (1993). Unified models for active galactic nuclei and quasars, Annual Review of Astronomy and Astrophysics, 31, 473-521.CrossRefGoogle Scholar
Antonucci, R. R. and Miller, J. S. (1985). Spectropolarimetry and the nature of NGC 1068, Astrophysical Journal, 297, 621-632.CrossRefGoogle Scholar
Aragòn-Salamanca, A., Ellis, R. S., Couch, W J. and Carter, D. (1993). Evidence for systematic evolution in the properties of galaxies in distant clusters, Monthly Notices of the Royal Astronomical Society, 262, 764-794.CrossRefGoogle Scholar
Archer, F. S. (1851). On the use of collodion in photography, The Chemist, 2 (March) 257-258.Google Scholar
Argelander, H. (1838). Ueber die eigene Bewegung des Sonnensystems (On the proper motion of the Solar System), Astronomische Nachrichten, 16, 45-48.Google Scholar
Arnett, W. D. and Clayton, D. D. (1970). Explosive nucleosynthesis in stars, Nature, 227, 780-784.CrossRefGoogle ScholarPubMed
Arp, H. C. (1966). Atlas of Peculiar Galaxies (Pasadena: California Institute of Technology).Google ScholarPubMed
Arp, H. C., Baum, W A. and Sandage, A. R. (1952). The HR diagrams for the globular clusters M92 and M3, Astronomical Journal, 57, 4-5.CrossRefGoogle Scholar
Arp, H. C., Madore, B. F. and Roberton, W. E. (1987). A Catalogue of Southern Peculiar Galaxies and Associations (Cambridge: Cambridge University Press).Google Scholar
Atkinson, R. d'E. (1931a). Atomic synthesis and stellar energy I, Astrophysical Journal, 73, 250-295.Google Scholar
(1931b). Atomic synthesis and stellar energy II, Astrophysical Journal, 73, 308-347.
(1936). Atomic synthesis and stellar energy III, Astrophysical Journal, 84, 73-84.
Atkinson, R. d'E. and Houtermans, F. G. (1929). Zur Frage der Aufbaumoglichkeit der Elemente in Sternen (On the possible synthesis of the elements in stars), Zeitschrift fur Physik, 54,656-665.CrossRefGoogle Scholar
Auger, P., Ehrenfest, P. Jr.Maze, R., Daudin, J., Robley, X. and Freon, A. (1939). Extensive air showers, Reviews of Modern Physics, 11, 288-291.CrossRefGoogle Scholar
Avery, L. W., Broten, N. W., Macleod, J. M., Oka, T. and Kroto, H. W. (1976). Detection of the heavy interstellar molecule cyanodiacetylene, Astrophysical Journal, 205, L173–L175.CrossRefGoogle Scholar
Axford, W. I., Leer, E. and Skadron, G. (1977). The acceleration of cosmic rays by shock waves, Proceedings of the 15th International Cosmic Ray Conference, 11, 132-135.Google Scholar
Baade, W. A. (1926). Über eine Möglichkeit, die Pulsationstheorie der 5-Cephei-Veränderlichen zu Priifen (On a possible method of testing the pulsation theory of the variations of δ-Cephei), Astronomische Nachrichten, 228, 359-362.CrossRefGoogle Scholar
(1944). The resolution of Messier 32, NGC 205, and the central region of the Andromeda Nebula, Astrophysical Journal, 100, 137-146.
(1951). Galaxies – present day problems, Publications of the Observatory of the University of Michigan, 10, 7-17.
(1952). A revision of the extra-galactic distance scale, Transactions of the International Astronomical Union, 8, 397-398.
(1956). Polarization in the jet of Messier 87, Astrophysical Journal, 123, 550-551.
Baade, W. A. and Minkowski, R. (1954). Identification of the radio sources in Cassiopeia, Cygnus A, and Puppis A, Astrophysical Journal, 119, 206-214.Google Scholar
Baade, W. A.andZwicky, F. (1934a). On super-novae, Proceedings of the National Academy ofSciences, 20, 254-259.Google ScholarPubMed
(1934b). Cosmic rays from super-novae, Proceedings of the National Academy of Sciences, 20, 259-263.
(1938). Photographic light-curves of the two supernovae in IC 4182 and NGC 1003, Astrophysical Journal, 88, 411-421.
Bahcall, J. N. (1964). Solar neutrinos. I. Theoretical, Physical Review Letters, 12,300-302.CrossRefGoogle Scholar
(1989). Neutrino Astrophysics (Cambridge: Cambridge University Press).
Bahcall, J. N. and Bethe, H. (1990). A solution of the solar neutrino problem, Physical Review Letters, 65, 2233-2235.CrossRefGoogle ScholarPubMed
Bahcall, J. N. and Davis, R. Jr. (1976). Solar neutrinos: a scientific puzzle, Science, 191, 264-267.CrossRefGoogle ScholarPubMed
Bahcall, J. N.andUlrich, R. (1988). Solar models, neutrino experiments and helioseismol-ogy, Reviews of Modern Physics, 60, 297-372.CrossRefGoogle Scholar
Bahcall, J. N., Greenstein, J. L. and Sargent, W. L. W. (1968). The absorption-line spectrum of the quasi-stellar radio source PKS 0237-23, Astrophysical Journal, 153, 689-698.CrossRefGoogle Scholar
Bahcall, J. N., Pinsonneault, M. H., Basu, S. and Christensen-Dalsgaard, J. (1997). Are standard solar models reliable?, Physical Review Letters, 78, 171-174.CrossRefGoogle Scholar
Bahcall, N. A. (2000). Clusters and cosmology, Physics Reports, 333, 233-244.Google Scholar
Balbus, S. A. and Hawley, J. F. (1991). A powerful local shear instability in weakly magnetized Disks. I – Linear analysis. II – Nonlinear evolution, Astrophysical Journal, 376, 214-233.CrossRefGoogle Scholar
Baldwin, J. E., Beckett, M. G., Boysen, R. C.et al. (1996). The first images from an optical aperture synthesis array: mapping of Capella with COAST at two epochs, Astronomy and Astrophysics, 306, L13-L16.Google Scholar
Balmer, J. J. (1885). Note on the spectral lines of hydrogen, Annalen der Physikund Chemie, 25, 80-87.Google Scholar
Bardeen, J. M. (1970). Kerr metric black holes, Nature, 226, 64-65.CrossRefGoogle ScholarPubMed
(1980). Gauge-invariant cosmological perturbations, Physical Review D, 22, 1882–1905.
Bardeen, J. M., Bond, J. R., Kaiser, N. and Szalay, A. S. (1986). The statistics of peaks of gaussian random fields, Astrophysical Journal, 304, 15-61.CrossRefGoogle Scholar
Barkla, C. G. (1906). Polarisation of secondary Rontgen radiation, Proceedings of the Royal Society of London, A77, 247-255.Google Scholar
Barnard, E. E. (1919). On the dark markings of the sky. With a catalogue of 182 such objects, Astrophysical Journal, 49, 1-24.CrossRefGoogle Scholar
Barrow, J. D. and Tipler, F. J. (1986). The Anthropic Cosmological Principle (Oxford: Oxford University Press).Google Scholar
Barthel, P. D. (1989). Is every quasar beamed?, Astrophysical Journal, 336, 606-611.CrossRefGoogle Scholar
(1994). Unified schemes of FR2 radio galaxies and quasars, in First Stromlo Symposium: Physics of Active Galactic Nuclei, ASP Conference Series, vol. 54, eds Bicknell, G. V., Dopita, M. A. and Quinn, P. J. (San Francisco: ASP), pp. 175-186.
Baum, W. A., Johnson, F. S., Oberly, J. J., Rockwood, C. C., Strain, C. V. and Tousey, R. (1946). Solar ultraviolet spectrum to 88 kilometers, Physical Review, 70, 781-782.CrossRefGoogle Scholar
Bautz, L. and Morgan, W. W. (1970). On the classification of the forms of clusters of galaxies, Astrophysical Journal Letters, 162, L149-L153.CrossRefGoogle Scholar
Baym, G., Pethick, C. and Pines, D. (1969a). Superfluidity in neutron stars, Nature, 224, 673-674.CrossRefGoogle Scholar
Baym, G., Pethick, C., Pines, D. and Ruderman, M. (1969b). Spin up in neutron stars: the future of the Vela pulsar, Nature, 224, 872-874.CrossRefGoogle Scholar
Baym, G., Bethe, H. A. and Pethick, C. J. (1971a). Neutron star matter, Nuclear Physics A, 175, 225-271.CrossRefGoogle Scholar
Baym, G., Pethick, C. J. and Sutherland, P. (1971b). The ground state of matter at high densities: equation of state and stellar models, Astrophysical Journal, 170, 299-317.CrossRefGoogle Scholar
Becker, R. H., Fan, X., White, R. L.et al. (2001). Evidence for reionisation at z ~ 6: detection of a Gunn-Peterson trough in a z = 6.28 quasar, Astronomical Journal, 122, 2850-2857.CrossRefGoogle Scholar
Becklin, E. E. and Neugebauer, G. (1967). Observations of an infrared star in the Orion Nebula, Astrophysical Journal, 147, 799-802.CrossRefGoogle Scholar
(1968). Infrared observations of the Galactic center, Astrophysical Journal, 151,145-161.
Becquerel, A. E. (1842). Memoire sur la constitution du spectre solaire (Mémoir concerning the constitution of the solar spectrum), Bibliotheque Universelle de Géneve, 40, 341–367.Google Scholar
Becquerel, H. (1896). Sur les radiations invisibles emises par les corps phosphorescents (On the invisible radiation emitted by phosphorescent bodies), Comptes Rendus de l'Academie des Sciences, 122, 501-503.Google Scholar
Bell, A. R. (1978). The acceleration of cosmic rays in shock fronts. I, Monthly Notices of the Royal Astronomical Society, 182, 147-156.Google Scholar
Bennett, A. S. (1962). The Revised 3C Catalogue of radio sources, Memoirs of the Royal Astronomical Society, 67, 163-172.Google Scholar
Bennett, C. L., Banday, A. J., Gorski, K. M.et al. (1996). Four-year COBE DMR cosmic microwave background observations: maps and basic results, Astrophysical Journal, 464, L1–L4.CrossRefGoogle Scholar
Bennett, C. L., Halpern, M., Hinshaw, G.et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: preliminary maps and basic results, Astro-physical Journal Supplement Series, 148, 1-27.Google Scholar
Benoit, A., Ade, P., Amblard, A.et al. (2003a). The cosmic microwave background anisotropy power spectrum measured by Archeops, Astronomy and Astrophysics, 399, L19–L23.CrossRefGoogle Scholar
(2003b). Cosmological constraints from Archeops, Astronomy and Astrophysics, 399, L25–L30.
Benson, B. A., Church, S. E., Ade, P. A. R.et al. (2003). Peculiar velocity limits from measurements of the spectrum of the Sunyaev-Zel'dovich effect in six clusters of galaxies, Astrophysical Journal, 592, 674-691.CrossRefGoogle Scholar
Bergeron, J. (1988). Properties of the heavy-element absorption systems, in QSOAbsorption Lines: Probing the Universe, eds Blades, J. C., Turnshek, D. and Norman, C. A. (Cambridge: Cambridge University Press), pp. 127-143.Google Scholar
Bersanelli, M., Bouchet, F. R., Efstathiou, G.et al. (1995). Phase A Study for the Cobras/Samba Mission (Paris: European Space Agency), D/SCI(96)3.Google Scholar
Bertola, F. and Capaccioli, M. (1975). Dynamics of early type galaxies. I – The rotation curve of the elliptical galaxy NGC 4697, Astrophysical Journal, 200, 439-445.CrossRefGoogle Scholar
Bertola, F. and Galletta, G. (1979). Ellipticity and twisting of isophotes in elliptical galaxies, Astronomy and Astrophysics, 77, 363-365.Google Scholar
Bertola, F., Bettoni, D., Danziger, J., Sadler, E., Spark, L. and de Zeeuw, T. (1991). Testing the gravitational field in elliptical galaxies: NGC 5077, Astrophysical Journal, 373, 369-390.CrossRefGoogle Scholar
Bessel, F. W. (1839). Bestimmung der Entfernung des 61sten Sterne des Schwans (Determination of the distance of 61-Cygni), Astronomische Nachrichten, 16, 64-96.CrossRefGoogle Scholar
Best, P. N., Longair, M. S.andRottgering, H. J. A. (1996). Evolution of the aligned structures in z ~ 1 radio galaxies, Monthly Notices of the Royal Astronomical Society, 280, L9–L12.CrossRefGoogle Scholar
(1998). HST, radio and infrared observations of 28 3CR radio galaxies at redshift z ~ 1. II - Old stellar populations in central cluster galaxies, Monthly Notices of the Royal Astronomical Society, 295, 549-567.
(2000). Ionization, shocks and evolution of the emission-line gas of distant 3CR radio galaxies, Monthly Notices of the Royal Astronomical Society, 311, 23-36.
Bethe, H. A. (1939). Energy production in stars, Physical Review, 55, 434-456.CrossRefGoogle Scholar
Bethe, H. A. and Critchfield, C. L. (1938). The formation of deuterons by proton combination, Physical Review, 54, 248-254.Google Scholar
Binney, J. (1978). On the rotation of elliptical galaxies, Monthly Notices of the Royal Astronomical Society, 183, 501-514.CrossRefGoogle Scholar
Birkinshaw, M. (1990). Observations of the Sunyaev-Zeldovich effect, in The Cosmic Microwave Background: 25 Years Later, eds Mandolesi, N. and Vittorio, N. (Dordrecht: Kluwer Academic Publishers), pp. 77-94.Google Scholar
Blackett, P. M. S. (1925). The ejection of protons from nitrogen nuclei, photographed by the Wilson method, Proceedings of the Royal Society of London, A107, 349-360.Google Scholar
Blackett, P. M. S. (1948). A possible contribution to the light of the night sky from the Cherenkov radiation emitted by cosmic rays, in The Emission Spectra of the Night Sky and Aurorae, Gassiot Committee Report (London: Physical Society of London), pp. 34-35.Google Scholar
Blackett, P. M. S. and Occhialini, G. P. S. (1933). Some photographs of the tracks of penetrating radiation, Proceedings of the Royal SocietyofLondon, A139, 699-722.Google Scholar
Blain, A. W. and Longair, M. S. (1993). Sub-millimetre cosmology, MonthlyNotices of the Royal Astronomical Society, 264, 509-521.Google Scholar
Blandford, R. D. and Ostriker, J. P. (1978). Particle acceleration by astrophysical shocks, Astrophysical Journal, 221, L29-L32.CrossRefGoogle Scholar
Blandford, R. D. and Znajek, R. L. (1977). Electromagnetic extraction of energy from Kerr black holes, Monthly Notices of the Royal Astronomical Society, 179, 433-456.CrossRefGoogle Scholar
Blewett, J. P. (1946). Radiation losses in the induction electron accelerator, Physical Review, 69, 87-95.CrossRefGoogle Scholar
Bludman, S. A. and Ruderman, M. A. (1977). Induced cosmological constant expected above the phase transition restoring the broken symmetry, Physical Review Letters, 38, 255-257.CrossRefGoogle Scholar
Blumenthal, G. R., Faber, S. M., Primack, J. R. and Rees, M. J. (1984). Formation of galaxies and large-scale structure with cold dark matter, Nature, 311, 517-525.CrossRefGoogle Scholar
Bohr, N. (1913a). On the constitution of atoms and molecules: Part 1, On the constitution of atoms and molecules, Philosophical Magazine, Sixth Series, 23, 1-25.Google Scholar
(1913b). On the constitution of atoms and molecules: Part 2, Systems containing only a single nucleus, Philosophical Magazine, Sixth Series, 23, 476-502.
(1913c). On the constitution of atoms and molecules: Part 3, Systems containing several nuclei, Philosophical Magazine, Sixth Series, 23, 857-875.
Böhringer, H. (1994). Clusters of galaxies, in Frontiers of Space and Ground-based Astronomy, eds Wamsteker, W., Longair, M. S. and Kondo, Y. (Dordrecht: Kluwer Academic Publishers), pp. 359-368.Google Scholar
Boksenberg, A. (1997). Quasar absorption lines: reflections and views, in The Hubble Space Telescope and the High Redshift Universe, eds Tanvir, N. R., Aragón-Salamanca, A. and Wall, J. V. (Singapore: World Scientific Publishing Company), pp. 283-294.Google Scholar
Bolte, M. (1997). Globular clusters: old, in Critical Dialogues in Cosmology, ed. Turok, N. (Singapore: World Scientific), pp. 156-168.Google Scholar
Bolton, C. T. (1972). Identifications of Cyg X-1 with HDE 226868, Nature, 235, 271-273.CrossRefGoogle Scholar
Bolton, J. and Stanley, G. J. (1949). The position and probable identification of the source of galactic radio-frequency radiation Taurus A, Australian Journal of Scientific Research, A2, 139-148.Google Scholar
Bolton, J. G., Stanley, G. J. and Slee, O. B. (1949). Positions of three discrete sources of galactic radio-frequency radiation, Nature, 164, 101-102.CrossRefGoogle Scholar
Bolyai, J. (1832). Appendix: Scientiam spatii absolute veritam exhibens (Appendix explaining the absolutely true science of space). Published as an appendix to the essay by his father F. Bolyai, An Attempt to Introduce Studious Youth to the Elements of Pure Mathematics (Maros Vasarhely, Transylvania).Google Scholar
Bondi, H. and Gold, T. (1948). The steady-state theory of the expanding Universe, Monthly Notices of the Royal Astronomical Society, 108, 252-270.CrossRefGoogle Scholar
Bosma, A. (1981). 21-cm line studies of spiral galaxies II. The distribution and kinematics of neutral hydrogen in spiral galaxies of various morphological types, Astronomical Journal, 86, 1825-1846.CrossRefGoogle Scholar
Boss, B. (1918). Real stellar motions (abstract), Popular Astronomy, 26, 686.Google Scholar
Bothe, W. and Kolhorster, W. (1929). The nature of high-altitude radiation, Zeitschrift fur Physik, 56, 751-777.Google Scholar
Bowen, I. S. (1927). The origin of the chief nebular lines, Publications of the Astronomical Society of the Pacific, 39, 295-297.CrossRefGoogle Scholar
(1928). The origin of the nebular lines and the structure of the planetary nebulae, Astro-physical Journal, 67, 1-15.
Bowyer, C. S., Field, G. B. and Mack, J. E. (1968). Detection of an anisotropic soft X-ray background, Nature, 217, 32-34.CrossRefGoogle Scholar
Bowyer, S., Byram, E. T., Chubb, T. A. and Friedman, H. (1964). Lunar occulation of X-ray emission from the Crab Nebula, Science, 146, 912-917.CrossRefGoogle Scholar
Boyle, B. J., Jones, L. R., Shanks, T., Marano, B., Zitelli, V and Zamorani, G. (1991). QSO evolution and clustering at z < 2.9, Proceedings of the Workshop on The Space Distribution of Quasars: Astronomical Society of the Pacific Conference Series, 21, 191-201.Google Scholar
Boyle, B. J., Shanks, T., Croom, S. M.et al. (2000). The 2dF QSO redshift survey – I. The optical luminosity function of quasi-stellar objects, Monthly Notices of the Royal Astronomical Society, 317, 1014-1022.CrossRefGoogle Scholar
Boyle, W. S. and Smith, G. E. (1970). Charge coupled semiconductor devices, Bell System Technical Journal, 49, 587-593.CrossRefGoogle Scholar
Braccesi, A., Formiggini, L. and Gandolfi, E. (1970). Magnitudes, colours and coordinates of 175 ultraviolet excess objects in the field 13h, +36°, Astronomy and Astrophysics, 5, 264-279.Google Scholar
Bracewell, R. N., ed. (1959). Paris Symposium on Radio Astronomy (Stanford: Stanford University Press).
Bracewell, R. N. and Roberts, J. A. (1954). Aerial smoothing in radio astronomy, Australian Journal ofPhysics, 7, 615-640.Google Scholar
Bradley, J. (1728). An account of a new discovered motion of the fixed stars, Philosophical Transactions of the Royal Society, 35, 637-661.Google Scholar
Bradt, H. L. and Peters, B. (1950). Abundance of lithium, beryllium, boron and other light nuclei in the primary cosmic radiation and the problem of cosmic-ray origin, Physical Review, 80, 943-953.CrossRefGoogle Scholar
Braes, L. L. E. and Miley, G. K. (1971). Radio emission from Scorpius X-1 at 21.2 cm, Astronomy and Astrophysics, 14, 160-163.Google Scholar
Branch, D. and Patchett, B. (1973). Type I supernovae, Monthly Notices of the Royal Astronomical Society, 161, 71-83.CrossRefGoogle Scholar
Branch, D. and Tammann, G. A. (1992). Type I supernovae as standard candles, Annual Review of Astronomy and Astrophysics, 30, 359-389.CrossRefGoogle Scholar
Brans, C. and Dicke, R. H. (1961). Mach's principle and a relativistic theory of gravitation, Physical Review, 124, 925-935.CrossRefGoogle Scholar
Brooks, J. R., Isaak, G. R. and van der Raay, H. B. (1976). Observatons of free oscillations of the Sun, Nature, 259, 92-95.Google Scholar
Broten, N. W., Legg, T. H., Locke, J. L.et al. (1967). Radio interferometry with a baseline of 3074 km, Astrophysical Journal, 72, 787-800.Google Scholar
Broten, N. W., Oka, T., Avery, L. W., Macleod, J. M. and Kroto, H. W. (1978). The detection of HC9N in interstellar space, Astrophysical Journal, 223, L105–L107.CrossRefGoogle Scholar
Brown, T. M., Stebbins, R. T. and Hill, H. A. (1976). Observed oscillations of the apparent solar diameter, in Solar and Stellar Pulsation Conference, eds Cox, A. N. and Dupree, R. G. (Los Alamos: Los Alamos Scientific Laboratory), pp. 1-6.Google Scholar
Bruzual, G. and Charlot, S. (2003). Stellar population synthesis at the resolution of 2003, Monthly Notices of the Royal Astronomical Society, 344, 1000-1028.CrossRefGoogle Scholar
Burbidge, E. M., Burbidge, G. R., Fowler, W. A. and Hoyle, F. (1957). Synthesis of the elements in stars, Reviews of Modern Physics, 29, 547-650.CrossRefGoogle Scholar
Burbidge, E. M., Burbidge, G. R. and Prendergast, K. H. (1960). The rotation, mass distribution and mass of NGC 5866, Astrophysical Journal, 131, 282-292.Google Scholar
(1965). The rotation and mass of the SA Galaxy NGC 681, Astrophysical Journal, 142, 154-159.
Burbidge, E. M., Burbidge, G. R. and Sandage, A. R. (1963). Evidence for the occurence of violent events in the nuclei of galaxies, Reviews of Modern Physics, 35, 947-972.CrossRefGoogle Scholar
Burbidge, E. M., Lynds, C. R. and Burbidge, G. R. (1966). On the measurement and interpretation of absorption features in the spectrum of the quasi-stellar object 3C 191, Astrophysical Journal, 144, 447-451.CrossRefGoogle Scholar
Burbidge, E. M., Lynds, C. R. and Stockton, A. N. (1968). Further observations of quasi-stellar objects with absorption-line spectra: Ton 1530, PKS 0237-23, and PHL 938, Astrophysical Journal, 152, 1077-1093.CrossRefGoogle Scholar
Burbidge, G. R. (1959). Estimates of the total energy in particles and magnetic field in the non-thermal radio sources, Astrophysical Journal, 129, 849-851.CrossRefGoogle Scholar
Burbidge, G. R. and Burbidge, E. M. (1967). Quasi-stellar Objects (New York: Freeman and Company).Google Scholar
Butcher, H. and Oemler, A. Jr. (1978). The evolution of galaxies in clusters. I – ISIT photometry of Cl 0024+1654 and 3C 295, Astrophysical Journal, 219, 18-30.CrossRefGoogle Scholar
(1984). The evolution of galaxies in clusters. V – A study of populations since z ~ 0.5, Astrophysical Journal, 285, 426-438.
Cameron, A. G. W. (1957). Nuclear reactions in stars and nucleogenesis, Publications of the Astronomical Society and the Pacific, 69, 201-222.CrossRefGoogle Scholar
(1958). Nuclear astrophysics, Annual Review of Nuclear Science, 8, 299-326.
Campbell, W. W. (1901). A preliminary determination of the motion of the Solar System, Astrophysical Journal, 13, 80-89.CrossRefGoogle Scholar
(1910). Some peculiarities in the motions of the stars, Lick Observatory Bulletin 6, No. 196, 125-133.
