Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-c47g7 Total loading time: 0 Render date: 2024-04-24T21:08:14.264Z Has data issue: false hasContentIssue false

Part One - Theory

Published online by Cambridge University Press:  03 January 2019

Lan Zhang
Affiliation:
Texas A & M University
V. P. Singh
Affiliation:
Texas A & M University
Get access

Summary

This chapter briefly reviews the development of the copula theory and its applications in the field of water resources engineering (flood, drought, rainfall, groundwater, etc.). It points out the need for applying the copula theory in hydrology and engineering. The chapter is concluded with an outline of the structure of the book.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Ali, M. M., Mikhail, N. N., and Haq, M. S. (1978). A class of bivariate distributions including the bivariate logistic. Journal of Multivariate Analysis, 8, 405412.CrossRefGoogle Scholar
Bárdossy, A. (2006). Copula-based geostatistical models for groundwater quality parameters. Water Resources Research, 42, W11416, doi:10.1029/2005WR004754.Google Scholar
Bárdossy, A. and Li, J. (2008). Geostatistical interpolation using copulas. Water Resources Research, 44, W07412, doi:10.1029/2007WR006115.Google Scholar
Braekers, R. and Veraverbeke, N. (2005). A copula-graphic estimator for the conditional survival function under dependent censoring. Technical Report, 0315. Interuniversity Attraction Pole.Google Scholar
Caperaa, P., Fougeres, A. L., and Genest, C. (1997). A nonparametric estimation procedure for bivariate extreme copulas. Biometrika, 84(3), 567577.Google Scholar
Chakak, A. and Koehler, K. J. (1995). A strategy for constructing multivariate distributions. Communicational Statistics (Simulation), 24(3), 537550.Google Scholar
Chen, L., Singh, V. P., Guo, S., Mishra, A., and Guo, J. (2013) Drought analysis using copulas. Journal of Hydrologic Engineering, 18(7), 797808. doi:10.1061/(ASCE)HE.1943–5584.0000697.Google Scholar
Chen, X. and Fan, Y. (2002). Evaluating density forecasts via the copula approach. www.vanderbilt.edu/Econ/wparchive/workpaper/vu02-w25R.pdf.Google Scholar
Cook, R. D. and Johnson, M. E. (1981). A family of distributions for modeling non-ellipitically symmetric multivariate data. Journal of the Royal Statistical Society. Series B. (Methodological), 43(2), 210218.Google Scholar
De Michele, C., Salvadori, G., Canossi, M., Petaccia, A., and Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrologic Engineering, 10(1), 5057.Google Scholar
De Michele, C., Salvadori, G., Passoni, G., and Vezzoli, R. (2007). A multivariate model of sea storms using copulas. Coastal Engineering, 54, 734751.Google Scholar
Dupuis, D. J. (2007). Using copulas in hydrology: benefits, cautions, and issues. Journal of Hydrologic Engineering, 12(4), 381393.Google Scholar
Evin, G. and Favre, A. C. (2008). A new rainfall model based on the Neyman–Scott process using cubic copulas. Water Resources Research, 44, W03433, doi:10.1029/2007WR006054.Google Scholar
Fang, H., Fang, K.T., and Kotz, S. (2002). The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis, 82, 116.Google Scholar
Favre, A. C., Adlouni, S. E., Perreault, L., Thiémonge, N., and Bobeé, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40(1), W01101, doi:10.1029/2003WR002456.Google Scholar
Frees, E. W. and Valdez, E. A. (1997). Understanding relationships using copulas. North American Acturial Journal, 2(1), 137.Google Scholar
Gebremichael, M. and Krajewski, W. F. (2007). Application of copulas to modeling temporal sampling errors in satellite-derived rainfall estimates. Journal of Hydrologic Engineering, 12(4), 404408.Google Scholar
Genest, C. (1987). Frank’s family of bivariate distribution. Biometrika, 74(3), 549555.CrossRefGoogle Scholar
Genest, C. and Boies, J. C. (2003). Detecting dependence with Kendall plots. American Statistician, 57(4), 275284.CrossRefGoogle Scholar
Genest, C., Favre, A. C., Béliveau, J., and Jacques, C. (2007b). Meta-elliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research, 43, W09401, doi:10.1029/2006WR005275.Google Scholar
Genest, C. and MacKay, J. (1986). The joy of copulas: bivariate distributions with uniform marginals. American Statistician, 40(4), 280283.Google Scholar
Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88(423), 10341043.CrossRefGoogle Scholar
Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiparametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82(3), 543552.Google Scholar
Genest, C., Quessy, J.-F., and Rémillard, B. (2006). Goodness-of-fit procedures for copula models based on the integral probability transformation. Scandinavian Journal of Statistics, 33, 337366.Google Scholar
Genest, C., Rémillard, B., and Beaudoin, D. (2007a). Goodness-of-fit tests for copulas: a review and a power study. Insurance: Mathematics and Economics, doi:10.1016/j.insmatheco.2007.10.005.Google Scholar
Grimaldi, S. and Serinaldi, F. (2006a). Asymmetric copula in multi-variate flood frequency analysis. Advances in Water Resources, 29(8), 11551167.Google Scholar
Grimaldi, S. and Serinaldi, F. (2006b). Design hyetograph analysis with 3-copula function. Hydrological Sciences Journal, 51(2), 223238.Google Scholar
Hosking, J. R. M. (1990). Fortran routines for use with the method of L-moments, Version 2. Research Report RC-17097, IBM Thomas J. Watson Research Center, Yorktown Heights.Google Scholar
Joe, H. (1997). Multivariate Models and Dependence Concept. Chapman & Hall, New York.Google Scholar
Kao, S. C. and Govindaraju, R. S. (2007). A bivariate rainfall frequency analysis of extreme rainfall with implications for design. Journal of Geophysical Research, 112, D13119, doi:10.1029/2007JD008522.Google Scholar
Kao, S. C. and Govindaraju, R. S. (2008). Trivariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44(2), W02415, doi:10.1029/2007WR006261.Google Scholar
Long, D. and Krzysztofowicz, R. (1995). A family of bivariate densities constructed from marginals. Journal of the American Statistical Association, 90(430), 739746.Google Scholar
Mirabbasi, R., Fakheri-Fard, A., and Dinpashoh, Y. (2012). Bivaraite drought frequency analysis using the copula method. Theoretical Applied Climatology, 108(1–2), 191206, doi:10.1007/s00704-011-0524-7.Google Scholar
Muller, A. and Scarsini, M. (2001). Stochastic comparison of random vectors with a common copula. Mathematics of Operations Research, 26(4), 723740.Google Scholar
Nelsen, R. B. (2006). An Introduction to Copulas. Springer, New York.Google Scholar
Quesada-Molina, J. J. and Rodriguez-Lallena, J. A. (1995a). Bivariate copulas with quadratic sections. Nonparametric Statistics, 5, 323337.Google Scholar
Quesada-Molina, J. J. and Rodriguez-Lallena, J. A. (1995b). Bivariate copulas with cubic sections. Nonparametric Statistics, 7, 205220.Google Scholar
Rao, A. R. and Hamed, K. H. (2000). Flood Frequency Analysis. CRC Publications, Boca Raton, London, New York, Washington.Google Scholar
Rodriguez-Lallena, J. A. and Úbeda-Flores, M. (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, 315325.Google Scholar
Salvadori, G. and Michele, C. D. (2003). A generalized Pareto intensity and duration model of storm rainfall exploiting 2-copulas. Journal of Geophysical Research, 108 (D2), doi:10,1029/2002JD002543.Google Scholar
Salvadori, G. and De Michele, C. (2004). Frequency analysis via copulas: theoretical aspects and applications to hydrological events. Water Resources Research, 40, W12511, doi:10.1029/2004WR003133.Google Scholar
Salvadori, G. and De Michele, C. (2007). On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4), 369380.CrossRefGoogle Scholar
Sancetta, A. and Satchell, S. (2001). Berstein Approximations to the Copula Function and Portfolio Optimization. DAE Working Paper 0105, University of Cambridge. www.econ.cam.ac.uk/research-files/repec/cam/pdf/wp0105.pdf.Google Scholar
Shiau, J. T. (2006). Fitting drought duration and severity with two-dimensional copulas. Water Resources Management, 20, 795815.Google Scholar
Shiau, J. T., Feng, S., and Nadarajah, S. (2007). Assessment of hydrological droughts for the Yellow River, China, using copulas. Hydrological Processes, 21(16), 21572163.Google Scholar
Simonovic, S. P. and Karmakar, S. (2007). Flood Frequency Analysis Using Copula with Mixed Marginal Distribution. Report No. 055. www.econ.cam.ac.uk/research-files/repec/cam/pdf/wp0105.pdf.Google Scholar
Singh, V. P. (1988). Hydrologic Systems: Rainfall-Runoff Modeling. Prentice Hall, Englewood Cliffs.Google Scholar
Singh, V. P. (1998). Entropy-Based Parameter Estimation in Hydrology. Kluwer Academic Publishers, Dordrecht, Boston, London.Google Scholar
Singh, V. P., Jain, S. K., and Tyagi, A. (2007). Risk and Reliability Analysis. ASCE Press, Reston.Google Scholar
Sklar, A. (1959). Fonctions de repartition à n dimensionls et leurs marges. Publications de l’Institut de Statistique de l’Université de Paris, Paris. 8, 229–231.Google Scholar
Song, S. B. and Singh, V. P. (2009). Meta-elliptical copulas for drought frequency analysis of periodic hydrologic data. Stochastic Environmental Research and Risk Assessment, doi:10.1007/s00477–009–0331–1.CrossRefGoogle Scholar
Vandenberghe, S., Verhoest, N. E. C., Onof, C., and De Baets, B. (2011). A comparative Copula-based bivariate frequency analysis of observed and simulated storm events: a case study on Bartlett-Lewis modeled rainfall. Water Resources Research, 47. doi:10.1029/2009wr008388.Google Scholar
Wang, C., Chang, N. B., and Yeh, G. T. (2009). Copula-based flood frequency (COFF) analysis at the confluences of river systems. Hydrological Processes, 23, 14711486.CrossRefGoogle Scholar
Wong, G., Lambert, M. F., and Metcalfe, A. V. (2007). Trivariate copulas for characterisation of droughts. ANZIAM Journal, 49, C306C323.Google Scholar
Yue, S. (1999). Applying bivariate normal distribution to flood frequency analysis. Water International, 24(3), 248254.Google Scholar
Yue, S. (2000a). Joint probability distribution of annual maximum storm peaks and amounts as represented by daily rainfalls. Hydrologic Science Journal, 45(2), 315326.Google Scholar
Yue, S. (2000b). The Gumbel logistic model for representing a multivariate storm event. Advances in Water Resources, 24 (2), 179185.Google Scholar
Yue, S. (2000c). The Gumbel mixed model applied to storm frequency analysis. Water Resources Management, 14(5), 377389.Google Scholar
Yue, S., Ouarda, T. B. M. J., Bobée, B., Legendre, P., and Bruneau, P. (1999). The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226, 88100.Google Scholar
Yue, S., Ouarda, T. B. M. J., and Bobée, B (2001). A review of bivariate gamma distributions for hydrological application. Journal of Hydrology, 246, 118.Google Scholar
Yue, S. and Rasmussen, P. (2002). Bivariate frequency analysis: discussion of some useful concepts for hydrological application. Hydrological Processes, 16(14), 811819.Google Scholar
Zheng, M. and Klein, J. P. (1995). Estimates of marginal survival for dependent competing risk based on assumed copula. Biometrika, 82(1), 127138.Google Scholar
Zhang, L. and Singh, V. P. (2006). Bivariate flood frequency analysis using the copula method. Journal of Hydrologic Engineering, 11(2), 150164.Google Scholar
Zhang, L. and Singh, V. P. (2007a). Gumbel-Hougaard copula for trivariate rainfall frequency analysis. Journal of Hydrologic Engineering, 12(4), 409419.Google Scholar
Zhang, L. and Singh, V. P. (2007b). Trivariate flood frequency analysis using the Gumbel–Hougaard copula. Journal of Hydrologic Engineering, 12(4), 431439.Google Scholar
Zhang, L. and Singh, V. P. (2007c). Bivariate rainfall frequency distributions using Archimedean copulas. Journal of Hydrology, 332, 93109.Google Scholar