Campbell, W. W. and Moore, J. H. (1928). Radial velocities of stars brighter than visual magnitude 5.51 as determined at Mount Hamilton and Santiago, Publications of the Lick Observatory, 16, 1-399.Google Scholar
Cannon, A. J. and Pickering, E. C. (1901). Spectra of bright southern stars photographed with the 13-inch Boyden telescope as part of the Henry Draper Memorial, Annals of the Harvard College Observatory (PartII), 28, 131-263.Google Scholar
Carlstrom, J. E., Joy, M. K., Grego, L.et al. (2000). Imaging the Sunyaev-Zel'dovich effect, in Particle Physics and the Universe: Proceedings of Nobel Symposium 198, eds Bergstrom, L., Carlson, P. and Fransson, C. (Stockholm: Physica Scripta), pp. 148-155.Google Scholar
Carroll, S. M., Press, W. H. and Turner, E. L. (1992). The cosmological constant, Annual Review of Astronomy and Astrophysics, 30, 499-542.CrossRefGoogle Scholar
Carter, B. (1971). Axisymmetric black hole has only two degrees of freedom, Physical Review Letters, 26, 331-333.CrossRefGoogle Scholar
(1974). Large number coincidences and the anthropic principle in cosmology, in Confrontation of Cosmological Theories with Observational Data, IAU Symposium no. 63, ed. Longair, M. S. (Dordrecht: D. Reidel Publishing Company), pp. 291-298.CrossRef
Chaboyer, B. (1998). The age of the Universe, Physics Reports, 307, 23-30.CrossRefGoogle Scholar
Chadwick, J. (1932). Possible existence of a neutron, Nature, 129, 312.CrossRefGoogle Scholar
Chambers, K. C., Miley, G. K. and van Breugel, W. J. M. (1987). Alignment of radio and optical orientations in high-redshift radio galaxies, Nature, 329, 604-606.CrossRefGoogle Scholar
Chandrasekhar, S. (1931). The maximum mass of ideal white dwarfs, Astrophysical Journal, 74, 81-82.CrossRefGoogle Scholar
(1939). An Introduction to the Study of Stellar Structure (Chicago: Chicago University Press).
(1943a). Dynamical friction I. General considerations: the coefficient of dynamical friction, Astrophysical Journal, 97, 255-262.
(1943b). Dynamical friction II. The rate of escape of stars from clusters and the evidence for the operation of dynamical friction, Astrophysical Journal, 97, 263-273.
(1943c). Dynamical friction III. A more exact theory of the rate of escape of stars from clusters, Astrophysical Journal, 98, 54-60.
(1946). On the radiative equilibrium of a stellar atmosphere. X., Astrophysical Journal, 103,351-370.
(1980). The role of general relativity in astronomy: retrospect and prospect, Highlights of Astronomy, vol. 5, ed. Wayman, P. A. (Dordrecht: D. Reidel Publishing Company), pp. 45-61.CrossRef
(1981). Hydrodynamic and Hydromagnetic Stability (New York: Dover Publications).
Chandrasekhar, S. and Henrich, L. R. (1942). An attempt to interpretthe relative abundances of the elements and their isotopes, Astrophysical Journal, 95, 288-298.CrossRefGoogle Scholar
Charbonneau, D., Brown, T. M., Latham, D. W. and Mayor, M. (2000). Detection of planetary transits across a Sun-like star, Astrophysical Journal, 529, L45-L48.CrossRefGoogle ScholarPubMed
Charbonneau, D., Brown, T. M., Noyes, R. W. and Gilliland, R. L. (2002). Detection of an extrasolar planet atmosphere, Astrophysical Journal, 568, 377-384.CrossRefGoogle Scholar
Charles, P. (1998). Black holes in our Galaxy: observations, in Theory of Black Hole Accretion Disks, eds Abramowicz, M. A., Bjornsson, G. and Pringle, J. E. (Cambridge: Cambridge University Press), pp. 1-20.Google Scholar
Cheung, A. C., Rank, D. M., Townes, C. H., Thornton, D. D. and Welch, W. J. (1968). Detection of NH3 molecules in the interstellar medium by their microwave emission, Physical Review Letters, 221, 1701-1705.Google Scholar
(1969). Detection of water in interstellar regions by its microwave radiation, Nature, 221, 626-628.
Chevalier, R. A. (1992). Supernova 1987A at five years of age, Nature, 355, 691-696.CrossRefGoogle Scholar
Christensen-Dalsgaard, J. and Gough, D. O. (1980). Is the Sun helium deficient?, Nature, 288, 544-547.CrossRefGoogle Scholar
Christy, R. F. (1964). The calculation of stellar pulsation, Reviews of Modern Physics, 36, 555-571.CrossRefGoogle Scholar
(1968). The theory of Cepheid variables, Quarterly Journal of the Royal Astronomical Society, 9, 13-39.
Clark, G. W., Garmire, G. P. and Kraushaar, W. L. (1968). Observation of high-energy cosmic gamma rays, Astrophysical Journal Letters, 153, L203-L207.CrossRefGoogle Scholar
Clavel, J.,Reichert, G. A., Alloin, D.et al. (1991). Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. I – An 8 month campaign of monitoring NGC 5548 with IUE, Astrophysical Journal, 366, 64-81.CrossRefGoogle Scholar
Cockcroft, J. D. and Walton, E. T. S. (1932). Disintegration of lithium by swift protons, Nature, 129, 649.CrossRefGoogle Scholar
Cocke, W. J., Disney, M. J. and Taylor, D. J. (1969). Discovery of optical signals from pulsar NP 0532, Nature, 221, 525-527.CrossRefGoogle Scholar
Cohen, M. H., Cannon, W., Purcell, G. H.et al. (1971). The small-scale structure of radio galaxies and quasar-stellar sources at 3.8 centimetres, Astrophysical Journal, 170, 207-218.CrossRefGoogle Scholar
Coles, P. and Lucchin, F. (1995). Cosmology – The Origin and Evolution of Cosmic Structure (Chichester: John Wiley & Sons).Google Scholar
Colgate, S. A. and McKee, C. (1969). Early supernova luminosity, Astroph sical Journal, 157, 623-643.Google Scholar
Colless, M., Dalton, G., Maddox, S.et al. (2001). The 2dF galaxy redshift survey: spectra and redshifts, Monthl Notices of the Ro al Astronomical Societ, 328, 1039-1063.Google Scholar
Comstock, G. C. (1897). On the application of interference methods to the determination of the effective wavelength of starlight, Astrophysical Journal, 5, 26-35.CrossRefGoogle Scholar
Connolly, A. J., Szalay, A. S., Dickinson, M., SubbaRao, M. U. and Brunner, R. J. (1997). The evolution of the global star formation history as measured from the Hubble Deep Field, Astrophysical Journal, 486, L11-L14.CrossRefGoogle Scholar
Costa, E., Frontera, F., Heise, J.et al. (1997). Discovery of an X-ray afterglow associated with the gamma-ray burst of 28 February 1997, Nature, 387, 783-785.CrossRefGoogle Scholar
Cowan, J. J., Thielemann, F.-K.andTruran, J. W. (1991). Radioactive dating of the elements, Annual Reviews of Astronomy and Astrophysics, 29, 447-497.CrossRefGoogle Scholar
Cowan, C. L. Jr.Reines, F., Harrison, F. B., Kruse, H. W. and McGuire, A. D. (1956). Detection of the free neutrino: a confirmation, Science, 124, 103-104.CrossRefGoogle ScholarPubMed
Cowie, L. L., Hu, E. M. and Songaila, A. (1995). Detection of massive forming galaxies at redshifts z > 1, Nature, 377, 603-605.CrossRefGoogle Scholar
Cowie, L. L., Lilly, S. J., Gardner, J. and McLean, I. S. (1988). A cosmologically significant population of galaxies dominated by very young star formation, Astrophysical Journal, 332, L29-L32.CrossRefGoogle Scholar
Cowie, L. L., Songaila, A., Hu, E. M. and Cohen, J. D. (1996). New insight on galaxy formation and evolution from Keck spectroscopy of the Hawaii deep fields, Astronomical Journal, 112, 839-864.CrossRefGoogle Scholar
Cowley, A. P. (1992). Evidence for black holes in stellar binary systems, Annual Reviews of Astronomy and Astrophysics, 30, 287-310.CrossRefGoogle Scholar
Cowling, T. G. (1935). The stability of gaseous spheres, Monthly Notices of the Royal Astronomical Society, 96, 42-60.Google Scholar
Cox, A. N. (1965). Stellar absorption coefficients and opacities, in Stellar Structure – Stars and Stellar Systems: Compendium of Astronomy and Astrophysics, Vol. VIII, eds Aller, L. H. and McLaughlin, D. B. (Chicago: University of Chicago Press), pp. 195-268.Google Scholar
Cox, D. P. and Smith, B. W. (1974). Large-scale effects of supernova remnants on the Galaxy: generation and maintenance of a hot network of tunnels, Astrophysical Journal Letters, 189, L105-L108.CrossRefGoogle Scholar
Crittenden, R., Bond, R., Davis, R. L., Efstathiou, G. and Steinhardt, P. J. (1993). Imprint of gravitational waves on the cosmic microwave background, Physical Review Letters, 71, 324-327.CrossRefGoogle ScholarPubMed
Curie, M. P. and Sklodowska-Curie, M. (1898). On a new radioactive substance contained in pitchblende, Comptes Rendus, 127, 175-178.Google Scholar
Curie, M. P., Sklodowska-Curie, M. and Bemont, G. (1898). On a new, strongly radioactive substance, contained in pitchblende, Comptes Rendus, 127, 1215-1217.Google Scholar
Curtis, H. D. (1917). New stars in spiral nebulae, Publications of the Astronomical Society of the Pacific, 29, 180-181.CrossRefGoogle Scholar
(1918a). Descriptions of762 nebulae and clusters photographed with the Crossley reflector, Publications of the Lick Observatory, 13,11-42. The reference to ‘a curious straight ray’ in NGC 4486 (M87) appears on page 31.
(1918b). A study of occulting matter in the spiral nebulae, Publications of the Lick Observatory, 13, 45-54.
(1921). The scale of the Universe, Bulletin of the National Research Council, 2,194-217.
Dashevsky, V M. and Zeldovich, Y. B. (1964). Propagation of light in a nonhomogeneous non-flat Universe II, Astronomicheskii Zhurnal, 41, 1071-1074. Translation in Soviet Astronomy, 8, 1965, 854-856.Google Scholar
Davidson, W. (1962). The cosmological implications of the recent counts of radio sources I. Analysis of the results and their immediate interpretation, Monthly Notices of the Royal Astronomical Society, 123, 425-435.Google Scholar
Davidson, W. and Davies, M. (1964). Interpretation of the counts of radio sources in terms of a 4-parameter family of evolutionary universes, Monthly Notices of the Royal Astronomical Society, 127, 241-255.CrossRefGoogle Scholar
Davies, R. L., Efstathiou, G., Fall, S. M., Illingworth, G. and Schechter, P. L. (1983). The kinematic properties of faint elliptical galaxies, Astrophysical Journal, 266, 41-57.CrossRefGoogle Scholar
Davis, L. Jr.andGreenstein, J. L. (1951). The polarization of starlight by aligned dust grains, Astrophysical Journal, 114, 206-240.CrossRefGoogle Scholar
Davis, M. and Peebles, P. J. E. (1983). A survey of galaxy redshifts. V – The two-point position and velocity correlations, Astrophysical Journal, 267, 465-482.CrossRefGoogle Scholar
Davis, M., Efstathiou, G., Frenk, C. and White, S. D. M. (1985). The evolution of large-scale structure in a universe dominated by cold dark matter, Astrophysical Journal, 292, 371-394.CrossRefGoogle Scholar
(1992a). The end of cold dark matter?, Nature, 356, 489-494.
Davis, M., Geller, M. J. and Huchra, J. (1978). The local mean mass density of the Universe – new methods for studying Galaxy clustering, Astrophysical Journal, 221, 1-18.CrossRefGoogle Scholar
Davis, R. (1955). Attempt to detect the antineutrinos from a nuclear reactor by the Cl37(v−, e−)Ar37 reaction, Physical Review, 97, 766-769.CrossRefGoogle Scholar
Davis, R. L., Hodges, H. M., Smoot, G. F., Steinhardt, P. J. and Turner, M. S. (1992b). Cosmic microwave background probes models of inflation, Physical Review Letters, 69, 1856-1859.CrossRefGoogle ScholarPubMed
de Bernardis, P., Ade, P. A. R., Bock, J. J.et al. (2000). A flat Universe from high-resolution maps of the cosmic microwave background radiation, Nature, 404, 955-959.CrossRefGoogle ScholarPubMed
de Sitter, W. (1917a). On Einstein's theory of gravitation and its astronomical consequences, Monthly Notices of the Royal Astronomical Society, 78, 3-28.CrossRefGoogle Scholar
(1917b). On the relativity of inertia. Remarks concerning Einstein's latest hypothesis, Proceedings of the Royal Academy of Amsterdam, 19, 1217-1225.
de Vaucouleurs, G. (1971). The large-scale distribution of galaxies and clusters of galaxies, Publications of the Astronomical Society of the Pacific, 83, 113-143.CrossRefGoogle Scholar
(1974). Structure, dynamics and statistical properties of galaxies (invited paper), in The Formation and Dynamics of Galaxies, IAU Symposium 58, ed. Shakeshaft, J. R. (Dordrecht: D. Reidel Publishing Company), pp. 1-53.CrossRef
de Vaucouleurs, G., de Vaucouleurs, A., Corwin, H. G. Jr.Buta, R. J., Paturel, G. and Fouque, P. (1991). Third Reference Catalogue of Bright Galaxies: Containing Information on 23,024 Galaxies With Reference to Papers Published Between 1913 and 1988 (Berlin: Springer-Verlag).Google Scholar
Dekel, A. (1986). Biased galaxy formation, Comments on Astrophysics, 11, 235-256.Google Scholar
Dekel, A.andRees, M. J. (1987). Physical mechanisms for biased galaxy formation, Nature, 326, 455-462.CrossRefGoogle Scholar
Dekel, A., Burstein, D. and White, S. D. M. (1997). Measuring £2, in Critical Dialogues in Cosmology, ed. Turok, N. (Singapore: World Scientific), pp. 175-192.Google Scholar
Dennise, J.-F., Le Roux, E. and Steinberg, J. C. (1957). Novelles observations du rayon-nement du ciel sur la longeur d'onde 33 cm (New observations of the background radiation at a wavelength of 33 cm), Comptes Rendus, 244, 3030-3033.Google Scholar
Deubner, F.-L. (1975). Observations of low wavenumber nonradial eigenmodes of the Sun, Astronomy and Astrophysics, 44, 371-375.Google Scholar
Dicke, R. H. (1961). Dirac's cosmology and Mach's principle, Nature, 192, 440-441.CrossRefGoogle Scholar
Dicke, R. H. and Peebles, P. J. E. (1979). Big Bang cosmology – enigmas and nostrums, in General Relativity: An Einstein Centenary Survey, eds Hawking, S. W. and Israel, W. (Cambridge: Cambridge University Press), pp. 504-517.Google Scholar
Dicke, R. H., Peebles, P. J. E., Roll, P. G. and Wilkinson, D. T. (1965). Cosmic black-body radiation, Astrophysical Journal, 142, 414-419.CrossRefGoogle Scholar
Dingle, H. (1937). Modern Aristotelianism, Nature, 139, 784-786.CrossRefGoogle Scholar
Dirac, P. A. M. (1928a). The quantum theory of the electron, Proceedings of the Royal Society of London, A117, 610-624.Google Scholar
(1928b). The quantum theory of the electron II, Proceedings of the Royal Society of London, A118, 351-361.
(1931). Quantum singularities in the electromagnetic field, Proceedings of the Royal Society of London, A133, 60-72.
(1937). The cosmical constants, Nature, 139, 323.CrossRef
Djorgovski, S. G. and Davis, M. (1987). Fundamental properties of elliptical galaxies, Astrophysical Journal, 313, 59-68.CrossRefGoogle Scholar
Dombrovski, V. A. (1954). On the nature of the radiation from the Crab Nebula, Dokladi Akademiya Nauk SSSR, 94, 1021-1024.Google Scholar
Doroshkevich, A. G. and Novikov, I. D. (1964). Mean density of radiation in the metagalaxy and certain problems in relativistic cosmology, Dokladi Akademiya Nauk SSSR, 154, 809-811. Translation in Soviet Physics Doklady, 9, 1964, 111-113.Google Scholar
Doroshkevich, A. G., Novikov, I. D., Sunyaev, R. A. and Zeldovich, Y. B. (1971). Helium production in the different cosmological models, in Highlights of Astronomy, vol. 2, ed. de Jager, C. (Dordrecht: D. Reidel Publishing Company), pp. 313-327.Google Scholar
Doroshkevich, A. G., Sunyaev, R. A. and Zeldovich, Y. B. (1974). The formation of galaxies in Friedmannian universes, in Confrontation of Cosmological Theories with Observational Data, IAU Symposium no. 63, ed. Longair, M. S. (Dordrecht: D. Reidel Publishing Company), pp. 213-225.Google Scholar
Doroshkevich, A. G., Zeldovich, Y. B., Sunyaev, R. A. and Khlopov, M. Y. (1980a). Astrophysical implications of the neutrino rest mass – Part II. The density-perturbation spectrum and small-scale fluctuations in the microwave background, Pis'ma v Astro-nomicheskii Zhurnal, 6, 457-464.Google Scholar
(1980b). Astrophysical implications of the neutrino rest mass – Part III. The non-linear growth of perturbations and hidden mass, Pis'ma v Astronomicheskii Zhurnal, 6, 465-469.
Draine, B. T. (2003). Interstellar dust grains, Annual Reviews of Astronomy and Astrophysics, 41, 241-289.CrossRefGoogle Scholar
Draper, H. (1879). On photographing the spectra of the stars and planets, American Journal of Science and Arts, 18, 419-425.Google Scholar
Dressler, A. (1980). Galaxy morphology in rich clusters – implications for the formation and evolution of galaxies, Astrophysical Journal, 236, 351-365.CrossRefGoogle Scholar
(1984). The evolution of galaxies in clusters, Annual Review of Astronomy and Astrophysics, 22, 185-222.
Dressler, A., Lynden-Bell, D., Burstein, D.et al. (1987). Spectroscopy and photometry of elliptical galaxies.I-Anewdistance estimator, Astrophysical Journal, 313, 42-58.CrossRefGoogle Scholar
Dreyer, J. L. E. (1888). New general catalogue of nebulae and clusters of stars, Memoirs of the Royal Astronomical Society, 49, 1-237.Google Scholar
(1895). Index catalogue of nebulae, Memoirs of the Royal Astronomical Society, 51, 185-228.
(1908). Index catalogue of nebulae and cluster stars, Memoirs of the Royal Astronomical Society, 59, 105-198.
Dunbar, D. N. F., Pixley, R. E., Wenzel, W. A. and Whaling, W. (1953). The 7.68-MeV state of C12, Physical Review, 92, 649-650.CrossRefGoogle Scholar
Dunlop, J. S. (1994). The cosmological evolution of active galaxies, in Frontiers of Space and Ground-Based Astronomy: The Astrophysics of the 21st Century, eds Wamsteker, W., Longair, M. S. and Kondo, Y. (Dordrecht: Kluwer Academic Publishers), pp. 395–407.Google Scholar
Dunlop, J. S. and Peacock, J. A. (1990). The redshift cut-off in the luminosity function of radio galaxies and quasars, Monthly Notices of the Royal Astronomical Society, 247, 19-42.Google Scholar
Dunlop, J. S., McLure, R. J., Yamada, T.et al. (2004). Discovery of the galaxy counterpart of HDF 850.1, the brightest submillimetre source in the Hubble Deep Field, Monthly Notices of the Royal Astronomical Society, 350, 769-784.CrossRefGoogle Scholar
Dwek, E., Arendt, R. G., Hauser, M. G.et al. (1995). Morphology, near-infrared luminosity, and mass of the Galactic bulge from COBE DIRBE observations, Astrophysical Journal, 445, 716-730.CrossRefGoogle Scholar
Dyer, C. C. and Roeder, R. C. (1972). The distance-redshift relation for universes with no intergalactic medium, Astrophysical Journal, 174, L115-L117.CrossRefGoogle Scholar
Dyson, F. W., Eddington, A. S. and Davidson, C. (1920). A determination of the deflection of light by the Sun's gravitational field, from observations made at the total eclipse of May 29, 1919, Philosophical Transactions of the Royal Society, 220, 291-333.CrossRefGoogle Scholar
Eales, S., Rawlings, S., Law-Green, D., Cotter, G. and Lacy, M. (1997). A first sample of faint radio sources with virtually complete redshifts. I – Infrared images, the Hubble diagram and the alignment effect, Monthly Notices of the Royal Astronomical Society, 291, 593-615.CrossRefGoogle Scholar
Eastman, R. G. and Kirshner, R. P. (1989). Model atmospheres for SN 1987A and the distance to the Large Magellanic Cloud, Astrophysical Journal, 347, 771-793.CrossRefGoogle Scholar
Eddington, A. S. (1908). On the mathematical theory oftwo star drifts, and on the systematic motions of zodiacal stars, Monthly Notices of the Royal Astronomical Society, 68, 588–605.CrossRefGoogle Scholar
(1916a). The kinetic energy of a star cluster, Monthly Notices of the Royal Astronomical Society, 76, 525-528.
(1916b). On the radiative equilibrium of the stars, Monthly Notices of the Royal Astronomical Society, 77, 16-35.
(1917). Further notes on the radiative equilibrium of the stars, Monthly Notices of the Royal Astronomical Society, 77, 596-612.
(1920). The internal constitution of the stars, Observatory, 43, 341-358.
(1924). On the relation between the masses and luminosities of the stars, Monthly Notices of the Royal Astronomical Society, 84, 308-332.
Eddington, A. S. (1926a). Diffuse matter in interstellar space, Proceedings of the Royal Society, A111, 424-456.Google Scholar
(1926b). The Internal Constitution of the Stars (Cambridge: Cambridge University Press). Reprinted 1988.
(1930). On the stability of Einstein's spherical world, Monthly Notices of the Royal Astronomical Society, 90, 668-678.
(1935). Remark in the paper ‘Relativistic degeneracy’ read to the meeting of the Royal Astronomical Society on January 11 1935, Observatory, 58, 37-39.
(1941). Discussion of Sir Arthur Eddington's contribution, in Novae and White Dwarfs, ed. Shaler, A. J. (Paris: Herrmann et Cie), pp. 262-267.
(1946). Fundamental Theory (Cambridge: Cambridge University Press).
Edge, D. O., Shakeshaft, J. R., McAdam, W. B., Baldwin, J. E. and Archer, S. (1959). A survey of radio sources at a frequency of 159 Mc/s, Memoirs of the Royal Astronomical Society, 68, 37-60.Google Scholar
Efstathiou, G. (1990). Cosmological perturbations, in Physics of the Early Universe, eds Peacock, J. A., Heavens, A. F. and Davies, A. T. (Edinburgh: SUSSP Publications), pp. 361-463.Google Scholar
Eggert, J. (1919). Über den Dissoziationszustand der Fixsterngase (On the dissociation state of gases in the fixed stars), Physikalische Zeitschrift, 20, 570-574.Google Scholar
Eguchi, K., Enomoto, S., Furuno, K.et al. (2003). First results from KamLAND: evidence for reactor anti-neutrino disappearance, Physical Review Letters, 90, id. 021802(1-6).CrossRefGoogle Scholar
Einasto, J. (2001). Dark matter and large scale structure, in Historical Development of Modern Cosmology, ASP Conference Series vol. 252, eds Martinez, V J., Trimble, V and Pons-Bordeia, M. J. (San Francisco: ASP), pp. 85-107.Google Scholar
Einstein, A. (1907). Über das Relativitatsprinzip und die aus demselben gezogenen Fol-gerungen (On the relativity principle and the conclusions drawn from it), Jahrbuch der Radioaktivitat und Elektronik, 4, 411-462.Google Scholar
(1911). liber den Einfluss der Schwerkraft auf die Ausbreitung des Lichtes (On the influence of gravitation on the propagation of light), Annalen der Physik, 35, 898-908.
(1912). Relativitat und Gravitation. Erwiderung auf eine Bemerkung von M. Abraham (Relativity and gravitation. Reply to a comment by M. Abraham), Annalen der Physik, 38, 1059-1064.
(1915). Die Feldgleichung der Gravitation (The field equations of gravitation), Sitzungs-berichte, Koniglich Preussische Akademieder Wissenschaften (Berlin), II (1915), 844–847.
(1916a). Die Grundlage der Allgemeinen Relativitatstheorie (The Foundation of the General Theory of Relativity). (Leipzig: J. A. Barth). Acknowledgement to the contribution of Marcel Grossmann is printed on p. 6.