Additional Reading

Adamson, P. T., Metcalfe, A. V., and Parmentier, B. (1999). Bivariate extreme value distributions: an application of the Gibbs sampler to the analysis of floods. Water Resources Research, 35(9), 28252832.CrossRefGoogle Scholar
Ashkar, F. (1980). Partial duration series models for flood analysis. PhD thesis. Ecole Polytechnique of Montreal, Montreal, Canada.Google Scholar
Ashkar, F., El Jabi, N., and Issa, M. (1998). A bivariate analysis of the volume and duration of low-flow events. Stochastic Hydrology and Hydraulics, 12, 97116.Google Scholar
Bacchi, B., Becciu, G,. and Kottegoda, N. T. (1994). Bivariate exponential model applied to intensities and durations of extreme rainfall. Journal of Hydrology, 155, 225236.Google Scholar
Choulakian, V., El Jabi, N., and Moussi, J. (1990). On the distribution of flood volume in partial duration series analysis of flood phenomena. Stochastic Hydrology and Hydraulics, 4, 217226.Google Scholar
Correia, F. N. (1987). Multivariate partial duration series in flood risk analysis. In: Singh, V. P. (Ed) Hydrologic Frequency Modeling. Reidel, Dordrecht, 541554.Google Scholar
Cunnane, C. (1987). Review of statistical models for flood frequency estimation. In: Singh, V. P. (Ed) Hydrologic Frequency Modeling, Reidel, Dordrecht, 4995.Google Scholar
Durrans, S. R. (1998). Total probability methods for problems in flood frequency estimation. In: Parent, E., Hubert, P., Bobee, B., and Miquel, J. (Eds) Statistical and Bayesian Methods in Hydrological Science. International Hydrological Programme, Nairobi, Jakarta, Venice, Cairo, and Montevideo. Technical Documents in Hydrology, No. 20UNESCO, Paris, 299326.Google Scholar
Futter, M. R., Mawdsley, J. A., and Metcalfe, A. V. (1991). Short-term flood risk prediction: a comparison of the Cox regression model and a conditional distribution model. Water Resources Research, 27(7), 16491656.Google Scholar
Goel, N. K., Seth, S. M., and Chandra, S. (1998). Multivariate modeling of flood flows. Journal of Hydraulic Engineering, 124(2), 146155.Google Scholar
Goel, N. K., Kurothe, R. S., Mathur, B. S., and Vogel, R. M. (2000). A derived flood frequency distribution for correlated rainfall intensity and duration. Journal of Hydrology, 228, 5667.Google Scholar
Grimaldi, S., Serinaldi, R., Napolitano, F., and Ubertini, L. (2005). A 3-copula function application or design hyetograph analysis. Proceedings of Symposium S2, Held during the Seventh IAHS Scientific Assembly at Foz do Iguacu, Brazil, April 2005. IAHS publ. 293. International Association of Hydrological Sciences (IAHS), London. https://iahs.info/uploads/dms/13113.33%20203-211%20s2-10%20Grimaldi%20et%20al%2066.pdf.Google Scholar
Haimes, Y. Y., Lambert, J. H., and Li, D. (1992). Risk of extreme events in a multiobjective framework. Water Resources Bulletin, 28(1), 201209.Google Scholar
Hashino, M. (1985). Formulation of the joint return period of two hydrologic variates associated with a Poisson process. Journal of Hydroscience and Hydraulic Engineering, 3(2), 7384.Google Scholar
Hosking, J. R. M. and Wallis, J. R. (1997). Regional Frequency Analysis. Cambridge University Press. Cambridge.Google Scholar
Kelly, K. S. and Krzysztofowicz, R. (1997). A bivariate meta-Gaussian density for use in hydrology. Stochastic Hydrology and Hydraulics, 11, 1731.Google Scholar
Kite, G. W. (1978). Frequency and Risk Analysis in Hydrology. Water Resource Publications, Fort Collins.Google Scholar
Kurothe, R. S., Goel, N. K., and Mathur, B. S. (1997). Derived flood frequency distribution for negatively correlated rainfall intensity and duration. Water Resources Research, 33, 21032107.Google Scholar
Krstanovic, P. F. and Singh, V. P. (1987). A multivariate stochastic flood analysis using entropy. In: Singh, V. P. (Ed) Hydrologic Frequency Modeling. Reidel, Dordrecht, 515539.Google Scholar
Lall, U. and Bosworth, K. (1994). Multivariate kernel estimation of functions of space and time. In: Hipel, K. V., Mcleod, A. I., Panu, U. S., Singh, V. P. (Eds) Time Series Analysis in Hydrology and Environmental Engineering. Kluwer Academic Publications, Dordrecht, 301315.Google Scholar
Loganathan, G. V., Kuo, C. Y., and Yannaccone, J. (1987). Joint probability distribution of streamflows and tides in estuaries. Nordic Hydrology, 18, 237246.Google Scholar
Long, D. and Krzysztofowicz, R. (1996). Geometry of a correlation coefficient under a copula. Communications in Statistics: Theory and Methods, 25(6), 13971404.Google Scholar
Nachtnebel, H. P. and Konecny, F. (1987). Risk analysis and time-dependent flood models. Journal of Hydrology, 91, 295318.Google Scholar
Renard, B. and Lang, M. (2007). Use of a Gaussian copula for multivariate extreme value analysis: some case studies in hydrology. Advances in Water Resources, 30, 897912.Google Scholar
Rényi, A. (1974). On measure of dependence. Acta Mathematica Academiae Scientiarum Hungarica, 10, 441451.Google Scholar
Rivest, L.-P. and Wells, M. T. (2001). A martingale approach to the Copula-graphic estimator for the survival function under dependent censoring. Journal of Multivariate Analysis, 79, 138155.Google Scholar
Sackl, B. and Bergmann, H. (1987). A bivariate flood model and its application. In: Singh, V. P. (Ed) Hydrologic Frequency Modeling. Reidel, Dordrecht, 571582.Google Scholar
Salvadori, G. and De Michele, C. (2006). Statistical characterization of temporal structure of storms. Advances in Water Resources, 29(6), 827842.Google Scholar
Schweizer, B. and Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. Annals of Statistics, 9, 879885.Google Scholar
Schweizer, B. (1991). Thirty years of copula. In: Dall’Aglio, G., Kotz, S., and Salinetti, G. (Eds) Advances in Probability Distributions with Given Marginals: Beyond the Copulas. Mathematics and Its Applications, 67, Kluwer Academic Publishers, Dordrecht, 13–50.Google Scholar
Serinaldi, F. and Grimaldi, S. (2007). Fully nested 3-copula: procedure and application on hydrological data. Journal of Hydrologic Engineering, 12(4), 420430.Google Scholar
Singh, K. and Singh, V. P. (1991). Derivation of bivariate probability density functions with exponential marginals. Journal of Stochastic Hydrology and Hydraulics, 5, 5568.Google Scholar
Wilks, D. S. (1998). Multisite generalization of a daily stochastic precipitation generation model. Journal of Hydrology, 210, 178191.Google Scholar
Wolff, E. F. (1977). Measures of Dependence Derived from Copulas. PhD thesis, University of Massachusetts, Amherst.Google Scholar
Zhang, L. and Singh, V. P. (2014). Trivariate flood frequency analysis using discharge time series with possible different lengths: Cuyahoga River case study. Journal of Hydrologic Engineering. doi:10.1061/(ASCE)HR.1943-5584.0001003.Google Scholar

References

Abramowitz, M. and Stegun, I. A. (1965). Handbook of Mathematical Functions. Dover Publications, New York.Google Scholar
Anderson, T. W. and Darling, D. A. (1952). Asymptotic theory of certain “goodness-of-fit” criteria based on stochastic processes. Annals of Mathematical Statistics, 23, 193212.Google Scholar
Arnold, B. C. (1983). Pareto Distributions. International Co-operative Publishing House, Fairland.Google Scholar
Bacchi, B., Becciu, G., and Kottegoda, N. T. (1994). Bivariate exponential model applied to intensities and durations of extreme rainfall. Journal of Hydrology, 155, 225236.Google Scholar
Balakrishnan, N. and Lai, C.-D. (2009). Continuous Bivariate Distribution, 2nd edition, Springer Science+Business Media, LLC, Berlin and Heidelberg.Google Scholar
Bobee, B., Perreault, L., and Ashkar, F. (1993). Two kinds of moment ratio diagrams and their applications in hydrology. Stochastic Hydrology and Hydraulics, 7, 4165.CrossRefGoogle Scholar
Box, G. E. P. and Cox, D. R. (1964). An analysis of transformations. Journal of the Royal Statistical Society, Series B, 26(2), 211252.Google Scholar
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (2007). Time Series Analysis: Forecasting and Control, 4th edition, John Wiley & Sons, Inc., Hoboken.Google Scholar
Burr, I. W. (1942). Cumulative frequency functions. Annals of Mathematical Statistics. 13(2), 215232. doi:10.1214/aoms/1177731607.Google Scholar
Chow, V. T. (1954). The log-probability law and its engineering applications. Proceedings of the ASCE, 80(5), 125.Google Scholar
Chow, V. T. ed. (1964). Handbook of Applied Hydrology. McGraw-Hill, New York.Google Scholar
Chow, V. T., Maidment, D. R., and Mays, L. W. (1988). Applied Hydrology, McGraw-Hill, New York.Google Scholar
Cramér, H. (1928). On the composition of elementary errors. Scandinavian Actuarial Journal, 1, 1374. doi:10.1080/03461238.1928.10416862.Google Scholar
Cunnane, C. (1989). Statistical distributions for flood frequency analysis. WMO Operational Hydrology Report No. 33, WMO-No.718, Geneva.Google Scholar
Gumbel, E. J. (1941). The return period of flood flows. Annals of Mathematical Statistics, 12, 163190.Google Scholar
Gumbel, E. J. (1958). Statistics of Extremes. Columbia University Press, New York.Google Scholar
Gumbel, E. J. (1960). Distributions of del valeurs extremes an plusieurs dimensions. Publications de L’Institute de Statistique, Paris, 9, 171173.Google Scholar
Gumbel, E. J. (1961). Bivariate logistic distributions. Journal of the American Statistical Association, 56, 335349.Google Scholar
Hazen, A. (1914). Storage to be provided in impounding reservoirs for municipal water supply, Transactions of the American Society of Civil Engineers, 1308(77), 15471550.Google Scholar
Hosking, J. R. M. (1990). L-moments: analysis and estimation of distribution using linear combinations of order statistics. Journal of the Royal Statistical Society, Series B (Methodological), 52(1), 105124.Google Scholar
Hogg, R. V. and Craig, A. T. (1978). Introduction to Mathematical Statistics, 4th edition. Macmillan: New York.Google Scholar
Izawa, T. (1965). 2 or multi-dimensional gamma-type distribution and its application to rainfall data. Meteorology and Geophysics, 15, 167.Google Scholar
Jenkinson, A. F. (1955). The frequency distribution of the annual maximum (or minimum) values of meteorological elements. Quarterly Journal of the Royal Meteorological Society, 81(348), 158171. doi:10.1002/qj.49708134804.Google Scholar
Justel, A., Peña, D., and Zamar, R. (1994). A multivariate Kolmogorov–Smirnov test of goodness of fit. Working paper 94–32, Statistics and Econometrics Series 13.Google Scholar
Kite, G. W. (1977) Frequency and Risk Analysis in Hydrology. Water Resources Publications, Fort Collins.Google Scholar
Kolmogorov, A. (1933). Sulla determinazione empirica di una legge di distribuzione. Giornale dell'Istituto Italiano degli Attuari, 4, 8391.Google Scholar
Liao, M. and Shimokawa, T. (1999). A new goodness-of-fit for type I extreme value and 2-parameter Weibull distributions with estimated parameters. Optimization, 64(1), 2348.Google Scholar
Markovic, R. D. (1965). Probability functions of the best fit to distributions of annual precipitation and runoff hydrology, Paper No. 8, Colorado State University.Google Scholar
Marshall, A. W. and Ingram, O. (1967). A multivariate exponential distribution. Journal of American Statistical Association, 62(317), 3044.Google Scholar
Moran, P. A. P. (1969). Statistical inference with bivariate gamma distribution. Biometrika, 54, 385394Google Scholar
Morgenstern, D. (1956). Einfache Beispiele zweidimensionaler Verteilungen. Mitt. Math. Statistik, 8, 234235.Google Scholar
Natural Environmental Research Council (NERC) (1975). Flood Studies Report 1. NERC, London.Google Scholar
Rao, A. R. and Hamed, K. H. (2000). Flood Frequency Analysis. CRC Publications, New York.Google Scholar
Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23(3), 470472.Google Scholar
Rosin, P. and Rammler, E. (1933). The laws governing the fineness of powdered coal. Journal of the Institute of Fuel, 7, 2936.Google Scholar
Salvadori, G. (2004). Bivariate return periods via 2-copulas. Statistical Methodology, 1, 129144.Google Scholar
Serinaldi, F. (2015). Dismissing return periods! Stochastic Environmental Research and Risk Assessment, 29, 11791189. doi:10.1007/s00477–014-0916–1.Google Scholar
Shiau, J. T. (2003) Return period of bivariate distributed extreme hydrological events. Stochastic Environmental Research and Risk Assessment, 17(1–2), 4257.Google Scholar
Shoukri, M. M., Mian, I. U. M., and Tracy, D. S. (1988). Sampling properties of estimators of the log-logistic distribution with application to Canadian precipitation data. Canadian Journal of Statistics, 16(3), 223236. doi:10.2307/3314729.Google Scholar
Singh, V. P. (1998). Entropy-Based Parameter Estimation in Hydrology. Springer, Boston.Google Scholar
Singh, V. P., Jain, S. K., and Tyagi, A. (2007). Risk and Reliability Analysis: A Handbook for Civil and Environmental Engineers. ASCE Press, Reston.CrossRefGoogle Scholar
Singh, K. and Singh, V. P. (1991). Derivation of bivariate probability density functions with exponential marginals. Stochastic Hydrology and Hydraulics, 5, pp. 5568.Google Scholar
Singh, V. P. and Zhang, L. (2016). Frequency distributions. In: Singh, V. P. (Ed) Handbook of Applied Hydrology. McGraw Hill Education, New York.Google Scholar
Smith, O. E., Adelfang, S. I., and Tubbs, J. D. (1982). A bivariate gamma probability distribution with application to gust model. NASA technical memorandum, 82483, National Aeronautics and Space Administration, Houston.Google Scholar
Smirnov, N. (1948). Table for estimating the goodness-of-fit of empirical distributions. Annals of Mathematical Statistics, 19, 279281. doi:10.1214/aoms/1177730256.Google Scholar
Stock, J. H. and Watson, M. W. (1989). Interpreting the evidence on money-income casualty. Journal of Econometrics, 40, 161181.Google Scholar
USWRC (United States Water Resources Research Council) (1981). Guidelines for Determining Flood Flow Frequency. Bulletin 17B (revised), Hydrology Committee, Water Resources Research Council, Washington.Google Scholar
Von Mises, R. E. (1928). Wahrscheinlichkeit, Statistik und wahreit. Julius Springer, Berlin and Heidelberg.Google Scholar
Yue, S., Ouarda, T. B. M. J., Bobee, B., Legendre, P., and Bruneau, P. (1999). The Gumbel mixed model for flood frequency analysis. Journal of Hydrology, 226(1–2), 88100, doi:10.1016/S0022–1694(99)00168–7.Google Scholar