(1916b). Die Grundlage der Allgemeinen Relativitatstheorie (The foundation of the general theory of relativity), Annalen der Physik, 49, 769-822.
(1917). Kosmologische Betrachtungen zur Allgemeinen Relativitatstheorie (Cosmological considerations in the general theory of relativity), Sitzungsberichte, Koniglich Preussische Akademie der Wissenschaften (Berlin), I (1917), 142-152.
Einstein, A. (1919). Spielen Gravitationsfelder im Aufbau der materiellen Elemen-tarteilchen eine wesentliche Rolle? (Do gravitational fields play a significant role for the structure of elementary particles?), Sitzungsberichte, Koniglich Preussische Akademie der Wissenschaften, I (1919), 349-356.Google Scholar
(1922a). Bemerkung zu der Arbeit von A. Friedmann ‘Ueber die Kruemmung des Raumes’ (Remark on the workof A. Friedmann ‘On the curvature of space’), Zeitschrift fur Physik, 11, 326.CrossRef
(1922b). Kyoto address of December 1922, in Einstein Koen-Roku, ed. Ishiwara, J. (Tokyo: Tokyo-Tosho, 1977).
(1923). Notiz zu der Arbeit von A. Friedmann ‘Über die Krummung des Raumes’ (A note on the work of A. Friedmann ‘On the curvature of space’), Zeitschrift fur Physik, 16, 228.
Einstein, A. and de Sitter, W. (1932). On the relation between the expansion and the mean density of the Universe, Proceedings of the National Academy of Sciences, 18,213-214.CrossRefGoogle ScholarPubMed
Einstein, A. and Grossmann, M. (1913a). Entwurf einer verallgemeinerten Rela-tivitatstheorie und einer Theorie der Gravitation (Outline of a Generalised Theory of Relativity and of a Theory of Gravitation) (Leipzig: Teubner).Google Scholar
(1913b). Entwurf einer verallgemeinerten Relativitatstheorie und einer Theorie der Gravitation (Outline of a generalised theory of relativity and of a theory of gravitation), Zeitschrift fur Mathematik und Physik, 62, 225-259.
Elder, F. R., Gurewitsch, A. M., Langmuir, R. V and Pollock, H. C. (1947). Radiation from electrons in a synchrotron, Physical Review, 71, 829-830.CrossRefGoogle Scholar
Ellis, R. (1987). Galaxy surveys at high redshift – past, present and future, in High Redshift and Primaeval Galaxies, eds Bergeron, J., Kunth, D., Rocca-Volmerange, B. and Tran Thanh Van, J. (Gif sur Yvette: Edition Frontieres), pp. 3-16.Google Scholar
Ellis, R. G. (1997). Faint blue galaxies, Annual Review of Astronomy and Astrophysics, 35, 389-443.CrossRefGoogle Scholar
Elsasser, W. M. (1933). Sur le principe de Pauli dans les noyaux (On Pauli's principle for nuclei), Journal de Physique et le Radium, Series 7, 4, 549-556.Google Scholar
Emden, R. (1907). Gaskugeln (Leipzig and Berlin: B. G. Teubner).Google Scholar
Epstein, I. (1950). A note on energy generation, Astrophysical Journal, 112, 207-210.CrossRefGoogle Scholar
Ewen, H. I. and Purcell, E. M. (1951). Radiation from Galactic hydrogen at 1420 MHz, Nature, 168, 356.Google Scholar
Faber, S. M. and Jackson, R. E. (1976). Velocity dispersions and mass-to-light ratios for elliptical galaxies, Astrophysical Journal, 204, 668-683.CrossRefGoogle Scholar
Fabian, A. C. (1994). Cooling flows in clusters of galaxies, Annual Review of Astronomy and Astrophysics, 32, 277-318.CrossRefGoogle Scholar
Fabricant, D. G., Lecar, M. and Gorenstein, P. (1980). X-ray measurements of the mass of M87, Astrophysical Journal, 241, 552-560.CrossRefGoogle Scholar
Falk, S. W. and Arnett, W. D. (1973). A theoretical model for Type II supernovae, Astro-physical Journal, 180, L65-L68.CrossRefGoogle Scholar
Fall, S. M. (1997). A global perspective on star formation, in The Hubble Space Telescope and the High Redshift Universe, eds Tanvir, N. R., Aragòn-Salamanca, A. and Wall, J. V (Singapore: World Scientific Publishing Company), pp. 303-308.Google Scholar
Fanaroff, B. L. and Riley, J. M. (1974). The morphology of extragalactic radio sources of high and low luminosity, Monthly Notices of the Royal Astronomical Society, 167, 31P–36P.CrossRefGoogle Scholar
Faulkner, J (2001) Low-mass red giants as binary stars without angular momentum, in Evolution of Binary and Multiple Star Systems; A Meeting in Celebration of Peter Eggleton's 60th Birthday, ASP Conference Series vol. 229, eds Podsiadlowski, P., Rappaport, S., King, A. R., D'Antona, F. and Burder, L. (San Francisco: ASP), pp. 3-14.Google Scholar
Feast, M. W. and Catchpole, R. M. (1997). The Cepheid period-luminosityzero-pointfrom Hipparcos trigonometrical parallaxes, Monthly Notices of the Royal Astronomical Society, 286, L1-L5.CrossRefGoogle Scholar
Felten, J. (1977). Study of the luminosity function for field galaxies, Astronomical Journal, 82, 861-878.CrossRefGoogle Scholar
Fermi, E. (1926). Sulla quantizzazione del gas perfecto monoatomica (On the quantisation of a perfect monatomic gas), Rendiconti della Accademia Nazionale dei Lincei, 3, 145-149.Google Scholar
(1934a). Tentativo di una teoria dei raggij (An attempt at a theory of j-rays), Nuovo Cimento, 11, 1-19.
(1934b). Versuch einer Theorie der j (-Strahlen) (An attempt at a theory of j -rays), Zeitschrift fur Physik, 88, 161-177.
(1949). On the origin of the cosmic radiation, Physical Review, 75, 1169-1174.
Fich, M. and Tremaine, S. (1991). The mass of the Galaxy, Annual Review of Astronomy and Astrophysics, 29, 409-445.CrossRefGoogle Scholar
Fichtel, C. E., Simpson, G. A. and Thompson, D. J. (1978). Diffuse gamma radiation, Astrophysical Journal, 222, 833-849.CrossRefGoogle Scholar
Field, G. B. (1965). Thermal instability, Astrophysical Journal, 142, 531-567.CrossRefGoogle Scholar
(1974). Interstellar abundances: gas and dust, Astrophysical Journal, 187, 453-469.
Field, G. B., Goldsmith, D. W.andHabing, H. J. (1969). Cosmic-ray heating of the interstellar gas, Astrophysical Journal Letters, 55, L149-L154.Google Scholar
Fitch, W. S., Pacholczyk, A. G. and Weymann, R. J. (1967). Light variations of the Seyfert galaxy NGC 4151, Astrophysical Journal, 150, L67-L70.CrossRefGoogle Scholar
Fixsen, D. J., Cheng, E. S., Gales, J. M., Mather, J. C., Shafer, R. A. and Wright, E. L. (1996). The cosmic microwave background spectrum from the full COBE FIRAS data set, Astrophysical Journal, 473, 576-587.CrossRefGoogle Scholar
Fizeau, H. and Foucault, L. (1847). Recherches sur les interferences des rayons calorifiques (Researches on the interference of heat rays), Comptes Rendus de l Academie des Sciences, 25, 447-450.Google Scholar
Ford, H. C., Harms, R. J., Tsvetanov, Z. I.et al. (1994). Narrowband HST images of M87: evidence for a disk of ionized gas around a massive black hole, Astrophysical Journal Letters, 435, L27-L30.CrossRefGoogle Scholar
Forman, W., Jones, C., Cominsky, L.et al. (1978). The fourth UHURU catalog of X-ray sources, Astrophysical Journal Supplement Series, 38, 357-412.CrossRefGoogle Scholar
Foucault, L. (1849). Lumiere electrique (Electric light), L'Institut, Journal Universal des Sciences, 17, 44-46.Google Scholar
Fowler, R. H. (1926). On dense matter, Monthly Notices of the Royal Astronomical Society, 87, 114-122.CrossRefGoogle Scholar
Fowler, R. H. and Milne, E. A. (1923). The intensities of absorption lines in stellar spectra, and the temperatures and pressures in the reversing layers of stars, Monthly Notices of the Royal Astronomical Society, 83, 403-424.CrossRefGoogle Scholar
(1924). The maxima of absorption lines in stellar spectra (second paper), Monthly Notices of the Royal Astronomical Society, 84, 499-515.
Fowler, W. A. (1958). Completion of the proton-proton reaction chain and the possibility of energetic neutrino emission by hot stars, Astrophysical Journal, 127, 551-556.CrossRefGoogle Scholar
Fraunhofer, J. (1817a). Bestimmung des Brechungs- und Farbenzerstreuungs-Vermogens Verschiedener Glasarten, in Bezug auf die Vervollkommnung Achromatischer Fernrohre (On the refractive and dispersive power of different species of glass in reference to the improvement of achromatic telescopes, with an account of the lines or streaks which cross the spectrum), Denkschriften der koniglichen Akademie der Wis-senschaften zu Miinchen, 5, 193-226. Translation: Edinburgh Philosophical Journal, 9, 288-299 (1823); 10, 26-40 (1824).Google Scholar
(1817b). Bestimmung des Brechungs- und Farbenzerstreuungs-Vermogens Ver-schiedener Glasarten, in Bezug auf die Vervollkommnung Achromatischer Fernrohre (On the refractive and dispersive power of different species of glass in reference to the improvement of achromatic telescopes, with an account of the lines or streaks which cross the spectrum), Gilberts Annalen der Physik, 56, 264-313.
(1821). Neue Modifikation des Lichtes durch Gegenseitige Einwirkung und Beugung der Strahlen, und Gesetze Derselben (New modifications of light through interactions and diffraction of rays and its laws), Denkschriften der koniglichen Akademie der Wissenschaften zu Miinchen, 8, 1-76.
(1823). Kurzer Bericht von den Resultaten neuerer Versuche Über die Gesetze des Lichtes, und die Theorie Derselben (A short account of the results of recent experiments upon the laws of light and its theory), Gilberts Annalen der Physik, 74,337-378. Translation: Edinburgh Journal of Science, 7, 101-113, 251-262 (1827); 8, 7-10 (1828).
Frazier, E. N. (1968). A spatio-temporal analysis of velocity fields in the solar photosphere, Zeitschrift fur Astrophysik, 68, 345-356.Google Scholar
Freedman, W. L., Madore, B. F., Gibson, B. K.et al. (2001). Final results from the Hubble Space Telescope Key Project to measure the Hubble constant, Astrophysical Journal, 533, 47-72.Google Scholar
Freeman, K. C. (1970). On the disks of spiral and S0 galaxies, Astrophysical Journal, 160, 811-830.CrossRefGoogle Scholar
Freier, P., Lofgren, E. J., Ney, E. P., Oppenheimer, F., Bradt, H. L. and Peters, B. (1948). Evidence for heavy nuclei in the primary cosmic radiation, Physical Review, 74, 213-217.Google Scholar
Frenk, C. (1986). Galaxy clustering and the dark-matter problem, Philosophical Transactions of the Royal Astronomical Society, A320, 517-541.Google Scholar
Fried, D. L. (1965). Statistics of a geometric representation of wavefront distortion, Journal of the Optical Society of America, 55, 1427-1435.CrossRefGoogle Scholar
Friedman, A. A. (1922). On the curvature of space, Zeitschrift fur Physik, 10, 377-386.Google Scholar
Friedman, A. A. (1923). The World as Space and Time (Petrograd: Academia).Google Scholar
(1924). On the possibility of a world with constant negative curvature, Zeitschrift fur Physik, 12, 326-332.
Friedman, H., Lichtman, S. W. and Byram, E. T. (1951). Photon counter measurements of solar X-rays and extreme ultraviolet light, Physical Review, 83, 1025-1030.CrossRefGoogle Scholar
Friedrich, W., Knipping, P. and Laue, M. von (1912). Interferenz-Erscheinungen bei Rontgenstrahlen (Interference effects with Rontgen rays), Sitzberichte der Koniglich Bayerischen Akademie der Wissenschaften, pp. 303-322.Google Scholar
Fritz, G., Henry, R. C., Meekins, J. F., Chubb, T. A. and Friedman, H. (1969). X-ray pulsar in the Crab Nebula, Science, 164, 709-712.CrossRefGoogle ScholarPubMed
Frost, E. B. (1909). Spectroscopic notes, Astrophysical Journal, 29, 233-239.CrossRefGoogle Scholar
Fukuda, S., Fukuda, Y., Ishitsuka, et al. (2001). Solar 8B and hep neutrino measurements from 1258 days of super-Kamiokande data, Physical Review Letters, 86, 5651-5655.Google ScholarPubMed
Fukuda, Y., Hayakawa, T., Inoue, K.et al. (1996). Solar neutrino data covering solar cycle 22, Physical Review Letters, 77, 1683-1686.CrossRefGoogle ScholarPubMed
Galbraith, W. and Jelley, J. V (1953). Light pulses from the night sky associated with cosmic rays, Nature, 171, 349-350.CrossRefGoogle Scholar
(1955). Light-pulses from the night sky and Cherenkov radiation, Part 1, Journal of Atmospheric and Terrestrial Physics, 6, 250-262.
Gallego, J., Zamorano, J., Aragòn-Salamanca, A. and Rego, M. (1995). The current star formation rate of the local Universe, Astrophysical Journal, 455, L1-L4.CrossRefGoogle Scholar
Gamow, G. (1928). Zur Quantentheorie der Atomzertrummerung (On the quantum theory of atomic destruction), Zeitschrift fur Physik, 52, 510-515.Google Scholar
(1937). Atomic Nuclei and Nuclear Transformations (Oxford: Oxford University Press).
(1939). Physical possibilities of stellar evolution, Physical Review, 55, 718-725.
(1946). Expanding Universe and the origin of elements, Physical Review, 70, 572-573.
(1970). My World Line, (New York: Viking Press). The reference to Einstein's admission of ‘the greatest blunder of my life’ is on p. 44.
Garcia-Munoz, M., Mason, G. M. and Simpson, J. A. (1977). The age of the Galactic cosmic rays derived from the abundances of 10Be, Astrophysical Journal, 217, 857-877.CrossRefGoogle Scholar
Garnavich, P. M., Kirshner, R. P., Challis, P.et al. (1998). Constraints on cosmological models from Hubble Space Telescope observations of high-z supernovae, Astrophysical Journal Letters, 493, L53-L58.CrossRefGoogle Scholar
Geiger, H. and Muller, W. (1928). Das Electronenzahlrohr (The electron-counting tube), Physicalische Zeitschrift, 29, 839-841.Google Scholar
(1929). Technische Bemerkungen zum Electronenzahlrohr (Technical remarks on the electron-counting tube), Physicalische Zeitschrift, 30, 489-493.
Geller, M. J. and Huchra, J. P. (1989). Mapping the Universe, Science, 246, 897-903.CrossRefGoogle ScholarPubMed
Genzel, R., Schodel, R., Ott, T.et al. (2003). Near-infrared flares from accreting gas around the supermassive black hole at the Galactic centre, Nature, 425, 934-937.CrossRefGoogle ScholarPubMed
Gershtein, S. S.andZeldovich, Y. B. (1966). Rest mass of amuonic neutrino and cosmology, Pisma v Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 4, 174-177.Google Scholar
Ghez, A. M., Morris, M., Becklin, E. E., Tanner, A. and Krememek, T. (2000). The accelerations of stars orbiting the Milky Way's central black hole, Nature, 407, 349-351.CrossRefGoogle ScholarPubMed
Giacconi, R., Gursky, H., Paolini, F. R. and Rossi, B. B. (1962). Evidence for X rays from sources outside the solar system, Physical Review Letters, 9, 439-443.CrossRefGoogle Scholar
Giacconi, R., Gursky, H., Kellogg, E., Schreier, E. and Tananbaum, H. (1971a). Discovery of periodic X-ray pulsations in Centaurus X-3 from UHURU, Astrophysical Journal, 167, L67-L73.CrossRefGoogle Scholar
Giacconi, R., Kellogg, E., Gorenstein, P., Gursky, H. and Tananbaum, H. (1971b). An X-ray scan of the Galactic plane from UHURU, Astrophysical Journal, 165, L27-L35.CrossRefGoogle Scholar
Giacconi, R., Bechtold, J., Branduardi, G.et al. (1979). A high-sensitivity X-ray survey using the Einstein Observatory and the discrete source contribution to the extragalactic X-ray background, Astrophysical Journal Letters, 234, L1-L7.CrossRefGoogle Scholar
Giavalisco, M., Livio, M., Bohlin, R. C., Macchetto, F. D. and Stecher, T. P. (1996). On the morphology of the HST faint galaxies, Astronomical Journal, 112, 369-377.CrossRefGoogle Scholar
Gibbons, G. W. and Hawking, S. W. (1977). Cosmological event horizons, thermodynamics, and particle creation, Physical Review, D15, 2738-2751.Google Scholar
Gibbons, G. W., Hawking, S. W. and Siklos, S. T. C., eds (1983). The Very Early Universe: Proceedings of the Nuffield Workshop, Cambridge, UK, June 21-July 9, 1982 (Cambridge: Cambridge University Press).
Gibbons, G. W., Shellard, E. P. S. and Rankin, S. J., eds (2003). The Future of Theoretical Physics and Cosmology (Cambridge: Cambridge University Press).
Ginzburg, V. L. (1951). Cosmic rays as a source of Galactic radio-radiation, Doklady Akademiya Nauk SSSR, 76, 377-380.Google Scholar
Ginzburg, V L. and Kirzhnits, D. A. (1964). On the superfluidity of neutron stars, Zhur-nal Experimentalnoi i Teoretichseskikh Fizica, 47, 2006-2007. Translation in Soviet Physics JETP, 20, 1965, 1346-1348.Google Scholar
Glazebrook, K., Ellis, R. S., Colless, M., Broadhurst, T. J., Allington-Smith, J. R. and Tanvir, N. R. (1995). The morphological identification of the rapidly evolving population of faint galaxies, Monthly Notices of the Royal Astronomical Society, 275, L19-L22.CrossRefGoogle Scholar
Gold, T. (1968). Rotating neutron stars as the origin of pulsating radio sources, Nature, 218, 731-732.CrossRefGoogle Scholar
(1969). Rotating neutron stars and the nature of pulsars, Nature, 221, 25-27.
Goldhaber, G., Boyle, B., Bunclark, P.et al. (1996). Cosmological time dilation using Type Ia supernovae as clocks, Nuclear Physics B Proceedings Supplements, 51, 123-127.CrossRefGoogle Scholar
Goldreich, P. and Julian, W. H. (1969). Pulsar electrodynamics, Astrophysical Journal, 157, 869-880.CrossRefGoogle Scholar
Goobar, A. and Perlmutter, S. (1995). Feasibility of measuring the cosmological constant lambda and mass density omega using Type IA supernovae, Astrophysical Journal, 450, 14-18.CrossRefGoogle Scholar
Gott, J. R., Melott, A. L. and Dickinson, M. (1986). The sponge-like topology of large-scale structure in the Universe, Astrophysical Journal, 306, 341-357.CrossRefGoogle Scholar
Gough, D. O. (1977). Random remarks on solar hydrodynamics, in The Energy Balance and Hydrodynamics of the Solar Chromosphere and Corona, eds Bonnet, R. M. and Delache, P. (Clermont-Ferrand: G. de Bussac), pp. 3-36.Google Scholar
Gower, J. F. R. (1966). The source counts from the 4C survey, Memoirs of the Royal Astronomical Society, 133, 151-161.Google Scholar
Gower, J. F. R., Scott, P. F. and Wills, D. (1967). A survey of radio sources in the declination ranges -07 to 20 and 40 to 80, Monthly Notices of the Royal Astronomical Society, 71, 49-144.Google Scholar
Graham Smith, F. (1951). An accurate determination of the positions of four radio stars, Nature, 168, 555.CrossRefGoogle Scholar
Greenstein, J. L. and Matthews, T. A. (1963). Red-shift of the unusual radio source 3C 48, Nature, 197, 1041-1042.CrossRefGoogle Scholar
Greenstein, J. L. and Schmidt, M. (1964). Red-shifts of the radio sources 3C 48 and 3C 273, Astrophysical Journal, 140, 1-43.CrossRefGoogle Scholar
Gregory, J. (1668). Geometriae Pars Universalis (Padua: Published by the heirs of Paolo Frambotti), p. 148.Google Scholar
Gribben, J. and Rees, M. J. (1989). Dark Matter, Mankind and Anthropic Cosmology (New York: Bantam Books).Google Scholar
Gull, S. F. (1975). The X-ray, optical and radio properties of young supernova remnants, Monthly Notices of the Royal Astronomical Society, 171, 263-278.CrossRefGoogle Scholar
Gunn, J. E. (1978). The Friedmann models and optical observations in cosmology, in Observational Cosmology: 8th Advanced Course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978, eds Maeder, A., Martinet, L. and Tammann, G. (Geneva: Geneva Observatory Publications), pp. 1-121.Google Scholar
Gunn, J. E. and Peterson, B. A. (1965). On the density of neutral hydrogen in intergalactic space, Astrophysical Journal, 142, 1633-1636.CrossRefGoogle Scholar
Gursky, H., Giacconi, R., Paolini, F. R. and Rossi, B. B. (1963). Further evidence for the existence of galactic X-rays, Physical Review Letters, 11, 530-535.CrossRefGoogle Scholar
Gursky, H., Kellogg, E. M., Murray, S., Leong, C., Tananbaum, H. and Giacconi, R. (1971). A strong X-ray source in the Coma cluster observed by UHURU, Astrophysical Journal Letters, 167, L81-L84.CrossRefGoogle Scholar
Guth, A. (1981). Inflationary Universe: a possible solution to the horizon and flatness problems, Physical Review, D23, 347-356.Google Scholar
(1997). The Inflationary Universe: The Quest for a New Theory of Cosmic Origins (Reading, Massachusetts: Addison-Wesley).
(2003). Inflation and cosmological perturbations, in The Future of Theoretical Physics and Cosmology, eds Gibbons, G. W., Shellard, E. P. S. and Rankin, S. J. (Cambridge: Cambridge University Press), pp. 725-754.
Hale, G. E. (1928). The possibilities of large telescopes, Harper's Magazine, 156, 639-646.Google Scholar
Hall, J. S. (1949). Observations of the polarized light from stars, Science, 109, 166-167.CrossRefGoogle ScholarPubMed
Halley, E. (1718). Considerations on the change of the latitudes of some of the principal fixt stars, Philosophical Transactions of the Royal Society, 30, 736-738.Google Scholar
Halm, J. (1911). Further considerations relating to the systematic motions of the stars, Monthly Notices of the Royal Astronomical Society, 71, 610-639.CrossRefGoogle Scholar
Halverson, N. W., Leitch, E. M., Pryke, C.et al. (2002). Degree angular scale interferometer first results: a measurement of the cosmic microwave background angular power spectrum, Astrophysical Journal, 568, 38-45.CrossRefGoogle Scholar
Hamilton, A. J. S., Kumar, P., Lu, E. and Matthews, A. (1991). Reconstructing the primordial spectrum of fluctuations of the Universe from the observed nonlinear clustering of galaxies, Astrophysical Journal, 374, L1-L4.CrossRefGoogle Scholar
Hampel, W., Handt, J., Heusser, G.et al. (1999). GALLEX solar neutrino observations: results for GALLEX IVPhysics Letters B, 447, 127-133.CrossRefGoogle Scholar
Hanany, S., Ade, P., Balbi, A.et al. (2000). MAXIMA-1: a measurement of the cosmic microwave background anisotropy on angular scales of 10' - 5°, Astrophysical Journal, 545, L5-L9.CrossRefGoogle Scholar
Hardcastle, M. J., Alexander, P., Pooley, G. G. and Riley, J. M. (1996). The Jets in 3C 66B, Monthly Notices of the Royal Astronomical Society, 278, 273-284.CrossRefGoogle Scholar
Harms, R. J., Ford, H. C., Tsvetanov, Z. I.et al. (1994). HST FOS spectroscopy of M87: evidence for a disk of ionized gas around a massive black hole, Astrophysical Journal Letters, 435, L35-L38.CrossRefGoogle Scholar
Harrison, B. K., Wakano, M. and Wheeler, J. A. (1958). Matter-energy at high density; end-point of thermonuclear evolution, in Onzieme Conseil de Physique Solvay, La Structure et l evolution de l univers (Brussels: Editions Stoops), pp. 124–146.Google Scholar
Harrison, B. K., Thorne, K. S., Wakano, M. and Wheeler, J. A. (1965). Gravitational Theory and Gravitational Collapse (Chicago: University of Chicago Press).Google Scholar
Harrison, E. R. (1970). Fluctuations at the threshold of classical cosmology, Physical Review, D1, 2726-2730.Google Scholar
Hartmann, J. F. (1904). Investigations of the spectrum and orbit of Delta Orionis, Astro-physical Journal, 19, 268-286.CrossRefGoogle Scholar
Hasinger, G., Burg, R., Giacconi, R.et al. (1993). A deep X-ray survey in the Lockman Hole and the soft X-ray log N-log S, Astronomy and Astrophysics, 275, 1-15.Google Scholar
Hausman, M. A. and Ostriker, J. P. (1977). Cannibalism among galaxies – dynamically produced evolution of cluster luminosity functions, Astrophysical Journal, 217, L125-L129.Google Scholar
Hawking, S. W. (1972). Black holes in general relativity, Communications in Mathematical Physics, 25, 152-166.CrossRefGoogle Scholar
Hawking, S. W. and Ellis, G. R. (1973). The Large Scale Structure of Space-Time (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Hawking, S. W. and Penrose, R. (1969). The singularities of gravitational collapse and cosmology, Proceedings of the Royal Society, A314, 529-548.Google Scholar
Hayakawa, S. and Matsuoka, M. (1964). Part V. Origin of cosmic X-rays, Supplement of Progress of Theoretical Physics (Japan), 30, 204-228.Google Scholar
Hayashi, C. (1950). Proton-neutron concentration ratio in the expanding Universe at the stages preceding the formation of the elements, Progress of Theoretical Physics (Japan), 5, 224-235.CrossRefGoogle Scholar
(1961). Stellar evolution in early phases of gravitational contraction, Publications of the Astronomical Society of Japan, 13, 450-452.