References

Alfonsi, A. E. and Brigo, D. (2005). New families of copulas based on periodic functions. Communications in Statistics: Theory and Methods. 34(7), 14371447.Google Scholar
Ali, M. M., Mikhail, N. N., and Haq, M. S. (1978). A class of bivariate distributions including the bivariate logistic. Journal of Multivariate Analysis. 8, 405412.Google Scholar
Genest, C. and Boies, J.-C. (2003). Detecting dependence with Kendall plots. American Statistician, 57(4), 275284.Google Scholar
Genest, C. and Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering. 12(4), 347368.Google Scholar
Genest, C., Rémillard, B., and Beaudoin, D. (2007). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics. doi:10.1016/j.insmatheco.2007.10.005.Google Scholar
Hu, L. (2006). Dependence patterns across financial markets: a mixed copula approach. Applied Financial Economics. 16, 717729.Google Scholar
Joe, H. (1997). Multivariate Models and Dependence Concepts. Chapman & Hall/CRC, London.Google Scholar
Nelsen, R. B. (2006). An Introduction to Copulas, 2nd edition, Springer, New York.Google Scholar
Rosenblatt, M. (1952). Remarks on a Multivariate Transformation. Annuals of Mathematical Statistics. 23(3), 470472.Google Scholar
Schucany, W., Parr, W., and Boyer, J. (1978). Correlation structure in Falie–Gumbel–Morgenstern Distributions. Biometrika. 65, 650653.Google Scholar
Singh, K. and Singh, V. P. (1991). Derivation of bivariate probability density functions with exponential marginals. Stochastic Hydrology and Hydraulics. 5, 5568.Google Scholar
Singh, K. and Singh, V. P. (1991). Derivation of bivariate exponential model applied to intensities and durations of extreme rainfall. Journal of Hydrology, 155, 225236.Google Scholar
Trivedi, P. K. and Zimmer, D. M. (2007). Pitfalls in modeling dependence structures: explorations with copulas. www.economics.ox.ac.uk/hendryconference/Papers/Trivedi_DFHVol.pdf.Google Scholar

Additional Reading

Bacchi, B., Becciu, G., and Kottegoda, N. T. (1994). Bivariate exponential model applied to intensities and durations of extreme rainfall. Journal of Hydrology, 155, 225236.Google Scholar
Barbe, P., Genest, C., Ghoudi, K., and Rémillard, B. (1996). On Kendall’s process. Journal of Multivariate analysis, 58, 197229.Google Scholar
Breymann, W., Dias, A., and Embrechts, P. (2003). Dependence structures for multivariate high-frequency data in finance. Quantitative Finance, 3, 114.Google Scholar
Capéraà, P., Fougères, A.-L., and Genest, C. (1997). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 84(3), 567577.Google Scholar
Coles, S., Heffernan, J., and Tawn, J. (1999). Dependence measures for extreme value analysis. Extremes, 2(4), 339365.Google Scholar
Dobric, J. and Schmid, F. (2005). The goodness-of-fit for parametric families of copulas: application to financial data. Communications in Statistics: Simulation and Computation, 34, 10531068.Google Scholar
Dobric, J. and Schmid, F. (2007). A goodness of fit test for copulas based on Rosenblatt’s transformation. Computational Statistics & Data Analysis, 51, 46334642.Google Scholar
Fermanian, J.-D. (2005). Goodness-of-fit test for copulas. Journal of Multivariate Analysis, 95, 119152.Google Scholar
Fermanian, J.-D., Radulovic, D., and Wegkamp, M. H. (2004). Weak convergence of empirical copula processes. Bernoulli, 10, 847860.Google Scholar
Fisher, N. I. and Switzer, P. (2001). Graphical assessment of dependence: is a picture worth 100 tests? American Statistician, 55(3), 233239.Google Scholar
Frahm, G., Junker, M., and Schmidt, R. (2005). Estimating the tail-dependence coefficient: properties and pitfalls. Insurance: Mathematics and Economics 37, 80100.Google Scholar
Francesco, S. and Salvatore, G. (2007). Fully nested 3-copula: procedure and application on hydrological data. Journal of Hydrologic Engineering, 12(4), 420430.Google Scholar
Genest, C., Quessy, J.-F., and Rémillard, B. (2006). Goodness-of-fit procedures for copula models based on the integral probability transformation. Scandinavian Journal of Statistics, 33, 337366.Google Scholar
Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88, 10341043.Google Scholar
Großmaß, T. (2007). Copulae and tail dependence. Diploma thesis. September 28, Berlin, Institute for Statistics and Econometrics School of Business and Economics, Humboldt-University, Berlin.Google Scholar
Marshall, A. W. and Ingram, O. (1967). A multivariate exponential distribution. Journal of American Statistical Association. 62(317), 3044.Google Scholar
Oliveria, J. T. D. (1982). Bivariate extremes: extensions. Bulletin of the International Statistical Institute. 46(2), 241251.Google Scholar
Schweizer, B. and Wolff, E. F. (1981). On nonparametric measures of dependence for random variables. Annals of Statistics, 9(4), 879885.Google Scholar
Sklar, A. (1959) Fonctions de repartition à n dimensions et leurs marges. Publ. Inst. Statist. Univ. Paris, 8, 229231.Google Scholar
Wang, W. and Wells, M. T. (2000). Model selection and semiparametric inference for bivariate failure-time data. Journal of the American Statistical Association, 95, 6272.Google Scholar
Yue, S. (2001). A bivariate gamma distribution for use in multivariate flood frequency analysis. Hydrological Processes. doi:10.1002/hyp.259.Google Scholar
Yue, S. and Rasmussen, P. (2002). Bivariate frequency analysis: discussion of some useful concept in hydrological application. Hydrological Processes. 16, 28812898.Google Scholar