Hazard, C., Mackey, M. B. and Shimmins, A. J. (1963). Investigation of the radio source 3C 273 by the method of lunar occultations, Nature, 197, 1037-1039.CrossRefGoogle Scholar
Helmholtz, H. von (1854). On the interaction of natural forces, Philosophical Magazine (Series 4), 11, 489-518. Lecture delivered at Konigsberg, 7 February 1854.Google Scholar
Helou, G., Soifer, B. T. and Rowan-Robinson, M. (1985). Thermal infrared and nonthermal radio – remarkable correlation in disks of galaxies, Astrophysical Journal, 298, L7-L11.CrossRefGoogle Scholar
Henderson, T. (1840). On the parallax of a Centauri, Memoirs of the Royal Astronomical Society, 11, 61-68.Google Scholar
Henyey, L. G. and Keenan, P. C. (1940). Interstellar radiation from free electrons and hydrogen atoms, Astrophysical Journal, 91, 625-630.CrossRefGoogle Scholar
Herbig, G. H. (1952). Emission-line stars in Galactic nebulosities, Journal of the Royal Astronomical SocietyofCanada, 46, 222-233.Google Scholar
Hernquist, L., Katz, N., Weinberg, D. H. and Miralda-Escude, J. (1996). The Lyman-alpha forest in the cold dark matter model, Astrophysical Journal, 457, L51-L55.CrossRefGoogle Scholar
Herschel, J. F. W. (1840). On the chemical action of the rays of the solar spectrum on preparations of silver and other substances, bothmetallic and non-metallic, and on some photographic processes, Philosophical Transactions of the Royal Society of London, 130, 1-59.CrossRefGoogle Scholar
(1864). General catalogue of nebulae and clusters of stars, Philosophical Transactions of the Royal Society, 154, 1-137.
Herschel, W. (1783). On the proper motion of the Sun and Solar System; with an account of several changes that have happened among the fixed stars since the time of Mr. Flamstead, Philosophical Transactions of the Royal Society, 73, 247-283.Google Scholar
(1785). On the construction of the heavens, Philosophical Transactions of the Royal Society, 75, 213-268.
(1800a). Experiments on the refrangibility of the invisible rays of the Sun, Philosophical Transactions of the Royal Society, 90, 284-292.
(1800b). Experiments on the solar, and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part I, Philosophical Transactions of the Royal Society, 90, 293-326.
(1800c). Experiments on the solar, and on the terrestrial rays that occasion heat; with a comparative view of the laws to which light and heat, or rather the rays which occasion them, are subject, in order to determine whether they are the same, or different. Part II, Philosophical Transactions of the Royal Society, 90, 437–538.
(1800d). Investigation of the powers of the prismatic colours to heat and illuminate objects; with remarks that prove the different refrangibility of radiant heat. To which is added, an inquiry into the method of viewing the Sun advantageously, with telescopes of large apertures and high magnifying powers, Philosophical Transactions of the Royal Society, 90, 255-283.
(1802). Catalogue of 500 new nebulae, nebulous stars, planetary nebulae, and clusters of stars; with remarks on the construction of the heavens, Philosophical Transactions of the Royal Society, 92, 477-528.
Hertzsprung, E. (1905). Zur Strahlung der Sterne I (On the radiation of stars I), Zeitschrift fur Wissenschaftliche Photographie, 3, 429-442.Google Scholar
(1906). Ueber die Optische Starke der Strahlung des Schwartzen Korpers und das Mini-male Lichtaquivalent (On the optical intensity of black-body radiation and the equivalent minimum light emission), Zeitschrift fur Wissenschaftliche Photographie, 4, 43-54.
Hertzsprung, E. (1907). Zur Strahlung der Sterne II (On the radiation of stars II), Zeitschrift fuir Wissenschaftliche Photographie, 5, 86-107.Google Scholar
(1911). Über die Verwendung Photographischer Effectiver Wellenlangen zur Bestim-mmung von Farbenaquivalenten (On the use of photographic effective wavelengths for the determination of equivalent colours), Publikationen des Astrophysikalischen Observatoriums zu Potsdam, 22, 1-40.
(1913). Über die Raumliche Verteilung der Veränderlichen vom 8 Cephei-Typus (On the spatial distribution of the variables of 8-Cephei type), Astronomische Nachrichten, 196, 201-209.
(1919). Bermerkungen zur Statistik der Sternparallaxen (Remarks on the statisics of stellar parallaxes), Astronomische Nachrichten, 208, 89-96.
Hess, V F. (1912). Über Beobachtungen der durchdringenden Strahlung bei sieben Freibal-lonfahrten (Concerning observations of penetrating radiation on seven free balloon flights), Physikalische Zeitschrift, 13, 1084-1091.Google Scholar
Hesser, J. E., Harris, W. E., VandenBerg, D. A., Allwright, J. W. B., Shott, P. and Stetson, P. (1987). A CCD color-magnitude study of 47 Tucanae, Publications of the Astronomical Society of the Pacific, 99, 739-808.Google Scholar
Hewish, A., Bell, S. J., Pilkington, J. D. H., Scott, P. F. and Collins, R. A. (1968). Observations of a rapidly pulsating radio source, Nature, 217, 709-713.CrossRefGoogle Scholar
Hey, J. S. (1946). Solar radiations in the 4-6 metre radio wave-length band, Nature, 157, 47-48.Google Scholar
Hey, J. S., Parsons, S. J. and Phillips, J. W. (1946). Fluctuations in cosmic radiation at radio-frequencies, Nature, 158, 234.CrossRefGoogle ScholarPubMed
Higgs, P. W. (1964). Broken symmetries, massless particles and gauge fields, Physics Letters, 12, 132-133.CrossRefGoogle Scholar
Hiltner, W. A. (1949). Polarization of light from distant stars by the interstellar medium, Science, 109, 165.CrossRefGoogle ScholarPubMed
Hirata, K. S., Inoue, K., Kajita, T., Kifune, T. and Kihara, K. (1990). Results from one thousand days of real-time, directional solar-neutrino data, Physical Review Letters, 65, 1297-1300.CrossRefGoogle ScholarPubMed
Hjellming, R. and Wade, C. (1971). Further radio observations of ScorpiusX-1, Astrophys-ical Journal, 170, 523-528.Google Scholar
Hjorth, J., Sollerman, J., Moller, P.et al. (2003). A very energetic supernova associated with the Y-ray burst of 29 March 2003, Nature, 423, 847-850.CrossRefGoogle Scholar
Hoag, A. A. and Smith, M. G. (1977). Faint emission-line quasi-stellar object candidates, Astrophysical Journal, 217, 362-381.CrossRefGoogle Scholar
Hoyle, F. (1946). The chemical composition of the stars, Monthly Notices of the Royal Astronomical Society, 106, 225-259.CrossRefGoogle Scholar
(1948). A new model for the expanding Universe, Monthly Notices of the Royal Astronomical Society, 108, 372-382.
(1954). On nuclear reactions occurring in very hot stars. I. The synthesis of elements from carbon to nickel, Astrophysical Journal Supplement, 1, 121-146.
Hoyle, F. and Fowler, W. A. (1963a). On the nature of strong radio sources, Monthly Notices of the Royal Astronomical Society, 125, 169-176.Google Scholar
Hoyle, F. and Fowler W. A. (1963b). Nature of strong radio sources, Nature, 197, 533-535.CrossRefGoogle Scholar
Hoyle, F. and Lyttleton, R. A. (1942). On the internal constitution of the stars, Monthly Notices of the Royal Astronomical Society, 102, 177-193.CrossRefGoogle Scholar
Hoyle, F. and Schwarzschild, M. (1955). On the evolution of type II stars, Astrophysical Journal Supplement, 2, 1-40.CrossRefGoogle Scholar
Hoyle, F. and Tayler, R. J. (1964). The mystery of the cosmic helium abundance, Nature, 203, 1108-1110.CrossRefGoogle Scholar
Hoyle, F., Burbidge, G. R. and Sargent, W. L. W. (1966). On the nature of the quasi-stellar sources, Nature, 209, 751-753.CrossRefGoogle Scholar
Hu, W. (1996). Concepts in CMB anisotropy formation, in The Universe at High-z, Large-Scale Structure and the Cosmic Microwave Background, eds Martinez-Gonzales, E. and Sanz, J. L. (Berlin: Springer-Verlag), pp. 207-240.Google Scholar
Hu, W. and Sugiyama, N. (1995). Anisotropies in the cosmic microwave background: an analytic approach, Astrophysical Journal, 444, 489-506.CrossRefGoogle Scholar
Hu, W., Sugiyama, N. and Silk, J. (1997). The physics of microwave background anisotropies, Nature, 386, 37-43.CrossRefGoogle Scholar
Hubble, E. P. (1925). Cepheids in spiral nebulae, Publications of the American Astronomical Society, 5, 261-264.Google Scholar
(1926). Extra-galactic nebulae, Astrophysical Journal, 64, 321-369.
(1929). A relation between distance and radial velocity among extra-galactic nebulae, Proceedings of the National Academy of Sciences, 15, 168-173.
(1935). Angular rotations of spiral nebulae, Astrophysical Journal, 81, 334-335.
(1936). The Realm of the Nebulae (New Haven: Yale University Press).
Hubble, E. P. and Humason, M. (1934). The velocity-distance relation among extra-galactic nebulae, Astrophysical Journal, 74, 43-80.Google Scholar
Huchra, J. and Brodie, J. (1987). The M87 Globular Cluster System. I - Dynamics, Astronomical Journal, 93, 779-784.CrossRefGoogle Scholar
Hudson, M. J., Dekel, A., Courteau, S., Faber, S. M. and Willick, J. A. (1995). U and biasing from optical galaxies versus POTENT mass, Monthly Notices of the Royal Astronomical Society, 274, 305-316.CrossRefGoogle Scholar
Huggins, W. (1868). Further observations on the spectra of some of the stars and nebulae, with an attempt to determine there from whether these bodies are moving towards or from the Earth, also observations on the spectra of the Sun and of the Comet II, Philosophical Transactions of the Royal SocietyofLondon, 158, 529-564.Google Scholar
(1869). Note on the heat of the stars, Proceedings of the Royal Society of London, 17, 309-312.
Huggins, W. and Miller, W. A. (1864a). On the spectra of some of the fixed stars, Philosophical Transactions of the Royal Society of London, 154, 413-435.CrossRefGoogle Scholar
(1864b). On the spectra of some of the nebulae; a supplement to the paper ‘On the spectra of some fixed stars’, Philosophical Transactions of the Royal Society of London, 154, 437-444.
Hughes, D. H., Serjeant, S., Dunlop, J.et al. (1998). High-redshift star formation in the Hubble Deep Field revealed by a submillimetre-wavelength survey, Nature, 394, 241–247.CrossRefGoogle Scholar
Hulse, R. A. and Taylor, J. H. (1975). Discovery of a pulsar in a binary system, Astrophysical Journal Letters, 195, L51-L53.CrossRefGoogle Scholar
Hulst, H. C. van de (1945). Radio waves from space: origin of radiowaves, Nederlands Tijdschrift voor Natuurkunde, 11, 210-221.Google Scholar
(1949a). Interstellar polarization and magneto-hydrodynamic waves, in Problems of Cosmical Aerodynamics: Proceedings of IUTAM-IAU Symposium on Cosmical Gas Dynamics, eds Burgers, J. M. and van de Hulst, H. C. (Dayton, Ohio: Central Air Documents Office), pp. 45-58.
(1949b). The solid particles of interstellar space, Recherches Astronomiques de l'Observatoire d'Utrecht, no. 11, Part 2, 1-50.
Humason, M. L., Mayall, N. U. and Sandage, A. R. (1956). Redshifts and magnitudes of extra-galactic nebulae, Astronomical Journal, 61, 97-162.CrossRefGoogle Scholar
Hummer, D. G. and Mihalas, D. (1988). The equation of state for stellar envelopes. I -An occupation probability formalism for the truncation of internal partition functions, Astrophysical Journal, 331, 794-814.CrossRefGoogle Scholar
Illingworth, G. (1977). Rotation (?) in 13 elliptical galaxies, Astrophysical Journal Letters, 218, L43-L47.CrossRefGoogle Scholar
Inskip, K. J., Best, P. N., Longair, M. S. and MacKay, D. J. C. (2002). Infrared magnitude-redshift relations for luminous radio galaxies, Monthly Notices of the Royal Astronomical Society, 329, 277-289.CrossRefGoogle Scholar
Irwin, M., McMahon, R. G. and Hazard, C. (1991). APM optical surveys for high redshift quasars, Proceedings of the Workshop on The Space Distribution of Quasars: Astronomical Society of the Pacific Conference Series, 21, 117-126.Google Scholar
Ivanenko, D. and Pomeranchuk, I. (1944). On the maximal energy attainable in a betatron, Physical Review, 65, 343.CrossRefGoogle Scholar
Jansky, K. G. (1933). Electrical disturbances apparently of extraterrestrial origin, Proceedings of the Institution of Radio Engineers, 21, 1387-1398.Google Scholar
Jeans, J. H. (1902). The stability of a spherical nebula, Philosophical Transactions of the Royal Society of London, 199, 1-53.Google Scholar
(1917). Remark in discussion of the Royal Astronomical Society of 8 December 1916, Observatory, 40, 43.
(1926). Diffuse matter in interstellar space: Letter to the Editor, Observatory, 49, 333-335. See the final paragraph.
Jennison, R. C. and Das Gupta, M. K. (1953). Fine structure of the extra-terrestrial radio source Cygnus 1, Nature, 172, 996-997.CrossRefGoogle Scholar
Joeveer, M. and Einasto, J. (1978). Has the Universe the cell structure?, in The Large Scale Structure of the Universe, eds Longair, M. S. and Einasto, J. (Dordrecht: D. Reidel Publishing Company), pp. 241-251.Google Scholar
Johnson, H. L. (1962). Infrared stellar photometry, Astrophysical Journal, 135, 69-77.CrossRefGoogle Scholar
(1965). Interstellar extinction in the Galaxy, Astrophysical Journal, 141, 923-942.
Johnson, H. L. and Morgan, W. W. (1953). Fundamental stellar photometry for standards of spectral type in the revised system of the Yerkes spectral atlas, Astrophysical Journal, 117,313-352.CrossRefGoogle Scholar
Johnson, H. L., Mitchell, R. I., Iriate, B. and Wisniewski, W. Z. (1966). UBVRIJKL photometry of the bright stars, Communications of the Lunar Planetary Laboratory, 4, 99-110.Google Scholar
Johnson, W. N. III and Haymes, R. C. (1973). Detection of a gamma-ray spectral line from the Galactic-center region, Astrophysical Journal, 184, 103-126.CrossRefGoogle Scholar
Jones, M., Saunders, R., Alexander, P.et al. (1998). An image of the Sunyaev-Zel'dovich effect, Nature, 365, 320-323.Google Scholar
Joy, A. H. (1939). Rotational effects, interstellar absorption, and certain dynamical constants of the Galaxy determined from Cepheid variables, Astrophysical Journal, 89, 356-376.CrossRefGoogle Scholar
(1945). T Tauri variable stars, Astrophysical Journal, 102, 168-195.
Kaiser, C. R. and Alexander, P. (1997). A self-similar model for extragalactic radio sources, Monthly Notices of the Royal Astronomical Society, 286, 215-222.CrossRefGoogle Scholar
Kaiser, N. (1986). Evolution and clustering of rich clusters, Monthly Notices of the Royal Astronomical Society, 222, 323-345.CrossRefGoogle Scholar
Kapahi, V K. (1987). The angular size-redshift relation as a cosmological tool, in Observational Cosmology, eds Hewitt, A., Burbidge, G. and Fang, L.-Z. (Dordrecht: D. Reidel Publishing Co.), pp. 251-265.Google Scholar
Kapteyn, J. C. (1892). To what stellar system does our Sun belong?, Publications of the Astronomical Society of the Pacific, 4, 259-260.CrossRefGoogle Scholar
(1905). Star streaming, Report of the British Association for the Advancement of Science, 257, pp. 237-265.
(1906). Plan of Selected Areas (Groningen: Astronomical Laboratory).
(1922). First attempt at a theory of the arrangement and motion of the sidereal system, Astrophysical Journal, 55, 302-328.
Kapteyn, J. C. and Rhijn, P. J. van (1920). On the distribution of the stars in space especially in the high galactic latitudes, Astrophysical Journal, 52, 23-38.CrossRefGoogle Scholar
Katz, N., Weinberg, D. H., Hernquist, L. and Miranda-Escude, J. (1996). Damped Lyman-alpha and Lyman-limit absorbers in the cold dark matter model, Astrophysical Journal, 457, L57-L60.CrossRefGoogle Scholar
Kauffmann, G., Colberg, J. M., Diaferio, A. and White, S. D. M. (1999). Clustering of galaxies in a hierarchical Universe: I. Methods and results at z = 0, Monthly Notices of the Royal Astronomical Society, 303, 188-206.CrossRefGoogle Scholar
Kaufmann, W. (1902). Die Elektromagnetische Masse des Elektrons (On the electromagnetic mass of the electron), Physikalische Zeitschift, 4, 54-56.Google Scholar
Kellermann, K. I. (1993). The cosmological deceleration parameter estimated from the angular-size/redshift relation for compact radio sources, Nature, 361, 134–136.CrossRefGoogle Scholar
Kennefick, J. D., Djorgovski, S. G. and de Carvalo, R. R. (1995). The luminosity function of z > 4 quasars from the second Palomar Sky Survey, Astronomical Journal, 110, 2553-2565.Google Scholar
Kennicutt, R. C. (1989). The star formation law in galactic discs, Astrophysical Journal, 344, 685-703.CrossRefGoogle Scholar
Kerr, R. P. (1963). Gravitational field of a spinning mass as an example of algebraically special metrics, Physical Review Letters, 11, 237-238.CrossRefGoogle Scholar
Khachikian, E. Y. and Weedman, D. W. (1971). A spectroscopic study of luminous galactic nuclei, Astrofizika, 7, 389-406.Google Scholar
(1974). An atlas of Seyfert galaxies, Astrophysical Journal, 192, 581-589.
Kiang, T. and Saslaw, W. C. (1969). The distribution in space of clusters of galaxies, Monthly Notices of the Royal Astronomical Society, 143, 129-138.CrossRefGoogle Scholar
Kibble, T. W. B. (1976). Topology of cosmic domains and strings, Journal of Physics A: Mathematical and General, 9, 1387-1398.CrossRefGoogle Scholar
Kiepenheuer, K. O. (1950). Cosmic rays as the source of general Galactic radio emission, Physical Review, 79, 738-739.CrossRefGoogle Scholar
Kirchhoff, G. (1859). Ueber den Zusammenhang zwischen Emission und Absorption von Licht und Warme (On the connection between emission and absorption of light and heat), Berlin Monatsberichte, pp. 783-787.Google Scholar
(1861). Untersuchungen Über das Sonnenspektrum und die Spectren der Chemischen Ele-mente (Investigations of the solar spectrum and the spectra of the chemical elements), Part 1, Abhandlungen der koniglich Preussischen Akademie der Wissenschaften zu Berlin, pp. 63-95.
(1862). Untersuchungen Über das Sonnenspektrum und die Spectren der Chemischen Elemente (Investigations of the solar spectrum and the spectra of the chemical elements), Part 1 (continued), Abhandlungen der koniglich Preussischen Akademie der Wissenschaften zu Berlin, pp. 227-240.
(1863). Untersuchungen Über das Sonnenspektrum und die Spectren der Chemischen Ele-mente (Investigations of the solar spectrum and the spectra of the chemical elements), Part 2, Abhandlungen der koniglich Preussischen Akademie der Wissenschaften zu Berlin, pp. 225-240.
Kirshner, R. and Kwan, J. (1974). Distances to extragalactic supernovae, Astrophysical Journal, 193, 27-36.CrossRefGoogle Scholar
Kirshner, R. P.andOke, B. (1975). Supernova 1972e in NGC 5253, Astrophysical Journal, 200, 574-581.CrossRefGoogle Scholar
Klebesadel, R. W., Strong, I. B. and Olson, R. A. (1973). Observations of gamma-ray bursts of cosmic origin, Astrophysical Journal Letters, 182, L85-L88.CrossRefGoogle Scholar
Kleinmann, D. E. and Low, F. J. (1967). Discovery of an infrared nebula in Orion, Astro-physical Journal, 149, L1-L4.CrossRefGoogle Scholar
Kniffen, D. A., Chipman, E. and Gehrels, N. (1994). The gamma-ray sky according to Compton: a new window to the Universe, in Frontiers of Space and Ground-Based Astronomy, eds Wamsteker, W., Longair, M. S. and Kondo, Y. (Dordrecht: Kluwer Academic Publishers), pp. 5-16.Google Scholar
Knop, R. A., Aldering, G., Amanullah, R.et al. (2003). New constraints on ΩM, ΩA, and ω from an independent set of 11 high-redshift supernovae observed with the Hubble Space Telescope, Astrophysical Journal, 598, 102-137.CrossRefGoogle Scholar
Kobold, H. A. (1895). Untersuchungen des Eigenbewegung des Auwers-Bradley Catalogs nach Bessel'schen Methode (Investigation of the proper motions from the Auwers-Bradley Catalogue using Bessel's method), Abhandlungen der Kaiserlicher Leopoldinisch-Carolinschen Deutschen Akademie der Naturforscher, 64, 213-365.Google Scholar
Kogut, A., Banday, A. J., Bennett, C. L.et al. (1996). Tests for non-Gaussian statistics in the DMR four-year sky maps, Astrophysical Journal, 464, L29-L33.CrossRefGoogle Scholar
Kolb, E. W. and Turner, M. S. (1990). The Early Universe (Redwood City, California: Addison-Wesley Publishing Co.).Google Scholar
Kolhorster, W. (1913). Messungen der Durchdringenden Strahlung im Freiballon in Grosseren Hohen (Measurements of penetrating radiation in free balloon flights at great altitudes), Physikalische Zeitschrift, 14, 1153-1156.Google Scholar
Kompaneets, A. (1956). The establishment of thermal equilibrium between quanta and electrons, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 31, 876-885. Translation in Soviet Physics, 4, 1957, 730-737.Google Scholar
Koo, D. C. and Kron, R. (1982). QSO counts – a complete survey of stellar objects to B = 23, Astronomy and Astrophysics, 105, 107-119.Google Scholar
Kormendy, J. (1982). Observations of galaxy structure and dynamics, in Morphology and Dynamics of Galaxies: Twelfth Advanced Course of the Swiss Society of Astronomy and Astrophysics, eds Martinet, L. and Mayor, M. (Sauverny, Switzerland: Geneva Observatory), pp. 113-288.Google Scholar
Kormendy, J.andRichstone, D. O. (1995). Inward bound-the search for supermassive black holes in galactic nuclei, Annual Review of Astronomy and Astrophysics, 33, 581-624.CrossRefGoogle Scholar
Kramers, H. A. (1923). On the theory of X-ray absorption and of the continuous X-ray spectrum, Philosophical Magazine, 46, 836-871.Google Scholar
Kraushaar, W. L., Clark, G. W., Garmire, G. P., Borken, R., Higbie, P. and Agogino, M. (1965). Explorer XI experiment on cosmic gamma rays, Astrophysical Journal, 141, 845-863.CrossRefGoogle Scholar
Kroto, H. W., Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E. (1985). C(60): buckminsterfullerene, Nature, 318, 162-163.CrossRefGoogle Scholar
Kroto, H. W., Kirby, C., Walton, D. R. M.et al. (1978). The detection of cyanohexatriyne, H(C≡C)3CN, in Heiles's Cloud 2, Astrophysical Journal, 219, L133-L137.CrossRefGoogle Scholar
Kroto, H. W, Heath, J. R., O'Brien, S. C., Curl, R. F. and Smalley, R. E. (1987). Long carbon chain molecules in circumstellar shells, Astrophysical Journal, 314, 352-355.CrossRefGoogle Scholar
Kruskal, M. D. (1960). Maximal extension of Schwarzschild metric, Physical Review, 119, 1743-1745.CrossRefGoogle Scholar
Krymsky, G. F. (1977). A regular mechanism for the acceleration of charged particles on the front of a shock wave, DokladyAkademiya NaukSSSR, 234, 1306-1308.Google Scholar
Krzeminski, W. (1973). International Astronomical Union Circular no. 2612.Google Scholar
(1974). The identification and UBV photometry of the visible component of the Centaurus X-3 binary system, Astrophysical Journal Letters, 192, L135-L138.