References

Ali, M. M., Mikhail, N. N., and Haq, M. S. (1978). A class of bivariate distributions including the bivariate logistic. Journal of Multivariate Analysis, 8, 405412.Google Scholar
Antonio, J., Manuel, R. L., and Úbeda-Flores, M. (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, 315325.Google Scholar
Caperaa, P., Fougeres, A. L., and Genest, C. (1993). A nonparametric estimation procedure for bivariate extreme value copulas. Biometrika, 84(3), 567577.Google Scholar
Clayton, D. G. (1978). A model for association in bivariate life tables and its application in epidemiological studies of familial tendency in chronic disease incidence. Biometrika, 65(1), 141151.Google Scholar
Cook, R. D. and Johnson, M. W. (1981). A family of distribus for modeling nonelliptically symmetric multivariate data. Journal of the Royal Statistical Society. Series B (Methodological), 43(2), 210218.Google Scholar
Cox, D. R. and Oaks, D. (1984). Analysis of Survival Data. Chapman and Hall, London.Google Scholar
De Matteis, R. (2001). Fitting Copulas to Data. Diploma Thesis, Institute of Mathematics of the University of Zurich, http://89.179.245.94/svn/study/copulas/copulas-fitting.pdf.Google Scholar
Embrechts, P., Lindskog, F., and McNeil, A. (2001). Modelling dependence with copulas and applications to risk management. www.risklab.ch/ftp/papers/DependenceWithCopulas.pdf.Google Scholar
Favre, A.-C., Adlouni, S. E., Perreault, L., Thiémonge, N., and Bobée, B. (2004). Multivariate hydrological frequency analysis using copulas. Water Resources Research, 40. W01101. doi:10.1029/2003WR002456.Google Scholar
Francesco, S. and Salvatore, G. (2007). Fully nested 3-copula: procedure and application on hydrological data. Journal of Hydrologic Engineering, 12(4), 420430.Google Scholar
Frank, M. J. (1979). On the simultaneous associativity of F(x, y) and x + y - F(x, y). Aequationes Mathematics, 19, 617627.Google Scholar
Frees, E. W. and Valdez, E. A. (1997). Understanding relationships using copulas. North American Actuarial Journal, 2(1), 125.Google Scholar
Genest, C., Ghoudi, K., and Rivest, L.-P. (1995). A semiprarametric estimation procedure of dependence parameters in multivariate families of distributions. Biometrika, 82(3), 543552.Google Scholar
Genest, C. and MacKay, J. (1986). The joy of copulas: bivariate distributions with uniform marginals. American Statistician, 40(4), 280283.Google Scholar
Genest, C. and Rémillard, B. (2008). Validity of the parametric bootstrap for goodness-of-fit testing in semiparametric models. Annales de 1’Institue Henri Poincaré–Probabilités et Statistiques, 44(6), 10961127.Google Scholar
Genest, C., Rémillard, B., and Beaudoin, D. (2007). Goodness-of-fit tests for copulas: a review and a power study. Insurance: Mathematics and Economics. doi:10.1016/j.insmatheco.2007.10.1005.Google Scholar
Genest, C. and Rivest, L.-P. (1993). Statistical inference procedures for bivariate Archimedean copulas. Journal of the American Statistical Association, 88, 10341043.Google Scholar
Gumbel, E. J. (1960a). Bivariate exponential distributions. Journal of the American Statistical Association, 55(292), 698707.Google Scholar
Gumbel, E. J. (1960b). Distributions del valeurs extremes en plusieurs dimensions. Publ. l’Inst. de Statistique, Paris, 9, 171173.Google Scholar
Joe, H. (1993). Parametric families of multivariate distributions with given margins. Journal of Multivariate Analysis, 46(2), 262282.Google Scholar
Malevergne, Y. and Sornette, D. (2006). Extreme Financial Risks from Dependence to Risk Management. Springer, Netherlands.Google Scholar
Nelsen, R. B. (2006). An Introduction to Copulas, 2nd edition. Springer, New York, NY.Google Scholar
Oakes, D. (1982). A model for association in bivariate survival data. Journal of the Royal Statistical Society. Series B (Methodological), 44(3), 414422.Google Scholar
Oakes, D. (1986). Semiparametric inference in a model for association in bivariate survival data. Biometrika, 73, 353361.Google Scholar
Rodriguez-Lallena, J. A. and Úbeda-Flores, M. (2004). A new class of bivariate copulas. Statistics and Probability Letters, 66, 315325.Google Scholar
Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23(3), 470472.Google Scholar
Salvadori, G., De Michele, C., Kottegoda, N. T., and Rosso, R. (2007). Extremes in Nature: an Approach Using Copulas. Springer, Dordrecht.Google Scholar
Savu, C. and Trede, M. (2008). Goodness-of-fit tests for parametric families of Archimedean copulas. Quantitative Finance, 8 (2), 109116Google Scholar
Sklar, A. (1959). Fonctions de repartition à n dimensions et leurs marges. Publ. l’Inst. de Statistique Univ., Paris 8, 229231.Google Scholar
Widder, D. V. (1941). The Laplace Transform. Princeton University Press, Princeton.Google Scholar