Kuiper, G. P., Wilson, W. and Cashman, R. J. (1947). An infrared stellar spectrometer, Astrophysical Journal, 106, 243-250.CrossRefGoogle Scholar
Kundic, T., Turner, E. L., Colley, W. N.et al. (1997). A robust determination of the time delay in 0957+561A, B and a measurement of the global value of Hubble's constant, Astrophysical Journal, 482, 75-82.CrossRefGoogle Scholar
Labeyrie, A. (1975). Interference fringes obtained on Vega with two optical telescopes, Astrophysical Journal, 196, L71-L75.CrossRefGoogle Scholar
Lagage, P. O. and Cesarsky, C. J. (1983). The maximum energy of cosmic rays accelerated by supernova shocks, Astronomy and Astrophysics, 125, 249-257.Google Scholar
Lamb, H. (1932). Hydrodynamics, 6th edn (Cambridge: Cambridge University Press).Google Scholar
Lanczos, K. (1922). Bemerkung zur de Sitterschen Welt (Remarks on de Sitter's world model), Physikalische Zeitschrift, 23, 539-543.Google Scholar
Landau, L. D. (1932). On the theory of stars, Physicalische Zeitschrift der Sowjetunion, 1, 285-288.Google Scholar
(1938). Origin of stellar energy, Nature, 141, 333-334.
Lane, J. H. (1870). On the theoretical temperature of the Sun; under the hypothesis of a gaseous mass maintaining its volume by its internal heat, and depending on the laws of gases as known by terrestrial experiment, American Journal of Science and Arts, 2nd Series, 50, 57-74.Google Scholar
Langley, S. P. (1886). On hitherto unrecognised wave-lengths, American Journal of Science, 32, 83-106.Google Scholar
(1900). The absorption lines in the infra-red spectrum of the Sun, Annals of the Smithsonian Astrophysical Observatory, 1, 5-21.
Lanzetta, K. M., Wolfe, A. M. and Turnshek, D. A. (1995). The IUE Survey for damped Lyman-a and Lyman-limit absorption systems, Astrophysical Journal, 440, 43 5-457.CrossRefGoogle Scholar
Large, M. I., Vaughan, A. E. and Mills, B. Y. (1968). A pulsar supernova association?, Nature, 220, 340-341.CrossRefGoogle Scholar
Larson, R. B. (1969a). The emitted spectrum of a proto-star, Monthly Notices of the Royal Astronomical Society, 145, 297-308.CrossRefGoogle Scholar
(1969b). Numerical calculations of the dynamics of collapsing proto-star, Monthly Notices of the Royal Astronomical Society, 145, 271-295.
Lattes, C. M. G., Occhialini, G. P. S. and Powell, C. F. (1947). Observations on the tracks of slow mesons in photographic emulsions, Nature, 160, 453-456.Google ScholarPubMed
Laue, M. von (1912). Eine quantative Prufung der Theorie fur die Interferenzerschein-ungen bei Rontgenstrahlung (A quantitative test of the theory of X-ray interference phenomena), Sitzberichte der Koniglich Bayerischen Akademie der Wissenschaften, pp. 363-373.Google Scholar
Le Verrier, U. J. J. (1859). Sur la theorie de Mercure et sur le mouvement du perihelie de cette planete (On the theory of Mercury and the movement of the perihelion of this planet), Comptes Rendus, 49, 379-383.Google Scholar
Leavitt, H. S. (1912). Periods of 25 variable stars in the Small Magellanic Cloud, Harvard College Observatory Circular, No. 173, 1-2.Google Scholar
Leger, A. and Puget, J. L. (1984). Identification of the ‘unidentified’ IR emission features of interstellar dust?, Astronomy and Astrophysics, 137, L5-L8.Google Scholar
Leibacher, J. W. and Stein, R. F. (1971). A new description of the solar five-minute oscillation, Astrophysical Letters, 7, 191-192.Google Scholar
Leighton, R. B. (1960). (In Discussion on) Considerations on local velocity fields in stellar atmospheres: Prototype – the solar atmosphere, in Aerodynamic Phenomena in Stellar Atmospheres, ed. Thomas, R. N. (Bologna: Nicola Zanichelli), pp. 321-327.Google Scholar
Leighton, R. B., Noyes, R. W. and Simon, G. W (1962). Velocity fields in the solar atmosphere. I. Preliminary report, Astrophysical Journal, 135, 474-499.CrossRefGoogle Scholar
Lemaitre, G. (1927). A homogeneous Universe of constant mass and increasing radius, accounting for the radial velocity of extra-galactic nebulae, Annales de la Societe Scientifique de Bruxelles, A47, 29-39. Translation in Monthly Notices of the Royal Astronomical Society, 91, (1931), 483-490.Google Scholar
Lemaitre, G. (1931a). The beginning of the world from the point of view of quantum theory, Nature, 127, 706.CrossRefGoogle Scholar
(1931b). The expanding Universe, Monthly Notices of the Royal Astronomical Society, 91, 490-501.
(1933). Spherical condensations in the expanding Universe, Comptes Rendus de L'Academie des Sciences de Paris, 196, 903-904.
Leventhal, M., MacCallum, C. J. and Stang, P. D. (1978). Detection of 511 keV positron annihilation radiation from the Galactic center direction, Astrophysical Journal Letters, 225, L11-L14.CrossRefGoogle Scholar
Liddle, A. R. and Lyth, D. (2000). Cosmological Inflation and Large-Scale Structure (Cambridge: Cambridge University Press).CrossRefGoogle Scholar
Lifshitz, E. (1946). On the gravitational stability of the expanding Universe, Journal of Physics, Academy of Sciences of the USSR, 10, 116-129.Google Scholar
Lightman, A. P. and Schechter, P. L. (1990). The omega dependence of peculiar velocities induced by spherical density perturbations, Astrophysical Journal Supplement Series, 74, 831-832.CrossRefGoogle Scholar
Lilly, S. J. and Cowie, L. L. (1987). Deep infrared surveys, in Infrared Astronomy with Arrays, eds Wynn-Williams, C. G. and Becklin, E. E. (Honolulu: Institute for Astronomy, University of Hawaii Publications), pp. 473-482.Google Scholar
Lilly, S. J. and Longair, M. S. (1984). Stellar populations in distant radio galaxies, Monthly Notices of the Royal Astronomical Society, 211, 833-855.CrossRefGoogle Scholar
Lilly, S. J., Tresse, L., Hammer, F., Crampton, D. and LeFevre, O. (1995). The Canada-France redshift survey. VI. Evolution of the galaxy luminosity function to z ~ 1, Astrophysical Journal, 455, 108-124.CrossRefGoogle Scholar
Lin, H., Kirshner, R. P., Shectman, S. A., Landy, S. D., Oemler, A. and Tucker, D. L. (1996). The power spectrum of galaxy clustering in the Las Campanas Redshift Survey, Astrophysical Journal, 471, 617-635.CrossRefGoogle Scholar
Lindblad, B. (1925). Star-streaming and the structure of the stellar system, Arkiv forMatem-atik, Astronomi och Fysik, 19A (21), 1-8.Google Scholar
(1927). On the cause of the ellipsoidal distribution of stellar velocities, Arkiv forMatem-atik, Astronomi och Fysik, 20A (17), 1-7.
Linde, A. D. (1974). Is the Lee constant a cosmological constant?, ZhurnalExperimentalnoi i Teoretichseskikh Fizica (JETP) Letters, 19, 183-184.Google Scholar
(1982). A new inflationary Universe scenario: a possible solution of the horizon, flatness, homogeneity, isotropy and primordial monopole problems, Physics Letters, 108B, 389-393.
(1983). Chaotic inflation, Physics Letters, 129B, 177-181.
Lineweaver, C. H. (2005). Inflation and the cosmic microwave background, in The New Cosmology: Proceedings of the 16th International Physics Summer School, Canberra, ed. Colless, M. (Singapore: World Scientific).Google Scholar
Lobachevsky, N. I. (1829). On the principles of geometry, Kazanski Vestnik)(Kazan Messenger).Google Scholar
1830). On the principles of geometry, Kazanski Vestnik (Kazan Messenger).
Lockyer, J. N. (1900). Inorganic Evolution (London: Macmillan and Co.).Google Scholar
(1914). Notes on stellar classification II, Nature, 94, 618-619.
Longair, M. S. (1966). On the interpretation of radio source counts, Monthly Notices of the Royal Astronomical Society, 133, 421-436.CrossRefGoogle Scholar
(1971). Observational cosmology, Reports of Progress in Physics, 34, 1125-1248.
(1978). Radio astronomy and cosmology, in Observational Cosmology: 8th Advanced Course, Swiss Society of Astronomy and Astrophysics, Saas-Fee 1978, eds Maeder, A., Martinet, L. and Tammann, G. (Geneva: Geneva Observatory Publications), pp. 125–257.
(1997). The Friedman Robertson-Walker models: on bias, errors and acts of faith, in Critical Dialogues in Cosmology, ed. Turok, N. (Singapore: World Scientific), pp. 285–308.CrossRef
Longair, M. S., Ryle, M. and Scheuer, P. A. G. (1973). Models of extended radio sources, Monthly Notices of the Royal Astronomical Society, 164, 253-270.CrossRefGoogle Scholar
Lovelace, R. V. E. and Romanova, M. M. (2003). Relativistic Poynting jets from accretion disks, Astrophysical Journal, 596, L159-L162.CrossRefGoogle Scholar
Lovell, A. C. B. (1987). The emergence of radio astronomy in the UK after World War II, Quarterly Journal of the Royal Astronomical Society, 28, 1-9.Google Scholar
Low, F. J. (1961). Low-temperature germanium bolometer, Journal of the Optical Society of America, 51, 1300-1304.CrossRefGoogle Scholar
(1966). The infrared brightness temperature of Uranus, Astrophysical Journal, 146, 326–328.
Low, F. J. and Aumann, H. H. (1970). Observations of Galactic and extragalactic sources between 50 and 300 microns, Astrophysical Journal Letters, 162, L79-L85.CrossRefGoogle Scholar
Low, F. J. and Johnson, H. L. (1964). Stellar photometry at 10 |am, Astrophysical Journal, 139, 1130-1134.CrossRefGoogle Scholar
Low, F. J., Aumann, H. H. and Gillespie, C. M. (1970). Closing astronomy's last frontier -far infrared, Astronautics and Aeronautics, 8, 26-30.Google Scholar
Lund, N. (1984). Cosmic ray abundances, elemental and isotopic, in Cosmic Radiation in Contemporary Astrophysics, ed. Shapiro, M. M. (Dordrecht: D. Reidel Publishing Company), pp. 1-26.Google Scholar
Lundmark, K. (1920). The relations of the globular clusters and spiral nebulae to the stellar system, Ktingliga Svenska Vetenskaps-Akademiens Handlingar, 60, no. 8.Google Scholar
(1921). The Spiral Nebula Messier 33, Publications of the Astronomical Society of the Pacific, 33, 324-327.
Lynden-Bell, D. (1967). Statistical mechanics of violent relaxation in stellar systems, Monthly Notices of the Royal Astronomical Society, 136, 101-121.CrossRefGoogle Scholar
(1969). Galactic nuclei as collapsed old quasars, Nature, 223, 690-694.
Lynden-Bell, D., Faber, S. M., Burstein, D.et al. (1988). Spectroscopy and photometry of elliptical galaxies, Astrophysical Journal, 326, 19-49.CrossRefGoogle Scholar
Lyubimov, V A., Novikov, E. G., Nozik, V Z., Tretyakov, E. F. and Kozik, V S. (1980). An estimate of the ve mass from the p-spectrum of tritium in the valine molecule, Physics Letters, 138, 30-56.Google Scholar
Maanen, A. van (1916). Preliminary evidence of internal motion in the spiral nebula Messier 101, Astrophysical Journal, 44, 210-228.Google Scholar
(1921). Internal motion in four spiral nebulae, Publications of the Astronomical Society of the Pacific, 33, 200-202.
(1935). Internal motion in spiral nebulae, Astrophysical Journal, 81, 336-337.
McCarthy, P. J., van Breugel, W. J. M., Spinrad, H. and Djorgovski, G. (1987). A correlation between the radio and optical morphologies of distant 3CR radio galaxies, Astrophysical Journal, 321, L29-L33.CrossRefGoogle Scholar
Macchetto, F. D. and Dickinson, M. (1997). Galaxies in the young Universe, Scientific Amer can, 276, 66-73.Google Scholar
McClintock, J. E. (1992). Black holes in the Galaxy, in Proceedings of the Texas ESO/CERN Symposium on Relativistic Astrophysics, Cosmology and Fundamental Particles, eds Barrow, J. D., Mestel, L. and Thomas, P. A. (New York: New York Academy of Sciences), pp. 495-502.Google Scholar
McCray, R. (1993). Supernova SN 1987A revisited, Annual Review of Astronomy and Astrophysics, 31, 175-216.CrossRefGoogle Scholar
McCrea, W. H. (1929). The hydrogen chromosphere, Monthly Notices of the Royal Astronomical Society, 89, 483-497.Google Scholar
(1951). Relativity theory and the creation of matter, Proceedings of the Royal Society of London, 206, 562-575.
(1970). A philosophy for Big Bang cosmology, Nature, 228, 21-24.
McKee, C. F. and Ostriker, J. P. (1977). A theory of the interstellar medium – three components regulated by supernova explosions in an inhomogeneous substrate, Astrophysical Journal, 218, 148-169.CrossRefGoogle Scholar
McKellar, A. (1941). Molecular lines from the lowest states of the atomic molecules composed of atoms probably present in interstellar space, Publications of the Dominion Astrophysical Observatory (Victoria), 7, 251-272.Google Scholar
McLeod, J. M. and Andrew, B. H. (1968). The radio source VRO 42.22.01, Astrophysical Letters, 1, 243.Google Scholar
Madau, P., Ferguson, H. C., Dickinson, M. E., Giavalisco, M., Steidel, C. C. and Fruchter, A. (1996). High-redshift galaxies in the Hubble Deep Field: colour selection and star formation history to z ~ 4, Monthly Notices of the Royal Astronomical Society, 283, 1388-1404.CrossRefGoogle Scholar
Madau, P., Pozzetti, L. and Dickinson, M. (1998). The star formation history of field galaxies, Astrophysical Journal, 242, 106-116.Google Scholar
Maddox, S. J., Efstathiou, G., Sutherland, W G.andLoveday, J. (1990). Galaxy correlations on large scales, Monthly Notices of the Royal Astronomical Society, 242, 43P–47P.CrossRefGoogle Scholar
Maeder, A. (1994). A selection of 10 most topical stellar problems, in Frontiers of Space and Ground-Based Astronomy, eds Wamsteker, W., Longair, M. S. and Kondo, Y. (Dordrecht: Kluwer Academic Publishers), pp. 177-186.Google Scholar
Mahoney, W. A., Ling, J. C., Wheaton, W. A. and Jacobson, A. S. (1984). HEAO 3 discovery of Al-26 in the interstellar medium, Astrophysical Journal, 286, 578-585.CrossRefGoogle Scholar
Malkan, M. and Sargent, W. L. (1982). The ultraviolet excess of Seyfert 1 galaxies and quasars, Astrophysical Journal, 254, 22-37.CrossRefGoogle Scholar
Malmquist, K. G. (1920). A study of stars of spectral type A, Meddelanden fr … n Lunds Astronomiska Observatorium, Series II, no. 22 (Lund: Scientia Publishers), pp. 1-69.Google Scholar
Margon, B. and Ostriker, J. P. (1973). The luminosity function of Galactic X-ray sources: a cut-off and a ‘standard candle’?, Astrophysical Journal, 186, 91-96.CrossRefGoogle Scholar
Markarian, B. E. (1967). Galaxies with an ultraviolet continuum, Astrofizica, 3, 24-38.Google Scholar
Markarian, B. E., Lipovetsky, V A. and Stepanian, D. A. (1981). Galaxies with ultraviolet continuum XV, Astrofizica, 17, 619-627. Translation in Astrophysics, 17, 1982, 321-332.Google Scholar
Marx, G. and Szalay, A. S. (1972). Cosmological limit on neutretto mass, in Neutrino '72, vol. 1 (Budapest: Technoinform), pp. 191-195.Google Scholar
Mather, J. C., Cheng, E. S., Eplee, R. E. Jr.et al. (1990). A preliminary measurement of the cosmic microwave background spectrum by the Cosmic Background Explorer (COBE) Satellite, Astrophysical Journal, 354, L37-L40.CrossRefGoogle Scholar
Matt, G., Fabian, A. C. and Reynolds, C. S. (1997). Geometrical and chemical dependence of K-shell X-ray features, Monthly Notices of the Royal Astronomical Society, 289, 175-184.CrossRefGoogle Scholar
Matthews, T. A. and Sandage, A. R. (1963). Optical identification of 3C 48,3C 196 and 3C 286 with stellar objects, Astrophysical Journal, 138, 30-56.CrossRefGoogle Scholar
Matthews, T. A., Morgan, W. W. and Schmidt, M. (1964). A discussion of galaxies identified with radio sources, Astrophysical Journal, 140, 35-49.CrossRefGoogle Scholar
Matthewson, D. S. and Ford, V L. (1970). Polarization observations of 1800 stars, Memoirs of the Royal Astronomical Society, 74, 139-182.Google Scholar
Matz, S. M., Share, G. H., Leising, M. D., Chupp, E. L. and Vestrand, W. T. (1988). Gamma-ray line emission from SN 1987A, Nature, 331, 416-418.CrossRefGoogle Scholar
Maury, A. C. and Pickering, E. C. (1897). Spectra of bright stars photographed with the 11-inch Draper telescope as part of the Henry Draper Memorial, Annals of the Harvard College Observatory (PartI), 28, 1-128.Google Scholar
Mayer-Hasselwander, H. A., Kanbach, G., Bennett, K.et al. (1982). Large-scale distribution of Galactic gamma radiation observed by COS-B, Astronomy and Astrophysics, 105, 164-175.Google Scholar
Mayor, M. and Queloz, D. (1995). A Jupiter-mass companion to a solar-type star, Nature, 378, 355-359.CrossRefGoogle Scholar
Mazzarella, J. M. and Balzano, V A. (1986). A catalog of Markarian galaxies, Astrophysical Journal Supplement Series, 62, 751-819.CrossRefGoogle Scholar
Menzel, D. H. (1926). The planetary nebulae, Publications of the Astronomical Society of the Pacific, 38, 295-312.CrossRefGoogle Scholar
(1931). The general theory of absorption and emission lines, Publications of the Lick Observatory, 17, 213-243.
Messier, C. (1784). Catalogue de Nebuleuses et des Amas d'Etoiles (Catalogue of nebulae and clusters of stars), in Connaissance des Temps, ou Connaisance des Mouvemans Celeste, Pour l'anme bissextile 1784 (Paris: L'Academie Royal des Sciences), pp. 117-269.Google Scholar
Meszaros, P. (1974). The behaviour of point masses in an expanding cosmological substratum, Astronomy and Astrophysics, 37, 225-228.Google Scholar
Meszaros, P. (2002). Theories of gamma-ray bursts, Annual Review of Astronomy and Astrophysics, 40, 137-169.CrossRefGoogle Scholar
Meszaros, P. and Rees, M. J. (1993). Gamma-ray bursts: multiwaveband spectral predictions for blast wave models, Astrophysical Journal, 418, L59-L62.CrossRefGoogle Scholar
Metcalfe, N., Shanks, T., Campos, A., Fong, R. and Gardner, J. P. (1996). Galaxy formation at high redshifts, Nature, 383, 236-237.CrossRefGoogle Scholar
Michell, J. (1767). An inquiry into the probable parallax, and magnitude of the fixed stars, from the quantity of light which they afford us, and the particular circumstances of their situation, Philosophical Transactions of the Royal Society, 57, 234-264.Google Scholar
(1784). On the means of discovering the distance, magnitude, etc. of the fixed stars, in consequence of the diminution of the velocity of their light, in case such a diminution should be found to take place in any of them, and such other data should be procured from observations, as would be farther necessary for that purpose, Philosophical Transactions of the Royal Society, 74, 35-57.
Michelson, A. A. (1890). On the application of interference methods to astronomical measurements, Philosophical Magazine, 30, 1-21.Google Scholar
Michelson, A. A. and Pease, F. G. (1921). Measurement of the diameter of Alpha Orionis with the interferometer, Astrophysical Journal, 53, 249-259.CrossRefGoogle Scholar
Migdal, A. B. (1959). Superfluidity and the moments of inertia of nuclei, Zhurnal Experi-mentalnoi i Teoretichseskikh Fizica, 37, 249-263. Translation in Soviet Physics JETP, 10, 1960, 176-185.Google Scholar
Mihara, T., Makashima, K., Ohashi, T., Sakao, T. and Tashiro, M. (1990). New observations of the cyclotron absorption feature in Hercules X-1, Nature, 346, 250-252.CrossRefGoogle Scholar
Mikheyev, S. P. and Smirnov, A. Y. (1985). Resonance enhancement of oscillations in matter and solar neutrino spectroscopy, Soviet Journal of Nuclear Physics, 42, 913-917.Google Scholar
Miley, G. K. (1968). Variation of the angular sizes of quasars with red-shift, Nature, 218, 933-934.CrossRefGoogle Scholar
(1971). The radio structure of quasars – a statistical investigation, Monthly Notices of the Royal Astronomical Society, 152, 477-490.
Miley, G. K., Perola, G. C., van der Kruit, P. and van der Laan, H. (1972). Active galaxies with radio trails in clusters, Nature, 237, 269-272.CrossRefGoogle Scholar
Miller, G. E. and Scalo, J. M. (1979). The initial mass function and stellar birthrate in the solar neighborhood, Astrophysical Journal Supplement Series, 41,513-547.CrossRefGoogle Scholar
Mills, B. Y. and Slee, O. B. (1957). A preliminary survey of radio sources in a limited region of the sky at a wavelength of 3.5 m, Australian Journal of Physics, 10, 162-194.CrossRefGoogle Scholar
Milne, E. (1948). Kinematic Relativity (Oxford: Clarendon Press).Google Scholar
Milne, E. A. and McCrea, W. H. (1934a). Newtonian expanding Universe, Quarterly Journal of Mathematics, 5, 64-72.Google Scholar
(1934b). Newtonian Universes and the curvature of space, Quarterly Journal of Mathematics, 5, 73-80.
Minkowski, R. (1941). Spectra of supernovae, Publications of the Astronomical Society of the Pacific, 53, 224-225.CrossRefGoogle Scholar
(1942). The Crab Nebula, Astrophysical Journal, 96, 199-213.
Minkowski, R. (1960a). International cooperative efforts directed toward optical identification of radio sources, Proceedings of the National AcademyofSciences of the United States ofAmerica, 46, 13-19.Google ScholarPubMed
(1960b). A new distant cluster of galaxies, Astrophysical Journal, 132, 908-910.
Minnaert, M. and Mulders, G. (1930). Intensity measurement of the Fraunhofer lines in the wavelength region 5150 to 5270 A, Zeitschrift fur Astrophysik, 1, 192-199.Google Scholar
Mirabel, I. F. and Rodrigues, L. F. (1994). A superluminal source in the Galaxy, Nature, 371, 46-48.CrossRefGoogle Scholar
(1998). Microquasars in our Galaxy, Nature, 392, 673-676.