References

Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44, 182198, doi:10.1016/j.insmatheco.2007.02.001.Google Scholar
Bedford, T. and Cooke, R. M. (2001). Probability density decomposition for conditionally dependent random variables modeled by vines. Annals of Mathematics and Artificial Intelligence, (32), 245268.Google Scholar
Bedford, T. and Cooke, R. M. (2002). Vines – a new graphical model for dependent random variables. Annals of Statistics, (30), 10311068.Google Scholar
Berg, D. and Aas, K. (2007), Models for construction of multivariate dependence, Technical report, Norwegian Computing Center.Google Scholar
Embrechts, P., Lindskog, F., and McNeil, A. (2003). Modelling dependence with copulas and applications to risk management. In Rachev, S. T. ed. Handbook of Heavy Tailed Distributions in Finance. North-Holland: Elsevier.Google Scholar
Frees, E. W. and Valdez, E. A. (1998). Understanding relationships using copulas. North American Actuarial Journal, 2(1), 125Google Scholar
Genest, C. and Favre, A.-C. (2007). Everything you always wanted to know about copula modeling but were afraid to ask. Journal of Hydrologic Engineering, 12(4), 347368.Google Scholar
Genest, C., Favre, A.-C., Beliveau, J., and Jacques, C. (2007a). Metaelliptical copulas and their uses in frequency analysis of multivariate hydrological data. Water Resources Research, 43, W09401, doi:10.1029/2006WR005275.Google Scholar
Genest, C., Rémillard, B., and Beaudoin, D. (2007b). Goodness-of-fit tests for copulas: A review and a power study. Insurance: Mathematics and Economics. doi:10.1016/j.insmatheco.2007.10.005.Google Scholar
Joe, H. (1996). Families of m-variate distributions with given margins and m(m-1)/2 bivariate dependence parameters. In R¨uschendorf, L., Schweizer, B., and Taylor, M. D., ed. Distributions with Fixed Marginals and Related Topics. Institute of Mathematical Statistics, Hayward, CA, 120141.Google Scholar
Joe, H. (1997). Multivariate Models and Dependence Concept. Chapman & Hall, New York.Google Scholar
Kurowicka, D. and Cooke, R. M. (2004). Distribution – free continuous Bayesian belief nets. In Fourth International Conference on Mathematical Methods in Reliability Methodology and Practice. Wiley, Santa Fe, 309322.Google Scholar
Kurowicka, D. and Cooke, R. M. (2006). Uncertainty Analysis with High Dimensional Dependence Modelling. Wiley, New York.Google Scholar
McNeil, A. J. (2007). Sampling nested Archimedean copulas. http://citeseerx.ist.psu.edu/viewdoc/download?doi=10.1.1.395.5498&rep=rep1&type=pdf Nelsen, R. B. (2006). An Introduction to Copulas. Springer-Verlag, New York.Google Scholar
Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 23(3), 470472.Google Scholar
Savu, C. and Trede, M. (2010). Hierarchies of Archimedean copulas. Quantative Finance, 10, 295304.Google Scholar
Whelan, N. (2004). Sampling from Archimedean copulas. Quantitat Finance, 4(3), 339–52.Google Scholar

Additional Reading

Francesco, S. and Salvatore, G. (2007). Fully nested 3-copula: procedure and application on hydrological data. Journal of Hydrologic Engineering, 12(4), 420430.Google Scholar
Salvatori, G. and Francesco, S. (2006). Asymmetric copula in multivariate flood frequency analysis. Advanced in Water Resources, 29, 11551167.Google Scholar
Salvadori, G., De Michele, C., Kottegoda, N., and Rosso, R. (2007). Extremes in Nature: An Approach Using Copulas. Water Science and Technology Library, Vol. 56, Springer, Dordrecht.Google Scholar
Salvadori, G. and De Michele, C. (2007), On the use of copulas in hydrology: theory and practice. Journal of Hydrologic Engineering, 12(4), 369380.Google Scholar

References

Joe, H. (1997). Multivariate Models and Dependence Concept. Chapman & Hall, New York.Google Scholar
Kao, S. C. and Govindaraju, R. S. (2008). Trivarariate statistical analysis of extreme rainfall events via the Plackett family of copulas. Water Resources Research, 44(2), W02415, doi:10.1029/2007WR006261.Google Scholar
Palaro, H. P. and Hotta, L. K. (2006). Using conditional copula to estimate Value at Risk. http://papers.ssrn.com/sol3/papers.cfm?abstract_id=818884.Google Scholar
Plackett, R. L. (1965). A class of bivariate distributions. Journal of the American Statistical Association, 60, 516522.Google Scholar
Rosenblatt, M. (1952). Remarks on a multivariate transformation. Annals of Mathematical Statistics, 470–472.Google Scholar
Song, S. and Singh, V. P. (2010). Frequency analysis of droughts using the Plackett copula and parameter estimation by genetic algorithm. Stochastic Environmental Research and Risk Assessment, 24, 783805, doi:10.1007/s00477–010–0364–5.Google Scholar

References

Fang, H. B., Fang, K. T., and Kotz, S. (2002). The meta-elliptical distributions with given marginals. Journal of Multivariate Analysis, 82, 116.Google Scholar
Genest, C., Favre, A. C., Be´liveau, J., and Jacques, C. (2007). Meta-elliptical copulas and their use in frequency analysis of multivariate hydrological data. Water Resources Research, 43, W09401, doi:10.1029/2006WR005275.Google Scholar
Joe, H. (1997). Multivariate Models and Dependence Concept. Chapman & Hall, New York.Google Scholar
Kotz, S. and Nadarajah, S. (2001). Some extreme type elliptical distributions. Statistics & Probability Letters, 54, 171182.Google Scholar
McNeil, A., Frey, R., and Embrechts, P. (2005). Quantitative Risk Management: Concepts, Techniques, and Tools. Princeton: Princeton University Press.Google Scholar
Nadarajah, S. ( 2006). Fisher information for the elliptically symmetric Pearson distributions. Applied Mathematics and Computation, 178, 195206.Google Scholar
Nadarajah, S. (2007). A bivariate gamma model for drought. Water Resources Research, 43, W08501, doi:10.1029/2006WR005641.Google Scholar
Nadarajah, S. and Kotz, S. (2005). Information matrices for some elliptically symmetric distribution. SORT, 29(1), 4356.Google Scholar
Zhang, G. (2000). Multiple complex Gauss–Legendre integral formulae and application. Journal of Lanzhou University (Natural Sciences), 36(5), 3034.Google Scholar