Miranda-Escude, J., Cen, R., Ostriker, J. P. and Rauch, M. (1996). The Lyman alpha forest from gravitational collapse in the CDM + lambda model, Astrophysical Journal, 471, 582-616.Google Scholar
Mitchell, R. J., Culhane, J. L., Davison, P. J. N. and Ives, J. C. (1976). Ariel 5 observations of the X-ray spectrum of the Perseus Cluster, Monthly Notices of the Royal Astronomical Society, 175, 29P-34P.CrossRefGoogle Scholar
Miyoshi, M., Moran, J., Herrnstein, J.et al. (1995). Evidence for a black-hole from high rotation velocities in a sub-parsec region of NGC4258, Nature, 373, 127-129.CrossRefGoogle Scholar
Moller, P. and Jakobsen, P. (1990). The Lyman continuum opacity at high redshifts-through the Lyman forest and beyond the Lyman valley, Astronomy and Astrophysics, 228, 299-309.Google Scholar
Monck, W. H. S. (1895). The spectra and colours of the stars, Journal of the British Astronomical Association, 5, 416-419.Google Scholar
Moran, J. M., Crowther, P. P., Burke, B. F.et al. (1967). Spectral line interferometry with independent time standards at stations separated by 845 kilometers, Science, 157, 676-677.CrossRefGoogle ScholarPubMed
Morgan, W. W., Keenan, P. C. and Kellman, E. (1943). Atlas of Stellar Spectra, with an outline of Spectral Classification. (Chicago: University of Chicago Press).Google Scholar
Morgan, W. W, Sharpless, S. and Osterbrock, D. (1951). Some features of Galactic structure in the neighbourhood of the Sun (abstract), Astronomical Journal, 57, 3.CrossRefGoogle Scholar
Morgan, W. W., Whitford, A. E. and Code, A. D. (1953). Studies in Galactic structure. I. A preliminary determination of the space distribution of the blue giants, Astrophysical Journal, 118,318-322.CrossRefGoogle Scholar
Muller, C. A. and Oort, J. H. (1951). The interstellar hydrogen line at 1420 MHz and an estimate of galactic rotation, Nature, 168, 356-358.Google Scholar
Myers, S. T., Baker, J. E., Readhead, A. C. S., Leitch, E. M. and Herbig, T. (1997). Measurements of the Sunyaev-Zeldovich effect in the nearby clusters A478, A2142, and A2256, Astrophysical Journal, 485, 1-21.CrossRefGoogle Scholar
Nakajima, T., Oppenheimer, B. R., Kulkarni, S. R., Golimowski, D. A., Matthews, K. and Durrance, S. T. (1995). Discovery of a cool brown dwarf, Nature, 378, 463-465.CrossRefGoogle Scholar
Nemiroff, R. J. (1994). A century of gamma ray burst models, Comments on Astrophysics, 17, 189-205.Google Scholar
Neugebauer, G. and Leighton, R. B. (1969). Two-micron SkySurvey: A PreliminaryCata-logue (Washington: NASA SP-3047).Google Scholar
Newman, E. T., Couch, K., Chinnapared, K., Exton, A., Prakash, A. and Torrence, R. (1965). Metric of a rotating charged mass, Journal of Mathematical Physics, 6, 918-919.CrossRefGoogle Scholar
Neyman, J., Scott, E. L. and Shane, C. D. (1954). The index of clumpiness of the distribution of images of galaxies, Astrophysical Journal Supplement, 1, 269-293.CrossRefGoogle Scholar
Novikov, I. D. (1964). On the possibility of [the] appearance of large scale inhomogeneities in the expanding Universe, Journal of Experimental and Theoretical Physics, 46, 686-689.Google Scholar
Oda, M., Gorenstein, P., Gursky, H., Kellogg, E., Schreier, E., Tananbaum, H. and Giacconi, R. (1971). X-ray pulsations from Cygnus X-1 observed from UHURU, Astrophysical Journal, 166, L1-L7.CrossRefGoogle Scholar
O'Dell, C. R.,Peimbert, M. and Kinman, T. D. (1964). The planetary nebulae in the globular cluster M15, Astrophysical Journal, 140, 119-129.CrossRefGoogle Scholar
Ohm, E. A. (1961). Project Echo: receiving system, Bell System Technical Journal, 40, 1065-1094.CrossRefGoogle Scholar
Oke, J. B. (1950). A theoretical Hertzsprung-Russell diagram for red dwarfstars, Journal of the Royal Astronomical Society of Canada, 44, 135-148.Google Scholar
Oliver, S. J., Rowan-Robinson, M. and Saunders, W. (1992). Infrared background constraints on the evolution of IRAS galaxies, Monthly Notices of the Royal Astronomical Society, 256, 15P–22P.CrossRefGoogle Scholar
Omnes, R. (1969). Possibility of matter-antimatter separation at high temperatures, Physical Review Letters, 23, 38-40.CrossRefGoogle Scholar
Oort, J. H. (1927). Observational evidence confirming Lindblad's hypothesis of a rotation of the Galactic system, Bulletin of the Astronomical Institutes of the Netherlands, 3, 275-282.Google Scholar
(1932). The force exerted by the stellar system in the direction perpendicular to the Galactic plane and some related problems, Bulletin of the Astronomical Institutes of the Netherlands, 6, 249-287.
(1958). Distribution of galaxies and density in the Universe, in Solvay Conference on The Structure and Evolution of the Universe (Brussels: Institut International de Physique Solvay), pp. 163-181.
Oort, J. H. and Walraven, T. (1956). Polarization and composition of the Crab Nebula, Bulletin of the Astronomical Institutes of the Netherlands, 12, 285-311.Google Scholar
Oort, J. H., Kerr, F. J. and Westerhout, G. (1958). The Galactic system as a spiral nebula, Monthly Notices of the Royal Astronomical Society, 118, 379-389.Google Scholar
Opik, E. (1922). An estimate of the distance of the Andromeda Nebula, Astrophysical Journal, 55, 406-410.CrossRefGoogle Scholar
(1938). Stellar structure, source of energy, and evolution, Publications of the Astronomical Observatory of the University of Tartu, 30 (3), 1-115.
(1951). Stellar models with variable compositions. II Sequences of models with energy generation proportional to the fifteenth power of temperature, Proceedings of the Royal Irish Academy, 54, 49-77.
Oppenheimer, B. R., Kulkarni, S. R., Matthews, K. and Nakajima, T. (1995). Infrared spectrum of the cool brown dwarf GL229B, Science, 270, 1478-1479.CrossRefGoogle Scholar
Oppenheimer, J. R. and Snyder, H. (1939). On continued gravitational contraction, Physical Review, 56, 455-459.CrossRefGoogle Scholar
Oppenheimer, J. R. and Volkoff, G. M. (1939). On massive neutron cores, Physical Review, 55, 374-381.CrossRefGoogle Scholar
Osmer, P. S. (1982). Evidence for a decrease in the space density of quasars at z more than about 3.5, Astrophysical Journal, 253, 28-37.CrossRefGoogle Scholar
Osterbrock, D. E. and Rogerson, J. B. (1961). The helium and heavy-element content of gaseous nebulae and the Sun, Publications of the Astronomical Society of the Pacific, 73, 129-134.CrossRefGoogle Scholar
Ostriker, J. P. and Gunn, J. E. (1969). On the nature of pulsars. I. Theory, Astrophysical Journal, 157, 1395-1417.CrossRefGoogle Scholar
Ostriker, J. P. and Peebles, P. J. E. (1973). A numerical study of the stability of flattened galaxies: or, can cold galaxies survive?, Astrophysical Journal, 186, 467-480.CrossRefGoogle Scholar
Ostriker, J. P. and Tremaine, S. D. (1975). Another evolutionary correction to the luminosity of giant galaxies, Astrophysical Journal, 202, L113-L117.CrossRefGoogle Scholar
Oswalt, T. D., Smith, J. A., Wood, M. A. and Hintzen, P. (1996). A lower limit of 9.5 gyr on the age of the galactic disk from the oldest white dwarf stars, Nature, 382, 692-694.CrossRefGoogle Scholar
Owen, F. N. and Ledlow, M. J. (1994). The FR I/II break and the bivariate luminosity function in Abell clusters of galaxies, in First Stromlo Symposium: Physics of Active Galactic Nuclei, ASP Conference Series, vol. 34, eds Bicknell, G. V, Dopita, M. A. and Quinn, P. J. (San Francisco: ASP), pp. 319-323.Google Scholar
Pacini, F. (1967). Energy emission from a neutron star, Nature, 216, 567-568.CrossRefGoogle Scholar
(1968). Rotating neutron stars, pulsars and supernova remnants, Nature, 219, 145-146.
Padmanabhan, T. (1993). Structure Formation in the Universe (Cambridge: Cambridge University Press).Google Scholar
(1996). Cosmology and Astrophysics Through Problems (Cambridge: Cambridge University Press), p. 437-440.
Page, L. (1997). Review of observations of the CMB, in Critical Dialogues in Cosmology, ed. Turok, N. (Singapore: World Scientific), pp. 343-362.Google Scholar
Pagel, B. E. J. (1997). Nucleosynthesis and Chemical Evolution ofGalaxies (Cambridge: Cambridge University Press).Google Scholar
Panagia, N., Gilmozzi, R., Macchetto, F., Adorf, H.-M. and Kirshner, R. P. (1991). Properties of the SN 1987A circumstellar ring and the distance to the Large Magellanic Cloud, Astrophysical Journal, 380, L23-L26.CrossRefGoogle Scholar
Pankey, T. Jr. (1962). Possible Thermonuclear Activities in Natural Terrestrial Minerals, Ph.D. thesis, Howard University.Google Scholar
Papaloizou, J. C. B. and Pringle, J. E. (1984). The dynamical stability of differentially rotating discs with constant specific angular momentum, Monthly Notices of the Royal Astronomical Society, 208, 721-750.CrossRefGoogle Scholar
Partridge, R. B. (1980a). Flucutations in the cosmic microwave background radiation at small angular scales, Physica Scripta, 21, 624-629.CrossRefGoogle Scholar
(1980b). New limits on small-scale angular fluctuations in the cosmic microwave background, Astrophysical Journal, 235, 681-687.
Partridge, R. B. (1999). Current status of the cosmic microwave background radiation, in Cosmological Parameters and the Evolution of the Universe, IAU Symposium no. 183, ed. Sato, K. (Dordrecht: Kluwer Academic Publishers), pp. 74-87.Google Scholar
Pauli, W. (1925). Über den Zusammenhang des Abschlusses der Elektronengruppen im Atom mit der Komplexstruktur der Spektrum (On the connection of filled shell phenomena in atoms with complex structure of atomic spectra), Zeitschrift fur Physik, 31, 765-783.CrossRefGoogle Scholar
Payne, C. H. (1925). Stellar Atmospheres: Harvard College Observatory Monographs, No. 1 (Cambridge, Massachusetts: Harvard University Press).Google Scholar
Peacock, J. A. and Dodds, S. J. (1994). Reconstructing the linear power spectrum of cos-mological mass fluctuations, Monthly Notices of the Royal Astronomical Society, 267, 1020-1034.CrossRefGoogle Scholar
Peacock, J. A. and Heavens, A. F. (1985). The statistics of maxima in primordial density perturbations, Monthly Notices of the Royal Astronomical Society, 217, 805-820.CrossRefGoogle Scholar
Peacock, J. A., Cole, S., Norberg, P.et al. (2001). A measurement of the cosmological mass density from clustering in the 2df galaxy redshift survey, Nature, 410, 169-173.CrossRefGoogle ScholarPubMed
Pearson, T. J. and Readhead, A. C. S. (1984). Image formation by self-calibration in radio astronomy, Annual Reviews of Astronomy and Astrophysics, 22, 97-130.CrossRefGoogle Scholar
Pearson, T. J., Unwin, S. C., Cohen, M. H.et al. (1981). Superluminal expansion of quasar 3C273, Nature, 290, 365-368.CrossRefGoogle Scholar
Pearson, T. J., Unwin, S. C., Cohen, M. H.et al. (1982). Superluminal expansion of 3C273, in Extragalactic Radio Sources, eds Heeschen, D. S. and Wade, C. M. (Dordrecht: D. Reidel Publishing Company), pp. 355-356.Google Scholar
Pearson, T. J., Mason, B. S., Readhead, A. C. S.et al. (2003). The anisotropy of the microwave background to l = 3500: mosaic observations with the cosmic background imager, Astrophysical Journal, 591, 556-574.CrossRefGoogle Scholar
Pease, F. G. (1921). The angular diameter of a Bootis by the interferometer, Publications of the Astronomical Society of the Pacific, 33, 171-173.Google Scholar
(1931). Interferometer methods in astronomy, Ergebnisse der Exakten Naturwis-senschaften, 10, 84-96.
Peebles, P. J. E. (1966a). Primeval helium abundance and the primeval fireball, Physical Review Letters, 16, 410-413.CrossRefGoogle Scholar
(1966b). Primordial helium abundance and the primordial fireball II, Astrophysical Journal, 146, 542-552.
(1968). Recombination of the primeval plasma, Astrophysical Journal, 153, 1-11.
(1976). A cosmic virial theorem, Astrophysics and Space Science, 45, 3-19.
(1980). The Large-Scale Structure of the Universe (Princeton: Princeton University Press).
(1982). Large-scale background temperature fluctuations due to scale-invariant primaeval perturbations, Astrophysical Journal, 263, L1-L5.
(1993). Principles of Physical Cosmology (Princeton: Princeton University Press).
Peebles, P. J. E. and Yu, J. T. (1970). Primeval adiabatic perturbation in an expanding Universe, Astrophysical Journal, 162, 815-836.CrossRefGoogle Scholar
Pei, Y. C. and Fall, S. M. (1995). Cosmic chemical evolution, Astrophysical Journal, 454, 69-76.CrossRefGoogle Scholar
Penrose, R. (1965). Gravitational collapse and space-time singularities, Physical Review Letters, 14, 57-59.CrossRefGoogle Scholar
(1969). Gravitational collapse: the role of general relativity, Rivista Nuovo Cimento, 1, 252-276.
Penzias, A. A. and Wilson, R. W. (1965). A measurement of excess antenna temperature at 4080 MHz, Astrophysical Journal, 142, 419-421.CrossRefGoogle Scholar
Perley, R. A., Dreher, J. W. and Cowan, J. J. (1984). The jet and filaments in Cygnus A, Astrophysical Journal, 285, L35-L38.CrossRefGoogle Scholar
Perlmutter, S., Boyle, B., Bunclark, P.et al. (1996). High-redshift supernova discoveries on demand: first results from a new tool for cosmology and bounds on q0, Nuclear Physics B, 51, 20-29.
Perlmutter, S., Gabi, S., Goldhaber, G.et al. (1997). Measurements of the cosmological parameters omega and lambda from the first seven supernovae at z > 0.35, Astrophys-ical Journal, 483, 565-581.Google Scholar
Perlmutter, S., Aldering, G., della Valle, M.et al. (1998). Discovery of a supernova explosion at half the age of the Universe, Nature, 391, 51-54.CrossRefGoogle Scholar
Permutter, S., Aldering, G., Goldhaber, G., et al. (1999). Measurements of £2 and A from 42 high-redshift supernovae, Astrophysical Journal, 517, (2), 565-586.Google Scholar
Peterson, B. M., Balonek, T. J., Barker, E. S.et al. (1991). Steps toward determination of the size and structure of the broad-line region in active galactic nuclei. II – An intensive study of NGC 5548 at optical wavelengths, Astrophysical Journal, 368, 119-137.CrossRefGoogle Scholar
Pettini, M., King, D. L., Smith, L. J. and Hunstead, R. W. (1997). The metallicity of high-redshift galaxies: the abundance of zinc in 34 damped Ly-a systems from z = 0.7to 3.4, Astrophysical Journal, 486, 665-680.CrossRefGoogle Scholar
Pettit, E. and Nicholson, S. B. (1928). Stellar radiation measurements, Astrophysical Journal, 68, 279-308.CrossRefGoogle Scholar
Phillips, M. M. (1993). The absolute magnitudes of Type IA supernovae, Astrophysical Journal, 413, L105-L108.CrossRefGoogle Scholar
Pickering, E. C. (1890). The Draper catalogue of stellar spectra photographed with the 8-inch Bache telescope as part of the Henry Draper Memorial, Annals of the Harvard College Observatory, 27, 1-388.Google Scholar
(1896). Stars having peculiar spectra. New variable stars in Crux and Cygnus, Astro-physical Journal, 4, 369-370. This note is also Harvard College Observatory Circular no. 12.
(1897). Stars having peculiar spectra, Astrophysical Journal, 5, 92–94. This note is also Harvard College Observatory Circular no. 16.
(1908). Revised Harvard photometry, Annals of the Harvard College Observatory, 50, 1-252.
(1912). Distribution of stellar spectra, Annals of the Harvard College Observatory, 56 (1), 1-26.
Pilkington, J. D. H. and Scott, P. F. (1965). A survey of radio sources between declinations 20 and 40, Monthly Notices of the Royal Astronomical Society, 69, 183-224.Google Scholar
Planck, M. (1900). On the theory of the laws of the energy distribution in the normal spectrum, Verhandlungen der Deutschen Physikalische Gesellschaft, 2, 237-245.Google Scholar
Plaskett, J. S. (1923). The H and K lines of calcium in O-type stars, Monthly Notices of the Royal Astronomical Society, 84, 80-93.CrossRefGoogle Scholar
Plaskett, J. S. and Pearce, J. A. (1933). The problems of diffuse matter in the Galaxy, Publications of the Dominion Astrophysical Observatory, 5, 167-237.Google Scholar
Pouillet, C.-S. (1838). Memoire sur la chaleur solaire, sur les pouvoirs rayonnants et absorbants de l'air atmospherique, et sur la temperature de l'espace (Memoir on the heat of the Sun, on the radiative and absorptive powers of atmospheric air and on the temperature of space), Comptes Rendus de l'Academie des Sciences, 7, 24-65.Google Scholar
Pozdnyakov, L. A., Sobol, I. M. and Sunyaev, R. A. (1983). Comptonization and the shaping of X-ray source spectra: Monte Carlo calculations, Astrophysics and Space Science Reviews, 2, 189-331.Google Scholar
Prendergast, K. H. and Burbidge, G. R. (1968). On the nature of some Galactic X-ray sources, Astrophysical Journal, 151, L83-L88.CrossRefGoogle Scholar
Press, W. H. and Schechter, P. (1974). Formation of galaxies and clusters of galaxies by self-similar gravitational condensation, Astrophysical Journal, 187, 425-438.CrossRefGoogle Scholar
Pskovskii, Y. P. (1977). Light curves, color curves, and expansion velocity of Type I super-novae as functions of the rate of brightness decline, Astronomicheskii Zhurnal, 54, 1188-1201. Translation in Soviet Astronomy, 21, 1977, 675-682.Google Scholar
(1984). Photometric classification and basic parameters of Type I supernovae, Astro-nomicheskii Zhurnal, 61,1125-1136. Translation in Soviet Astronomy, 28, 1984, 658-664.
Radhakrishnan, V. and Cooke, D. J. (1969). Magnetic poles and the polarisation structure of pulsar radiation, Astrophysics Letters, 3, 225-229.Google Scholar
Radhakrishnan, V and Manchester, R. N. (1969). Detection of a change of state in the pulsar PSR 0833-45, Nature, 222, 228-229.CrossRefGoogle Scholar
Radhakrishnan, V, Cooke, D. J., Komesaroff, M. M. and Morris, D. (1969). Evidence in support of a rotational model for the pulsar PSR 0833-45, Nature, 221, 443-446.CrossRefGoogle Scholar
Rappaport, S., Doxsey, R. and Zaumen, W. (1971). A search for X-ray pulsations from Cygnus X-1, Astrophysical Journal, 168, L43-L47.CrossRefGoogle Scholar
Rappaport, S. A. and Joss, P. C. (1983). X-ray pulsars in massive binary systems, in Accretion Driven Stellar X-ray Sources, eds Lewin, W. H. G. and van den Heuvel, E. P. J. (Cambridge: Cambridge University Press), pp. 1-39.Google Scholar
Razin, V A. (1958). The polarization of cosmic radio radiation at wavelengths of 1.45 and 3.3 meters, Astronomicheskii Zhurnal, 35, 241-252. Translation in Soviet Astronomy, 2, 1958, 216-225.Google Scholar
Reber, G. (1940). Cosmic static, Astrophysical Journal, 91, 621-624.CrossRefGoogle Scholar
(1944). Cosmic static, Astrophysical Journal, 100, 279-287.
Rees, M. J. (1966). Appearance of relativistically expanding radio sources, Nature, 211, 468-470.CrossRefGoogle Scholar
(1967). Studies in radio source structure – I. A relativistically expanding model for variable quasi-stellar radio sources, Monthly Notices of the Royal Astronomical Society, 135, 345-360.
Rees, M. J. (1971). New interpretation of extragalactic radio sources, Nature, 229,312-317.CrossRefGoogle ScholarPubMed
(1976). Beam models for double sources and the nature of the primary energy source, in The Physics ofNon-thermal Radio Sources, ed. Setti, G. (Dordrecht: D. Reidel Publishing Company), pp. 107-120.CrossRef
Rees, M. J. and Ostriker, J. P. (1977). Cooling, dynamics and fragmentation of massive gas clouds – clues to the masses and radii of galaxies and clusters, Monthly Notices of the Royal Astronomical Society, 179, 541-559.CrossRefGoogle Scholar
Rees, M. J. and Sciama, D. W. (1968). Large-scale density inhomogeneities in the Universe, Nature, 217,511-516.CrossRefGoogle Scholar
Rees, M. J., Phinney, E. S., Begelman, M. C. and Blandford, R. D. (1982). Ion-supported tori and the origin of radio jets, Nature, 295, 17-21.CrossRefGoogle Scholar
Reichley, P. E. and Downs, G. S. (1969). Observed decrease in the periods of pulsar PSR 0833-45, Nature, 222, 229-230.CrossRefGoogle Scholar
Reines, F. and Cowan, C. L. Jr. (1956). The neutrino, Nature, 178, 446-449.CrossRefGoogle Scholar
Richards, D. W. and Comella, J. M. (1969). The period of pulsar NP 0532, Nature, 222, 551-552.CrossRefGoogle Scholar
Riemann, B. (1854). Über die Hypothesen welche der Geometrie zu Grunde liegen (On the Hypotheses that Lie at the Foundations of Geometry) (Gottingen: University of Gottingen). Habilitationschrift.Google Scholar
Riess, A. G., Press, W. H. and Kirshner, R. P. (1995). Using Type IA supernova light curve shapes to measure the Hubble constant, Astrophysical Journal, 438, L17-L20.CrossRefGoogle Scholar
Rindler, W. (1956). Visual horizons in world models, Monthly Notices of the Royal Astronomical Society, 116, 662-677.CrossRefGoogle Scholar
Ritchey, G. W. (1917). Novae in spiral nebulae, Publications of the Astronomical Society of the Pacific, 29, 210-212.CrossRefGoogle Scholar
Ritter, A. (1883a). Untersuchungen Über die Constitution Gasformiger Weltkorper (Researches on the Constitution of Gaseous Celestial Bodies), Wiedemanns Annalen, 20, 897-927.Google Scholar
(1883b). Untersuchungen Über die Constitution Gasformiger Weltkorper (Researches on the Constitution of Gaseous Celestial Bodies), Wiedemanns Annalen, 20, 137-160.
(1898). On the constitution of gaseous celestial bodies, Astrophysical Journal, 8, 293-315.
Robertson, H. P. (1928). On relativistic cosmology, Philosophical Magazine, 5, 835-848.Google Scholar
(1935). Kinematics and world structure, Astrophysical Journal, 82, 284-301.
Rochester, G. D. and Butler, C. C. (1947). Evidence for the existence of new unstable elementary particles, Nature, 160, 855-857.CrossRefGoogle ScholarPubMed
Rogers, A. E. E., Hinteregger, H. F., Whitney, A. R.et al. (1974). The structure of radio sources 3C 273B and 3C 84 deduced from the ‘closure’ phases and visibility amplitudes observed with three-element interferometers, Astrophysical Journal, 193, 293-301.CrossRefGoogle Scholar
Rogers, F. J. and Iglesias, C. A. (1994). Astrophysical opacity, Science, 263, 50-55.CrossRefGoogle ScholarPubMed
Rogerson, J. B. and York, D. G. (1973). Interstellar deuterium abundance in the direction of Beta Centauri, Astrophysical Journal, 186, L95-L98.CrossRefGoogle Scholar
Rogerson, J. B., Spitzer, L., Drake, J. F.et al. (1973a). Spectrophotometric results from the Copernicus satellite. I. Instrumentation and performance, Astrophysical Journal, 181, L97-L102.Google Scholar
Rogerson, J. B., York, D. G., Drake, J. F., Jenkins, E. B., Morton, D. C. and Spitzer, L. (1973b). Spectrophotometric results from the Copernicus satellite. III. Ionization and composition of the intercloud medium, Astrophysical Journal Letters, 181, L110-L115.Google Scholar
Roll, P. G. and Wilkinson, D. T. (1966). Cosmic background radiation at 3.2 cm – support for cosmic black-body radiation, Physical Review Letters, 16, 405-407.CrossRefGoogle Scholar
Rontgen, W. C. (1895). Über eine neue Art von Strahlen (On a new type of ray. Preliminary communication), Erste Mittheilung: Sitzungsberichte der Physikalisch-Medizinische Gesellschaft, Wurzburg, 137, 132-141.Google Scholar
Rosseland, S. (1924). Note on the absorption of radiation within a star, Monthly Notices of the Royal Astronomical Society, 84, 525-528.CrossRefGoogle Scholar
Rossi, B. (1970). An X-ray pulsar in the Crab Nebula, in Non-Solar X- and Gamma-Ray Astronomy, IAU Symposium No. 37, ed. Gratton, L. (Dordrecht: D. Reidel Publishing Company), pp. 183-184.Google Scholar
Rougoor, G. W. and Oort, J. H. (1960). Distribution and motion of interstellar hydrogen in the Galactic system with particular reference to the region within 3 kiloparsecs of the center, Proceedings of the National Academy of Sciences of the United States of America, 46, 1-13.CrossRefGoogle ScholarPubMed
Rowan-Robinson, M. (1968). The determination of the evolutionary properties of quasars by means of the luminosity-volume test, Monthly Notices of the Royal Astronomical Society, 141, 445-458.Google Scholar
Rowan-Robinson, M., Benn, C. R., Lawrence, A., McMahon, R. G. and Broadhurst, T. J. (1993). The evolution of faintradio sources, Monthly Notices of the Royal Astronomical Society, 263, 123-130.CrossRefGoogle Scholar
Rubin, V C., Thonnard, N. and Ford, W. K. (1980). Rotational properties of 21 Sc galaxies with a large range of luminosities and radii from NGC 4605 (R = 4 kpc) to UGC2885 (R = 122 kpc), Astrophysical Journal, 238, 471-487.Google Scholar
Ruderman, M. (1969). Neutron-Star quakes and Pulsar Periods (New York: Department of Physics, New York University).Google Scholar
Russell, H. N. (1912a). On the determination of the orbital elements of eclipsing variable stars I, Astrophysical Journal, 35, 315-340.CrossRefGoogle Scholar
(1912b). On the determination of the orbital elements of eclipsing variable stars II, Astrophysical Journal, 36, 54-74.
(1914a). Relations between the spectra and other characteristics of stars, Popular Astronomy, 22, 275-294.
(1914b). Relations between the spectra and other characteristics of stars, Popular Astronomy, 22,331-351.
(1914c). Relations between the spectra and other characteristics of the stars I. Historical, Nature, 93, 227-230.
(1914d). Relations between the the spectra and other characteristics of the stars, II. Brightness and spectral class, Nature, 93, 252-258.
Russell, H. N. (1914e). Relations between the the spectra and other characteristics of the stars, III., Nature, 93, 281-286.Google Scholar
(1921). Response at the meeting of the Royal Astronomical Society on Friday 11 February 1921 on receipt of the Gold Medal of the Society, Observatory, 44, 71-2.
(1922). The theory of ionization and the sun-spot spectrum, Astrophysical Journal, 55, 119-144.
(1925). The problem of stellar evolution, Nature, 116, 209-212.
(1929). On the composition of the Sun's atmosphere, Astrophysical Journal, 70, 11-82.
Russell, H. N. and Saunders, F. A. (1925). New regularities in the spectra of the alkaline earths, Astrophysical Journal, 61, 38-69.CrossRefGoogle Scholar
Russell, H. N. and Shapley, H. (1912a). On darkening at the limb in eclipsing variables I, Astrophysical Journal, 36, 239-254.Google Scholar
(1912b). On darkening at the limb in eclipsing variables II, Astrophysical Journal, 36, 385-408.
Russell, H. N., Adams, W. S. and Moore, C. E. (1928). A calibration of Rowland's scale of intensities for solar lines, Astrophysical Journal, 68, 1-8.CrossRefGoogle Scholar
Rutherford, E. (1899). Uranium radiation and the electrical conduction produced by it, Philosophical Magazine, Series 5, 47, 109-163.Google Scholar
(1907). Some cosmical aspects of radioactivity, Journal of the Royal Astronomical Society ofCanada, 1, 145-165.
(1919). Collisions of a particles with light atoms, IV. An anomalous effect in nitrogen, Philosophical Magazine, Series 6, 37, 581-587.
(1920). Nuclear constitution of atoms, Proceedings of the Royal Society of London, A97, 374-400.
Rutherford, E. and Andrade, E. N. da C. (1913). The reflection of y-rays from crystals, Nature, 92, 267.CrossRefGoogle Scholar
Rutherford, E. and Chadwick, J. (1921). The artificial disintegration of light elements, Philosophical Magazine, Series 6, 42, 809-825.Google Scholar
Rutherford, E.andRoyds, T. (1909). The nature of the a particle from radioactive substances, Philosophical Magazine, Series 6, 15, 281-286.Google Scholar
Ryle, M. (1955). Radio stars and their cosmological significance, The Observatory, 75, 137-147.Google Scholar
Ryle, M. and Graham Smith, F. (1948). A new intense source of radio-frequency radiation in the constellation of Cassiopeia, Nature, 162, 462-463.CrossRefGoogle Scholar
Ryle, M. and Neville, A. C. (1962). A radio survey of the north polar region with a 4.5 minutes of arc pencil-beam system, Monthly Notices of the Royal Astronomical Society, 125, 39-56.CrossRefGoogle Scholar
Ryle, M., Elsmore, B. and Neville, A. C. (1965). High resolution observations of the radio sources in Cygnus and Cassiopeia, Nature, 205, 1259-1262.CrossRefGoogle Scholar
Sachs, R. K. and Wolfe, A. M. (1967). Perturbations of a cosmological model and angular variations in the microwave background, Astrophysical Journal, 147, 73-90.CrossRefGoogle Scholar
Saha, M. N. (1920). Ionization in the solar chromosphere, Philosophical Magazine, 40, 479-488.Google Scholar
Saha, M. N. (1921). On the physical theory of stellar spectra, Proceedings of the Royal Society of London, 99A, 135-153.Google Scholar
Sahu, K. C., Livio, M., Petro, L.et al. (1997). The optical counterpart to gamma-ray burst GRB 970228 observed using the Hubble Space Telescope, Nature, 387, 476-478.CrossRefGoogle Scholar
Sakharov, A. D. (1965). The initial stage of an expanding Universe and the appearance of a nonuniform distribution of matter, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 49, 345-358. Translation in Soviet Physics JETP, 22, 1966, 241-249.Google Scholar
(1967). Violation of CP invariance, C asymmetry, and baryon asymmetry of the Universe, Zhurnal Experimentalnoi i Teoretichseskikh Fizica (JETP) Letters, 5, 32-35.
Salpeter, E. E. (1952). Nuclear reactions in stars without hydrogen, Astrophysical Journal, 115, 326-328.CrossRefGoogle Scholar
(1955). The luminosity function and stellar evolution, Astrophysical Journal, 121, 161-167.
(1964). Accretion of interstellar matter by massive objects, Astrophysical Journal, 140, 796-800.
Sampson, R. A. (1895). On the rotation and mechanical state of the Sun, Memoirs of the Royal Astronomical Society, 51, 123-183.Google Scholar
Sandage, A. R. (1958). Current problems in the extragalactic distance scale, Astrophysical Journal, 127, 513-526.CrossRefGoogle Scholar
(1961a). The ability of the 200-inch telescope to discriminate between selected world models, Astrophysical Journal, 133, 355-392.
(1961b). The Hubble Atlas of Galaxies (Washington D.C.: Carnegie Institution of Washington); Publication 618.
(1965). The existence of a major new constituent of the Universe: the quasistellar galaxies, Astrophysical Journal, 141, 1560-1578.
(1968). Observational cosmology, The Observatory, 88, 91-106.
(1970). Cosmology – the search for two numbers, Physics Today, 23, 34-41.
(1995). Practical cosmology: inventing the past, in The Deep Universe, by Sandage, A. R., Kron, R. G. and Longair, M. S., eds Binggeli, B. and Buser, R. (Berlin: Springer-Verlag), pp. 1-232.
Sandage, A. R. and Hardy, E. (1973). The redshift-distance relation. VII. Absolute magnitudes of the first three ranked cluster galaxies as a function of cluster richness and Bautz-Morgan cluster type: the effect on q0, Astrophysical Journal, 183, 743-758.CrossRefGoogle Scholar
Sandage, A. R. and Schwarzschild, M. (1952). Inhomogeneous stellar models II. Models with exhausted cores in gravitational contraction, Astrophysical Journal, 116, 463-476.CrossRefGoogle Scholar
Sandage, A. R., Osmer, P., Giacconi, R.et al. (1966). On the optical identification of Sco X-1, Astrophysical Journal, 146, 316-321.CrossRefGoogle Scholar
Sanders, W. T., Kraushaar, W. L., Nousek, J. A. and Fried, P. M. (1977). Soft diffuse X-rays in the southern Galactic hemisphere, Astrophysical Journal Letters, 217, L87-L91.CrossRefGoogle Scholar
Sargent, W. L. W., Young, P. J., Lynds, C. R., Boksenberg, A., Shortridge, K. and Hartwick, F. D. A. (1978). Dynamical evidence for a central mass concentration in the galaxy M87, Astrophysical Journal, 221, 731-744.CrossRefGoogle Scholar
Saunders, W., Rowan-Robinson, M., Lawrence, A.et al. (1990). The 60 μm and far-infrared luminosity functions of IRAS Galaxies, Monthly Notices of the Royal Astronomical Society, 242,318-337.CrossRefGoogle Scholar
Schade, D., Lilly, S. J., Crampton, D., Hammer, F., LeFevre, O. and Tresse, L. (1995). Canada-France redshift survey: Hubble Space Telescope imaging of high-redshift field galaxies, Astrophysical Journal Letters, 451, L1-L4.CrossRefGoogle Scholar
Schalén, C. (1936). Über Probleme der InterstellarenAbsoption (On problems of interstellar absorption), Nova Acta Regiae Societatis Scientiarum Upsaliensis, Series IV, Vol. 10, no. 1 (also Uppsala Astronomiska Observatoriums Meddelanden, no. 64).Google Scholar
Schechter, P. (1976). An analytic expression for the luminosity function of galaxies, Astro-physical Journal, 203, 297-306.CrossRefGoogle Scholar
Scheiner, J. (1899). On the spectrum of the Great Nebula in Andromeda, Astrophysical Journal, 9, 149-150.CrossRefGoogle Scholar
Scheuer, P. A. G. (1957). A statistical method for analysing observations of faint radio stars, Proceedings of the Cambridge Philosophical Society, 53, 764-773.CrossRefGoogle Scholar
(1965). A sensitive test for the presence of atomic hydrogen in intergalactic space, Nature, 207, 963.CrossRef
(1974). Models of extragalactic radio sources with a continuous energy supply from a central object, Monthly Notices of the Royal Astronomical Society, 166, 513-528.
(1975). Radio astronomy and cosmology, in Stars and Stellar Systems, vol. 9, eds Sandage, A. R., Sandage, M. and Kristian, J. (Chicago: University of Chicago Press), pp. 725-760.
Schmidt, B. P., Kirshner, R. P. and Eastman, R. G. (1992). Expanding photospheres of Type II supernovae and the extragalactic distance scale, Astrophysical Journal, 395, 366-386.CrossRefGoogle Scholar
Schmidt, B. V (1931). Ein lichtstarkes komafreies Spiegelsystem (A wide-field coma-free mirror system), Zentralzeitung für Optikund Mechanik, 52, 25-26.Google Scholar
Schmidt, G. C. (1898). Ueberdie vonden Thorvebindungen und einigen anderen Substanzen ausgehende Strahlung (On the emitted radiation from thorium compounds and several other substances), Annalen der Physik und Chemie (Wiedemanns Annalen), 65, 141-151.Google Scholar
Schmidt, M. (1963). 3C 273: a star-like object with large red-shift, Nature, 197, 1040.CrossRefGoogle Scholar
(1965). Large redshifts of five quasi-stellar sources, Astrophysical Journal, 141, 1295-1300.
(1968). Space distribution and luminosity functions of quasi-stellar sources, Astrophysi-cal Journal, 151, 393-409.
Schmidt, M. and Green, R. F. (1983). Quasar evolution derived from the Palomar bright quasar survey and other complete quasar surveys, Astrophysical Journal, 269, 352-374.CrossRefGoogle Scholar
Schmidt, M. and Matthews, T. A. (1964). Redshift of the quasi-stellar radio sources 3C 47 and 3C 147, Astrophysical Journal, 139, 781-785.CrossRefGoogle Scholar
Schmidt, M., Schneider, D. P. and Gunn, J. E. (1986). Spectroscopic CCD surveys for quasars at large redshift. II – A PFUEI transit survey, Astrophysical Journal, 310, 518-533.CrossRefGoogle Scholar
Schmidt, M., Schneider, D. P. and Gunn, J. E. (1995). Spectrscopic CCD surveys for quasars at large redshift. IV Evolution of the luminosity function from quasars detected by their Lyman-alpha emission, Astronomical Journal, 110, 68-77.CrossRefGoogle Scholar
Schneider, D. P., Schmidt, M. and Gunn, J. E. (1994). Spectroscopic CCD surveys for quasars at large redshift. 3: The Palomar transit GRISM survey catalog, Astronomical Journal, 107, 1245-1269.CrossRefGoogle Scholar
Schodel, R., Ott, T., Genzel, R.et al (2002). A star in a 15.2-year orbit around the super-massive black hole at the centre of the Milky Way, Nature, 419, 694-696.CrossRefGoogle Scholar
Schonberg, M. and Chandrasekhar, S. (1942). On the evolution of the main-sequence stars, Astrophysical Journal, 96, 161-171.CrossRefGoogle Scholar
Schott, G. A. (1912). Electromagnetic Radiation (Cambridge: Cambridge University Press).Google Scholar
Schramm, D. N. (1997). The age of the Universe, in Critical Dialogues in Cosmology, ed. Turok, N. (Singapore: World Scientific), pp. 81-91.Google Scholar
Schramm, D. N. and Wasserburg, G. J. (1970). Nucleochronologies and the mean age of the elements, Astrophysical Journal, 162, 57-69.CrossRefGoogle Scholar
Schreier, E., Levinson, R., Gursky, H., Kellogg, E., Tananbaum, H. and Giacconi, R. (1972). Evidence for the binary nature of Centaurus X-3 from UHURU X-ray observations, Astrophysical Journal, 172, L79-L89.CrossRefGoogle Scholar
Schuster, A. (1902). The solar atmosphere, Astrophysical Journal, 16, 320-327.CrossRefGoogle Scholar
(1905). Radiation through a foggy atmosphere, Astrophysical Journal, 21, 1-22.
Schwarzschild, K. (1900a). Über das zulassige Krummungsmass des Raumes (On an upper limit to the curvature of space), Vierteljahrsschrift der Astronomischen Gesellschaft, 35, 337-347.Google Scholar
(1900b). liber die Photographische Vergleichung der Helligkeit Verschiedenfarbiger Sterne (On the photographic comparison of the brightness of different coloured stars), Sitzungsberichte der Kaiserlichen Akademie der Wissenschaften in Wien, Mathematisch-naturwissenschaft, Klasse 2a, 109, 1127-1134.
(1906). Über das Gleichgewicht der Sonnenatmosphare (On the equilibrium of the solar atmosphere), Nachrichten von der KoUniglichen Gesselschaft der Wissenschaften zu GoUttingen, Mathematisch-physikalische Klasse, 41, pp. 1-24.
(1907). Über die Eigenbewegung der Fixsterne (On the proper motion of the fixed stars), Nachrichten von der Gesellschaft der Wissenschaften zu GoUttingen, pp. 614-631.
(1916). Über das Gravitationsfeld einis Massenpunktes nach der Einsteinschen Theorie (On the gravitational field of a point mass according to Einsteinian theory), Sitzungsberichte der Koniglich Preussischen Akademie der Wissenschaften zu Berlin, 1, 189-196.
Schwarzschild, M. (1958). Structure and Evolution of the Stars (Princeton: Princeton University Press).CrossRefGoogle Scholar
(1979). A numerical model for a triaxial stellar system in dynamical equilibrium, Astro-physical Journal, 232, 236-247.
Schwinger, J. (1946). Electron radiation in high energy accelerators, Physical Review, 70, 798.Google Scholar
(1949). On the classical radiation of accelerated electrons, Physical Review, 75, 1912-1925.
Scott, P. F., Carreira, P., Cleary, K.et al (2003). First results from the Very Small Array – III. The cosmic microwave background power spectrum, Monthly Notices of the Royal Astronomical Society, 341, 1076-1083.CrossRefGoogle Scholar
Seaton, M. J., Yan, Y., Mihalas, D. and Pradhan, A. K. (1994). Opacities for stellar envelopes, Monthly Notices of the Royal Astronomical Society, 266, 805-828.CrossRefGoogle Scholar
Secchi, A. (1866). Nouvelles Recherches sur l'Analyse Spectrale de la Lumiere des Etoiles (New researches on the spectral analysis of the light of the stars), Comptes Rendus, 63, 621-628.Google Scholar
(1868). Sur les Spectres Stellaires (On the spectra of the stars), Comptes Rendus, 66, 124-126.
Seldner, M., Siebars, B., Groth, E. J. and Peebles, P. J. E. (1977). New reduction of the Lick catalog of galaxies, Astronomical Journal, 82, 249-256.CrossRefGoogle Scholar
Sellgren, K. (1984). The near-infrared continuum emission of visual reflection nebulae, Astrophysical Journal, 277, 623-633.CrossRefGoogle Scholar
Serjeant, S., Dunlop, J. S., Mann, R. G.et al. (2003). Submillimetre observations of the Hubble Deep Field and flanking fields, Monthly Notices of the Royal Astronomical Society, 344, 887-904.CrossRefGoogle Scholar
Severny, A. B., Kotov, V A. and Tsap, T. T. (1976). Observations of solar pulsations, Nature, 259, 87-89.CrossRefGoogle Scholar
Seyfert, C. K. (1943). Nuclear emission in spiral nebulae, Astrophysical Journal, 97,28-40.CrossRefGoogle Scholar
Shakeshaft, J. R., Ryle, M., Baldwin, J. E., Elsmore, B. and Thomson, J. H. (1955). A radio survey of radio sources between declinations -38 and +83, Memoirs of the Royal Astronomical Society, 67, 106-154.Google Scholar
Shakura, N. and Sunyaev, R. A. (1973). Black holes in binary systems. Observational appearance, Astronomy and Astrophysics, 24, 337-355.Google Scholar
Shane, C. D. and Wirtanen, C. A. (1957). The distribution of galaxies, Publications of the Lick Observatory, 22, 1-60.Google Scholar
Shapiro, I.I. (1964). Fourth test of general relativity, Physical Review Letters, 13, 789-791.CrossRefGoogle Scholar
Shapiro, M. M. (1991). A brief introduction to the cosmic radiation, in Cosmic Rays, Supernovae and the Interstellar Medium, eds Shapiro, M. M., Silberberg, R. and Wefel, J. P. (Dordrecht: Kluwer Academic Publishers), pp. 1-28.CrossRefGoogle Scholar
Shapley, H. (1915). Orbits of eighty seven eclipsing binaries - a summary, Astrophysical Journal, 38, 158-174.Google Scholar
(1917). Note on the magnitude of novae in spiral nebulae, Publications of the Astronomical Society of the Pacific, 29, 213-217.
(1918). Studies based on the colors and magnitudes in stellar clusters. VII. The distances, distribution in space, and dimensions of 60 globular clusters, Astrophysical Journal, 48, 154-181.
(1921). The scale of the Universe, Bulletin of the National Research Council, 2,171-193.
Shellard, P. (2003). The future of cosmology: observational and computational prospects, in The Future of Theoretical Physics and Cosmology, eds Gibbons, G. W., Shellard, E. P. S. and Rankin, S. J. (Cambridge: Cambridge University Press), pp. 755-780.Google Scholar
Shklovsky, I. S. (1953). On the nature of the radiation from the Crab Nebula, Dokladi Akademiya Nauk SSSR, 90, 983-986.Google Scholar
Shklovsky, I. S. (1967). The nature of the X-ray source ScoX-1, Astronomicheskii Zhurnal, 44, 930-938. Translation in Soviet Astronomy, 11, 1967, 749-755.Google Scholar
Shmoanov, T. (1957). A method for measuring the absolute effective radiation temperature of radio emission at low equivalent temperatures, Pribory i Tekhnika Experimenta (Instruments and Experimental Methods), 1, 83-86.Google Scholar
Shu, F. H., Adams, F. C. and Lizano, S. (1987). Star formation in molecular clouds -observation and theory, Annual Reviews of Astronomy and Astrophysics, 25, 23-81.CrossRefGoogle Scholar
Silk, J. (1968). Cosmic black-body radiation and galaxy formation, Astrophysical Journal, 151, 459-471.CrossRefGoogle Scholar
Silk, J. and Wyse, R. F. G. (1993). Galaxy formation and Hubble sequence, Physics Reports, 231, 293-365.CrossRefGoogle Scholar
Simpson, J. A. (1983). Elemental and isotopic composition of Galactic cosmic rays, Annual Reviews of Nuclear and Particle Science, 33, 323-381.CrossRefGoogle Scholar
Skobeltsyn, D. (1929). Über eine neue Art sehr schneller p-strahlen (On a new type of very fast p-ray), Zeitschrift fur Physik, 54, 686-702.Google Scholar
Slipher, V. M. (1909). Peculiar star spectra suggestive of selective absorption of light in space, Bulletins of the Lowell Observatory, 2, 1-2.Google Scholar
(1917). A spectrographic investigation of spiral nebulae, Proceedings of the American Philosophical Society, 56, 403-409.