References

Chu, B. (2011). Recovering copulas from limited information and an application to asset allocation. Journal of Banking and Finance, 35, 18241842. doi:10.1016/j.jbankfin.2010.12.011.Google Scholar
De Michele, C., Saladori, G., Canossi, M., Petaccia, A., and Rosso, R. (2005). Bivariate statistical approach to check adequacy of dam spillway. Journal of Hydrological Engineering ASCE, 10(1), 5057.Google Scholar
Favre, A.-C., El Adlouni, S., Perreault, L., Thiemonge, N., and Bebee, B. (2004). Multivariate hydrological frequency anlaysis using copulas. Water Resources Research, 40, W01101.Google Scholar
Hao, Z. and Singh, V. P. (2011). Single-site monthly streamflow simulation using entropy theory. Water Resource Research, 47, W09528, doi:10.1029/2100WR011419.Google Scholar
Hao, Z. and Singh, V. P. (2012). Entropy-copula method for single-site monthly streamflow simulation. Water Resources Research, 48, W06604, doi:10.1029/WR011419.Google Scholar
Jaynes, E. T. (1957). Information theory and statistical mechanics. Physical Review. Series II, 106 (4), 620630.Google Scholar
Jaynes, E. T. (1957). Information theory and statistical mechanics II. Physical Review. Series II, 108(2), 171190.Google Scholar
Kao, S.-H. and Govindaraju, R. S. (2007). A bivariate frequency analysis of extreme rainfall with implications for design. Journal of Geophysical Research, 112, D13119, doi:10.1029/2007JD008522.Google Scholar
Krstanovic, P. F. and Singh, V. P. (1993a). A real-time flood forecasting model based on maximum-entropy spectral analysis: I. Development. Water Resources Management, 7(2), 109129.Google Scholar
Krstanovic, P. F. and Singh, V. P. (1993b). A real-time flood forecasting model based on maximum-entropy spectral analysis: II. Application. Water Resources Management, 7(2), 131151.Google Scholar
Nelsen, R. B. (2006). An Introduction to Copulas. 2nd edition. Springer, New York.Google Scholar
Shannon, C. E. (1948). A mathematical theory of communication. Bell System Technical Journal, 27, 379423.Google Scholar
Singh, V.P. (1998). Entropy-Based Parameter Estimation in Hydrology. Kluwer Academic Publishers, Boston.Google Scholar
Singh, V. P. (2013). Entropy Theory in Environmental and Water Engineering. John Wiley, Sussex.Google Scholar
Singh, V. P. (2015). Entropy Theory in Hydrologic Science and Engineering. McGraw-Hill Education, New York.Google Scholar
Singh, V. P. and Krstanovic, P. F. (1987). A stochastic model for sediment yield using the principle of maximum entropy. Water Resources Research, 23(5), 781793.Google Scholar
Singh, V. P., Zhang, L., and Rahimi, A. (2012). Probability distribution of rainfall-runoff using entropy theory. Transactions of the ASABE, 55(5), 17331744.Google Scholar
Vandenberghe, S., Verhoest, N. E. C., Onof, C., and De Baets, B. (2011) A comparative copula-based bivariate frequency analysis of observed and simulated storm events: a case study on Bartlett-Lewis modeled rainfall. Water Resources Research, 47, W07529, doi:10.1029/2009WR008388.Google Scholar
Zhang, L. and Singh, V. P. (2012). Bivariate rainfall and runoff analysis using entropy and copula theories. Entropy, 14, 17841812. doi:10.3390/e14091784.Google Scholar

References

Aas, K., Czado, C., Frigessi, A., and Bakken, H. (2009). Pair-copula constructions of multiple dependence. Insurance: Mathematics and Economics, 44, 182198. doi:10.1016/j.insmatheco.2007.02.001.Google Scholar
Arya, F. K. and Zhang, L. (2015). Time series analysis of water quality parameters at Stillaguamish River using order series method. Stochastic Environmental Research and Risk Assessment, 29, 227. doi:10.1007/s00477–014–0907–2.Google Scholar
Bollerslev, T. (1986). Generalized autoregressive conditional heteroskedasticity. Journal of Econometrics, 31, 307327.Google Scholar
Box, G. E. P., Jenkins, G. M., and Reinsel, G. C. (2008). Time Series Analysis: Forecasting and Control. John Wiley & Sons, Inc., Hoboken.Google Scholar
Chen, X. and Fan, Y. (2006). Estimation and model selection of semiparametric copula-based multivariate dynamic models under copula misspecification. Journal of Econometrics, 135, 125154.Google Scholar
Darsow, W., Nguyen, B., and Olsen, E. (1992). Copulas and Markov processes. Illinois Journal of Mathematics, 36, 600642.Google Scholar
Dickey, D. A. and Fuller, W. A. (1979). Distribution of the estimates for autoregressive time series with a unit root. Journal of American Statistical Association, 74, 427431.Google Scholar
Hurst, H. E. (1951). Long-term storage capacity of reservoirs. Transactions of American Society of Civil Engineers, 116, 770.Google Scholar
Kwiatkowski, D., Phillips, P. C. B., Schmidt, P., and Shin, Y. (1992). Testing the null hypothesis of stationarity against the alternative of a unit root. Journal of Econometrics, 54, 159178.Google Scholar
Joe, H. (1997). Multivariate Models and Multivariate Dependence Concepts. Chapman & Hall/CRC, New York.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Theory
  • Lan Zhang, Texas A & M University, V. P. Singh, Texas A & M University
  • Book: Copulas and their Applications in Water Resources Engineering
  • Online publication: 03 January 2019
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Theory
  • Lan Zhang, Texas A & M University, V. P. Singh, Texas A & M University
  • Book: Copulas and their Applications in Water Resources Engineering
  • Online publication: 03 January 2019
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Theory
  • Lan Zhang, Texas A & M University, V. P. Singh, Texas A & M University
  • Book: Copulas and their Applications in Water Resources Engineering
  • Online publication: 03 January 2019
Available formats
×