Smail, I., Ivison, R. J. and Blain, A. W. (1997). A deep sub-millimeter survey of lensing clusters: a new window on galaxy formation and evolution, Astrophysical Journal Letters, 490, L5-L8.CrossRefGoogle Scholar
Smith, H. J. and Hoffleit, D. (1963). Light variations in the superluminous radio galaxy 3C 273, Nature, 198, 650-651.CrossRefGoogle Scholar
Smoot, G. F., Bennett, C. L., Kogut, A.et al. (1992). Structure in the COBE differential microwave radiometer first-year maps, Astrophysical Journal, 396, L1-L5.CrossRefGoogle Scholar
Sneden, C., McWilliam, A., Preston, G. W., Cowan, J. J., Burris, D. L. and Armosky, B. J. (1992). The ultra-metal-poor, neutron-capture-rich giant star CS 22892-052, Astro-physical Journal, 467, 819-840.Google Scholar
Snell, R. L., Loren, R. B. and Plambeck, R. L. (1980). Observations of CO in L1551 – evidence for stellar driven wind shocks, Astrophysical Journal Letters, 239, L17-L22.CrossRefGoogle Scholar
Snyder, L. E., Buhl, D., Zuckerman, B. and Palmer, P. (1969). Microwave detection of interstellar formaldehyde, Physical Review Letters, 22, 679-681.CrossRefGoogle Scholar
Soldner, J. G. von (1804). On the deflection of a light ray from its straight motion due to the attraction of a world body which it passes closely, Astronomisches Jahrbuch fur das Jahr 1804 (Berlin: Spathen), pp. 161-172.Google Scholar
Spergel, D. N., Verde, L., Peiris, H. V.et al. (2003). First-year Wilkinson Microwave Anisotropy Probe (WMAP) observations: determination of cosmological parameters, Astrophysical Journal Supplement Series, 148, 175-194.CrossRefGoogle Scholar
Spite, F. and Spite, M. (1982). Abundance of lithium in unevolved halo stars and old disk stars – interpretation and consequences, Astronomy and Astrophysics, 115, 357-366.Google Scholar
Spitzer, L. and Savedoff, M. P. (1950). The temperature of interstellar matter, Astrophysical Journal, 111, 593-608.CrossRefGoogle Scholar
Staelin, D. H. and Reifenstein, E.C. III (1968). Pulsating radio sources near the Crab Nebula, Science, 162, 1481-1483.CrossRefGoogle ScholarPubMed
Stahler, S. W., Shu, F. J. and Taam, R. E. (1980). The evolution of protostars I – Global formation and results, Astrophysical Journal, 241, 637-654.CrossRefGoogle Scholar
Starobinsky, A. A. (1985). Cosmic background anisotropy induced by isotropic flat-spectrum gravitational-wave perturbations, Soviet Astronomy Letters, 11, 133-137. In Russian: Pis'ma k Astronomicheskii Zhurnal, 11, 1985, 323-330.Google Scholar
Stebbins, J., Hufford, C. M. and Whitford, A. E. (1940). The mean coefficient of selective absorption in the Galaxy, Astrophysical Journal, 92, 193-199.CrossRefGoogle Scholar
Steidel, C. C. (1998). Galaxy evolution: has the ‘epoch of galaxy formation’ been found?, in Eighteenth Texas Symposium on Relativistic Astrophysics and Cosmology, eds Olinto, A. V, Frieman, J. A. and Schramm, D. N. (River Edge, N.J.: World Scientific Publishing Company), pp. 124-135.Google Scholar
Steidel, C. C. and Hamilton, D. (1992). Deep imaging of high redshift QSO fields below the Lyman limit. I – The field of Q0000-263 and galaxies at z = 3.4, Astronomical Journal, 104, 941-949.CrossRefGoogle Scholar
Stobie, R. S. (1969). Cepheid pulsation-III. Models fitted to a new mass-luminosity relation, Monthly Notices of the Royal Astronomical Society, 144, 511-535.Google Scholar
Stockton, A. N. and Lynds, C. R. (1966). The remarkable absorption spectrum of 3C 191, Astrophysical Journal, 144, 451-453.CrossRefGoogle Scholar
Stoner, E. C. (1929). The limiting density in white dwarf stars, Philosophical Magazine, 7, 63-70.Google Scholar
Storrie-Lombardi, L. J., McMahon, R. G. and Irwin, M. J. (1996). Evolution of neutral gas at high redshift: implications for the epoch of galaxy formation, Monthly Notices of the Royal Astronomical Society, 283, L79-L83.CrossRefGoogle Scholar
Stoughton, D., Lupton, R. H., Bernardi, M.et al. (2002). Sloan Digital Sky Survey: early data release, Astronomical Journal, 123, 485-548.CrossRefGoogle Scholar
Stromberg, G. (1924). The asymmetry in stellar motions and the existence of a velocity-restriction in space, Astrophysical Journal, 59, 228-251.CrossRefGoogle Scholar
Stromgren, B. (1932). The opacity of stellar matter and the hydrogen content of the stars, Zeitschrift fur Astrophysik, 4, 118-152.Google Scholar
(1933). On the interpretation of the Hertzsprung-Russell Diagram, ZeitschriftfurAstro-physik, 7, 222-238.
(1939). The physical state of interstellar hydrogen, Astrophysical Jo rnal, 89, 526-547.
Struve, F. G. W. (1840). Über die Parallaxe des Sterns a Lyrae (On the parallax of the star a Lyrae), Astronomische Nachrichten, 396, 177-180. The page numbers refer to the columns of the Journal.Google Scholar
Suess, H. E. and Urey, H. C. (1956). Abundances of the elements, Reviews of Modern Physics, 28, 53-74.CrossRefGoogle Scholar
Sunyaev, R. A. and Zeldovich, Y. B. (1970a). Interaction of matter and radiation in the hot model of the Universe, Astrophysics and Space Science, 7, 21-30.Google Scholar
(1970b). Small-scale fluctuations of relic radiation, Astrophysics and Space Science, 7, 3-19.
Sunyaev, R. A. and Zeldovich, Y. B. (1980). Microwave background radiation as a probe of the contemporary structure and history of the Universe, Annual Review of Astronomy and Astrophysics, 18, 537-560.CrossRefGoogle Scholar
Szalay, A. S. and Marx, G. (1976). Neutrino rest mass from cosmology, Astronomy and Astrophysics, 49, 437-441.Google Scholar
Tanaka, Y., Nandra, K., Fabian, A. C.et al. (1995). Gravitationally redshifted emission implying an accretion disk and massive black-hole in the active galaxy MCG:-6-30-15, Nature, 375, 659-661.CrossRefGoogle Scholar
Tananbaum, H., Gursky, H., Kellogg, E. M., Levinson, R., Schreier, E. and Giacconi, R. (1972). Discovery of a periodic binary X-ray source in Hercules from UHURU, Astrophysical Journal, 174, L144-L149.CrossRefGoogle Scholar
Taylor, J. H. (1992). Pulsar timing and relativistic gravity, Philosophical Transactions of the Royal Society, 341, 117-134.CrossRefGoogle Scholar
Tegmark, M., Strauss, M. A., Blanton, M. R.et al. (2004). Cosmological parameters from SDSS and WMAP, Physical Review D, 69, 103501 (1-28).CrossRefGoogle Scholar
Thomson, W. (1854a). On the mechanical energies of the Solar System, British Association Report, Part II.Google Scholar
(1854b). On the mechanical energies of the Solar System, Philosophical Magazine, 8, 409-430.
Thorne, K. S., Price, R. H. and Macdonald, D. A. (1986). Black Holes: The Membrane Paradigm (New Haven: Yale University Press).Google Scholar
Tinsley, B. M. (1980). Evolution of the stars and gas in galaxies, Fundamentals of Cosmic Physics, 5, 287-388.Google Scholar
Tolman, R. C. (1934). Effect of inhomogeneity on cosmological models, Proceedings of the National Academy of Sciences, 20, 169-176.CrossRefGoogle ScholarPubMed
Tonks, L. and Langmuir, I. (1929). Oscillations in ionized gases, Physical Review, 33, 195-210.Google Scholar
Tonry, J. L., Schmidt, B. P., Barris, B.et al. (2003). Cosmological results from high-z supernovae, Astrophysical Journal, 594, 1-24.CrossRefGoogle Scholar
Toomre, A. and Toomre, J. (1972). Galactic bridges and tails, Astrophysical Journal, 178, 623-666.CrossRefGoogle Scholar
Toutain, T.andFrolich, C. (1992). Characteristics of solar p-modes-results from the IPHIR experiment, Astronomy and Astrophysics, 257, 287-297.Google Scholar
Tremaine, S. and Gunn, J. E. (1979). Dynamical role of light neutral leptons in cosmology, Physical Review Letters, 42, 407-410.CrossRefGoogle Scholar
Tremaine, S. and Richstone, D. O. (1977). A test of a statistical model for the luminosities of bright cluster galaxies, Astrophysical Journal, 212, 311-316.CrossRefGoogle Scholar
Trimble, V. L. and Thorne, K. S. (1969). Spectroscopic binaries and collapsed stars, Astro-physical Journal, 156, 1013-1019.CrossRefGoogle Scholar
Trumper, J., Pietsch, W., Reppin, C., Voges, W., Steinbert, R. and Kendziorra, E. (1978). Evidence for strong cyclotron line emission in the hard X-ray spectrum of Hercules X-1, Astrophysical Journal Letters, 219, L105-L110.Google Scholar
Trumpler, R. J. (1930). Preliminary results on the distances, dimensions, and space distribution of open star clusters, Lick Observatory Bulletin, 14, 154-188.Google Scholar
Tully, R. B. and Fisher, J. R. (1977). A new method of determining distances to galaxies, Astronomy and Astrophysics, 54, 661-673.Google Scholar
Turok, N., ed. (1997). Critical Dialogues in Cosmology (Singapore: World Scientific).CrossRef
Turtle, A. J. (1963). The spectrum of the Galactic radio emission, II, Monthly Notices of the Royal Astronomical Society, 126, 405-417.CrossRefGoogle Scholar
Turtle, A. J., Pugh, J. F., Kenderdine, S. and Pauliny-Toth, I.I.K. (1962). The spectrum of the Galactic radio emission I. Observations of low resolving power, Monthly Notices of the Royal Astronomical Society, 124, 297-312.CrossRefGoogle Scholar
Tyson, A. (1990). Spectrum and origin of the extragalactic optical background radiation, in Galactic and Extragalactic Background Radiation, eds Bowyer, S. and Leinert, C. (Dordrecht: Kluwer Academic Publishers), pp. 245-255.Google Scholar
Ulrich, M. H., Boksenberg, A., Bromage, G. E.et al. (1984). Detailed observations of NGC 4151 with IUE – III. Variability of the strong emission lines from 1978 February to 1980 May, Monthly Notices of the Royal Astronomical Society, 206, 221-238.CrossRefGoogle Scholar
Ulrich, R. K. (1970). The five-minute oscillations of the solar surface, Astrophysical Journal, 162, 993-1002.CrossRefGoogle Scholar
Unsold, A. (1928). Über die Struktur der Fraunhoferschen Linien und die Quantitative Spektralanalyse der Sonnenatmosphare (On the structure of the Fraunhofer lines and a quantitative spectral analysis of the solar atmosphere), Zeitschrift fur Physik, 46, 765-781.CrossRefGoogle Scholar
Urey, H., Brickwedde, F. G. and Murphy, G. M. (1932). A hydrogen isotope of mass 2, Physical Review, 39, 164-165.CrossRefGoogle Scholar
Urry, C. M.Padovani, P. (1994). Unification of BL Lac objects andFR1 radio galaxies, in First Stromlo Symposium: Physics of Active Galactic Nuclei, ASP Conference Series, vol. 34, eds Bicknell, G. V., Dopita, M. A. and Quinn, P. J. (San Francisco: ASP), pp. 215-226.Google Scholar
Vacanti, G., Cawley, M. F., Colombo, E.et al. (1991). Gamma-ray observations of the Crab Nebula at TeV energies, Astrophysical Journal, 377, 469-479.CrossRefGoogle Scholar
Vashakidze, M. A. (1954). On the degree of polarization of the light near extragalactic nebulae and the Crab Nebula, Astronomicheskikh Tsirkular, no. 147, 11-13.Google Scholar
Velikhov, E. P. (1959). Stability of an ideally conducting liquid flowing between cylinders rotating in a magnetic field, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 36, 1398-1404. Translation in Soviet Physics-JETP, 9, 1959, 995-998.Google Scholar
Vidal-Madjar, A., Laurent, C., Bonnet, R. M. and York, D. G. (1977). The ratio of deuterium to hydrogen in interstellar space. III - The lines of sight to Zeta Puppis and Gamma Cassiopaeia, Astrophysical Journal, 211, 91-107.CrossRefGoogle Scholar
Villard, P. (1900a). Sur la reflection et la refraction des rayons cathodique et les rayons deviables de radium (On the reflection and refraction of cathode rays and the devi-able rays of radium), Comptes Rendus de L'Academie des Sciences, 130, 1010-1012.Google Scholar
(1900b). Sur le rayonnement du radium (On the radiation of radium), Comptes Rendus de L'Academie des Sciences, 130, 1178-1179.
Vogel, H. C. (1874). Spectralanalytische Mitteilungen (Communications on spectral analysis), Astronomische Nachrichten, 84, 113-124.Google Scholar
Vorontsov-Velyaminov, B. A. (1959). Atlas and Catalogue of Interacting Galaxies, Part I (Moscow: Sternberg Institute, Moscow State University).Google Scholar
(1977). Atlas of interacting galaxies, part II, and the concept of fragmentation of galaxies, Astronomy and Astrophysics Supplement Series, 28, 1-117.
Wagoner, R. V. (1973). Big-Bang nucleosynthesis revisited, Astrophysical Journal, 179, 343-360.CrossRefGoogle Scholar
Wagoner, R. V, Fowler, W. A. and Hoyle, F. (1967). On the synthesis of elements at very high temperatures, Astrophysical Journal, 148, 3-49.CrossRefGoogle Scholar
Walker, A. G. (1936). On Milne's theory of world structure, Proceedings of the London Mathematical Society, Series 2, 42, 90-127.Google Scholar
Walker, M. F. (1956). Studies of extremely young clusters, Astrophysical Journal Supplement, 2, 365-387.Google Scholar
Walker, R. G. and Price, S. D. (1975). Air Force Cambridge Research Laboratories Infrared Sky Survey (Cambridge, Massachusetts: AFCRL TR-0373).Google Scholar
Wall, J. V. (1996). Space distribution of radio source populations, in Extragalactic Radio Sources, IAUSymposium no. 175, eds Ekers, R., Fanti, C. and Padrielli, L. (Dordrecht: Kluwer Academic Publishers), pp. 547-552.Google Scholar
Walsh, D., Carswell, R. F. and Weymann, R. J. (1979). 0957+561A, B – twin quasistellar objects or gravitational lens?, Nature, 279, 381-384.CrossRefGoogle ScholarPubMed
Wandel, A. and Mushotzky, R. F. (1986). Observational determination of the masses of active galactic nuclei, Astrophysical Journal, 306, L61-L66.CrossRefGoogle Scholar
Warren, S. J., Hewett, P. C., Irwin, M. J., McMahon, R. G. and Bridgeland, M. T. (1987). First observation of a quasar with a redshift of 4, Nature, 325, 131-133.CrossRefGoogle Scholar
Warren, S. J., Hewett, P. C. and Osmer, P. S. (1994). A wide-field multicolor survey for high-redshift quasars, z > 2.2. III: The luminosity function, Astrophysical Journal, 421, 412-433.CrossRefGoogle Scholar
Weaver, H., Williams, D. R. W., Dieter, N. H. and Lum, W. T. (1965). Observations of a strong unidentified microwave line and of emission from the OH molecule, Nature, 208, 29-31.CrossRefGoogle Scholar
Webber, W. R. (1983). Cosmic ray electrons and positrons – a review of current measurements and some implications, in Composition and Origin of Cosmic Rays, ed. Shapiro, M. M. (Dordrecht: D. Reidel Publishing Company), pp. 83-100.Google Scholar
Weber, J. (1961). General Relativity and Gravitational Waves, Interscience Tracts on Physics and Astronomy (New York: Interscience).Google Scholar
(1966). Observation of the thermal fluctuations of a gravitational-wave detector, Physical Review Letters, 17, 1228-1230.
(1969). Evidence for discovery of gravitational radiation, Physical Review Letters, 22, 1320-1324.
(1970). Anisotropy and polarization in the gravitational-radiation experiments, Physical Review Letters, 25, 180-184.
Webster, B. L. and Murdin, P. (1972). Cygnus X-1: a spectroscopic binary with a heavy companion?, Nature, 235, 37-38.CrossRefGoogle Scholar
Weedman, D. (1994). Starburst galaxies at high redshift, in First Stromlo Symposium: Physics of Active Galactic Nuclei, ASP Conference Series, vol. 34, eds Bicknell, G. V, Dopita, M. A. and Quinn, P. J. (San Francisco: ASP), pp. 409-415.Google Scholar
Weekes, T. C., Cawley, M. F., Fegan, D. J.et al. (1989). Observation of TeV gamma rays from the Crab Nebula using the atmospheric Cerenkov imaging technique, Astrophysical Journal, 342, 379-395.CrossRefGoogle Scholar
Weinberg, S. (1989). The cosmological constant problem, Reviews of Modern Physics, 61, 1-23.CrossRefGoogle Scholar
(1997). Theories of the cosmological constant, in Critical Dialogues in Cosmology, ed. Turok, N. (Singapore: World Scientific), pp. 195-203.CrossRef
Weinheimer, C. (2001). Neutrino mass from tritium p-decay, in Dark Matter in Astro-and Particle Physics, Proceedings of the International Conference DARK 2000, ed. Klapdor-Kleingrothaus, H. V (Berlin: Springer-Verlag), pp. 513-519.Google Scholar
Weinreb, S., Barrett, A. H., Meeks, M. L. and Henry, J. C. (1963). Radio observations of OH in the interstellar medium, Nature, 200, 829-831.CrossRefGoogle Scholar
Weinreb, S., Meeks, M. L., Carter, J. C., Barrett, A. H. and Rogers, A. E. E. (1965). Observations of polarized OH emission, Nature, 208, 440-441.CrossRefGoogle Scholar
Weizsacker, C. F. von (1937). Element transformation inside stars. I, Physikalische Zeitschrift, 38, 176-191.Google Scholar
(1938). Element transformation inside stars. II, Physikalische Zeitschrift, 39, 633-646.
Wesselink, A. J. (1947). The observations of brightness, colour and radial velocity of 5-Cephei and the pulsation hypothesis, Bulletin of the Astronomical Institutes of the Netherlands, 10, 91-99. Errata, 10, 258 and 310.Google Scholar
Westerhout, G., Seeger, C. L., Brouw, W. N. and Tinbergen, J. (1962). Polarization of the Galactic 75-cm radiation, Bulletin of the Astronomical Institutes of the Netherlands, 16, 187-212.Google Scholar
Weyl, H. (1923). Zur allgemeinen Relativitatstheorie (On the theory of general relativity), Physikalische Zeitschrift, 29, 230-232.Google Scholar
Weymann, R. J. (1966). The energy spectrum of radiation in the expanding Universe, Astro-physical Journal, 145, 560-571.CrossRefGoogle Scholar
Wheeler, J. A. (1968). Our Universe: the known and the unknown, American Scientist, 56, 1-20.Google Scholar
(1977). Genesis and observership, in Foundational Problems in the Special Science, eds Butts, R. E. and Hintikka, J. (Dordrecht: D. Reidel Publishing Company), pp. 3-33.CrossRef
White, S. D. (1989). Observable signatures of young galaxies, in The Epoch of Galaxy Formation, eds Frenk, C. S., Ellis, R. S., Shanks, T., Heavens, A. F. and Peacock, J. A. (Dordrecht: Kluwer Academic Publishers), pp. 15-30.Google Scholar
Whitford, A. E. (1948). An extension of the interstellar absorption-curve, Astrophysical Journal, 107, 102-105.CrossRefGoogle Scholar
Whitney, A. R., Shapiro, I.I., Rogers, A. E. E.et al. (1971). Quasars revisited: rapid time variations observed via very-long-baseline interferometry, Science, 173, 225-230.CrossRefGoogle ScholarPubMed
Will, C. M. (2001). The confrontation between general relativity and experiment, Living Review in Relativity, 4. Online article: cited on 15 August 2001 http://www.livingreviews.org/Articles/Volume4/2001-4will/.CrossRefGoogle ScholarPubMed
Wilson, C T R (1901) On the ionisation of atmospheric air, Proceedings of the Royal Society of London, 68, 151-161.CrossRefGoogle Scholar
Wilson, R. W., Jefferts, K. B. and Penzias, A. A. (1970). Carbon monoxide in the Orion Nebula, Astrophysical Journal Letters, 161, L43-L44.CrossRefGoogle Scholar
Windhorst, R. A., Dressler, A. and Koo, D. A. (1987). Ultradeep optical identifications and spectroscopy of faint radio sources, in Observational Cosmology, eds Hewitt, A., Burbidge, G. and Fang, L.-Z. (Dordrecht: D. Reidel Publishing Co.), pp. 573-576.Google Scholar
Windhorst, R. A., Fomalont, E. B., Kellermann, K. I.et al. (1995). Identification of faint radio sources with optically luminous interacting disk galaxies, Nature, 375,471-474.CrossRefGoogle Scholar
Wirtz, C. W. (1922). Einiges zur Statistik der Radialgeschwindigkeiten von Spiralnebeln und Kugelsternhaufen (Some remarks on the statistics of the radial velocities of spiral nebulae and star clusters), Astronomische Nachrichten, 215, 349-354.Google Scholar
Wolf, M. (1923). On the darknebulaNGC 6960, Astronomische Nachrichten, 219,109-116.Google Scholar
Wolfe, A. M. (1988). Damped Ly-a absorption systems, in QSO Absorption Lines: Probing the Universe, eds Blades, J. C., Turnshek, D. and Norman, C. A. (Cambridge: Cambridge University Press), pp. 306-317.Google Scholar
Wolfenstein, L. (1978). Neutrino oscillations in matter, Physical Review D, 17,2369-2374.CrossRefGoogle Scholar
Wollaston, W. H. (1802). A method of examining refractive and dispersive powers, by prismatic reflection, Philosophical Transactions of the Royal Society, 92, 365-380.Google Scholar
Wolszczan, A. and Frail, D. (1992). A planetary system around the millisecond pulsar PSR 1257+12, Nature, 255, 145-147.Google Scholar
Woodard, M. F. and Libbrecht, K. G. (1988). On the measurement of solar rotation using high-degree p-mode oscillations, in Seismology of the Sun and Sun-Like Stars, ed. Rolfe, E. J. (Noorwijk: ESA Publications), pp. 67-71.Google Scholar
Wright, W. W., Palmer, H. K., Albrecht, S. and Campbell, W. W. (1911). Radial velocities of 150 stars south of declination -20° determined by the D. O. Mills expedition period 1903-1906, Publications of the Lick Observatory, 9 (Part 4), 71-347.Google Scholar
Young, P. J., Westphal, J. A., Kristian, J., Wilson, C. P. and Landauer, F. P. (1978). Evidence for a supermassive object in the nucleus of the galaxy M87 from SIT and CCD area photometry, Astrophysical Journal, 221, 721-730.CrossRefGoogle Scholar
Young, T. (1802). On the theory of light and colours, Philosophical Transactions of the Royal Society, 92, 12-48.Google Scholar
Yukawa, H. (1935). On the interaction of elementary particles. I, Proceedings of the Physical-Mathematical Society of Japan, 17, 48-57.Google Scholar
Zanstra, H. (1926). An application of the quantum theory to the luminosity of diffuse nebulae, Physical Review, 27, 644.Google Scholar
(1927). An application of the quantum theory to the luminosity of diffuse nebulae, Astro-physical Journal, 65, 50-70.
Zeldovich, Y. B. (1964a). The fate of a star and the evolution of gravitational energy upon accretion, Soviet Physics Doklady, 9, 195-197.Google Scholar
(1964b). Observations in a Universe homogeneous in the mean, Astronomicheskii Zhurnal, 41, 19-24. Translation in Soviet Astronomy, 8, 1964, 13-16.
(1965). Survey of modern cosmology, Advances of Astronomy and Astrophysics, 3, 241-379.
(1968). The cosmological constant and the theory of elementary particles, Uspekhi Fizish-eskikh Nauk, 95, 209-230.
(1970). Gravitational instability: an approximate theory for large density perturbations, Astronomy and Astrophysics, 5, 84-89.
Zeldovich, Y. B. (1972). A hypothesis, unifying the structure and the entropy of the Universe, Monthly Notices of the Royal Astronomical Society, 160, 1P–3P.CrossRefGoogle Scholar
Zeldovich, Y. B. and Guseynov, O. H. (1966). Collapsed stars in binaries, Astrophysical Journal, 144, 840-841.CrossRefGoogle Scholar
Zeldovich, Y. B. and Novikov, I. D. (1964). Mass of quasi-stellar objects, Soviet Physics Doklady, 9, 834-837.Google Scholar
Zeldovich, Y. B. and Sunyaev, R. A. (1969). The interaction of matter and radiation in a hot-model Universe, Astrophysics and Space Science, 4, 301-316.CrossRefGoogle Scholar
(1980). Astrophysical implications of the neutrino rest mass. I – The Universe, Pis'ma v Astronomicheskii Zhurnal, 6, 451-456.
Zeldovich, Y. B., Kurt, D. and Sunyaev, R. A. (1968). Recombination of hydrogen in the hot model of the Universe, Zhurnal Eksperimentalnoi i Teoreticheskoi Fiziki, 55,278-286. Translation in Soviet Physics-JETP, 28, 1969, 146-150.Google Scholar
Zhevakin, S. A. (1953). On the theory of Cepheids. I., Astronomisheskii Zhurnal, 30, 161-179.Google Scholar
Zuckerman, B., Turner, B. E., Johnson, D. R.et al. (1975). Detection of interstellar trans-ethyl alcohol, Astrophysical Journal, 196, L99-L102.CrossRefGoogle Scholar
Zwicky, F. (1933). Rotverschiebung von Extragalaktischen Nebeln (The redshift of extra-galactic nebulae), Helvetica Physica Acta, 6, 110-118.Google Scholar
(1937). On the masses of nebulae and of clusters of nebulae, Astrophysical Journal, 86, 217-246.
(1942). On the large scale distribution of matter in the Universe, Physical Review, 61, 489-503.
(1968). Catalogue of Selected Compact Galaxies and of Post-eruptive Galaxies (Guem-lingen, Switzerland: F. Zwicky).

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Malcolm S. Longair, University of Cambridge
  • Book: The Cosmic Century
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878319.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Malcolm S. Longair, University of Cambridge
  • Book: The Cosmic Century
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878319.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Malcolm S. Longair, University of Cambridge
  • Book: The Cosmic Century
  • Online publication: 05 February 2015
  • Chapter DOI: https://doi.org/10.1017/CBO9781139878319.018
Available formats
×