Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-qxdb6 Total loading time: 0 Render date: 2024-04-25T09:57:02.759Z Has data issue: false hasContentIssue false

7 - Demographic Bottlenecks and Savanna Tree Abundance

from Part II - Theoretical Advances in Savanna Ecology

Published online by Cambridge University Press:  24 March 2017

Joris P. G. M. Cromsigt
Affiliation:
Swedish University of Agricultural Sciences
Sally Archibald
Affiliation:
University of the Witwatersrand, Johannesburg
Norman Owen-Smith
Affiliation:
University of the Witwatersrand, Johannesburg
Get access
Type
Chapter
Information
Conserving Africa's Mega-Diversity in the Anthropocene
The Hluhluwe-iMfolozi Park Story
, pp. 161 - 188
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

7.6 References

Archibald, S. & Bond, W. J. (2003) Growing tall vs growing wide: tree architecture and allometry of Acacia karroo in forest, savanna, and arid environments. Oikos 102: 314.CrossRefGoogle Scholar
Archibald, S., Bond, W. J., Stock, W. D., & Fairbanks, D. H. K. (2005) Shaping the landscape: fire–grazer interactions in an African savanna. Ecological Applications 15: 96109.CrossRefGoogle Scholar
Balfour, D. A. & Howison, O. E. (2002) Spatial and temporal variation in a mesic savanna fire regime: responses to variation in annual rainfall. African Journal of Range and Forage Science 19: 4553.CrossRefGoogle Scholar
Balfour, D. A. & Midgley, J.J. (2008) A demographic perspective on bush encroachment by Acacia karroo in Hluhluwe-Imfolozi Park, South Africa. African Journal of Range and Forage Science 25: 147151.CrossRefGoogle Scholar
Bergengren, J. C., Waliser, D. E., & Yung, Y. L. (2011) Ecological sensitivity: a biospheric view of climate change. Climatic Change 107: 433457.CrossRefGoogle Scholar
Bond, W.J. (2008) What limits trees in C4 grasslands and savannas? Annual Review of Ecology, Evolution, and Systematics 39: 641659.CrossRefGoogle Scholar
Bond, W.J. & Loffell, D. (2001) Introduction of giraffe changes acacia distribution in a South African savanna. African Journal of Ecology 39: 286294.CrossRefGoogle Scholar
Bond, W. J. & Midgley, G. F. (2012) CO2 and the uneasy interactions of trees and savanna grasses. Philosophical Transactions Royal Society B 367: 601612.CrossRefGoogle Scholar
Bond, W.J. & Van Wilgen, B. W. (1996) Fire and plants. Chapman and Hall, London.CrossRefGoogle Scholar
Bond, W.J., Smythe, K. A. & Balfour, D. A. (2001) Acacia species turnover in space and time in an African savanna. Journal of Biogeography 28: 117128.CrossRefGoogle Scholar
Bond, W.J., Midgley, G. F., & Woodward, F.I. (2003) The importance of low atmospheric CO2 and fire in promoting the spread of grasslands and savannas. Global Change Biology 9: 973982.CrossRefGoogle Scholar
Bond, W. J., Cook, G., & Williams, R. J. (2012) Which trees dominate in savannas? The escape hypothesis and eucalypts in northern Australia. Austral Ecology 37: 678685.CrossRefGoogle Scholar
Boundja, R. P. & Midgley, J.J. (2010) Patterns of elephant impact on woody plants in the Hluhluwe-Imfolozi Park, KwaZulu-Natal, South Africa. African Journal of Ecology 48: 206214.CrossRefGoogle Scholar
Buitenwerf, R., Bond, W. J., Stevens, N., & Trollope, W. S. W. (2012) Increased tree densities in South African savannas: >50 years of data suggests CO2 as a driver. Global Change Biology 18: 675684.CrossRefGoogle Scholar
Cramer, M. D. & Bond, W.J. (2013) N-fertilization does not alleviate grass competition induced reduction of growth of African savanna species. Plant and Soil 366: 563574.CrossRefGoogle Scholar
Cramer, M. D., Chimphango, S. B. M., Van Cauter, A., Waldram, M. S., & Bond, W.J. (2007) Grass competition induces N2 fixation in some species of African Acacia. Journal of Ecology 95: 11231133.CrossRefGoogle Scholar
Cramer, M. D., van Cauter, A., & Bond, W.J. (2010) Growth of N2-fixing African savanna Acacia spp. is constrained by below-ground competition with grass. Journal of Ecology 98: 156167.CrossRefGoogle Scholar
Cramer, M. D., Wakeling, J. L., & Bond, W.J. (2012) Belowground competitive suppression of seedling growth by grass in an African savanna. Plant Ecology 213: 16551666.CrossRefGoogle Scholar
Dublin, H. T., Sinclair, A. R., & McGlade, J. (1990) Elephants and fire as causes of multiple stable states in the Serengeti–Mara woodlands. Journal of Animal Ecology 59: 11471164.CrossRefGoogle Scholar
February, E. C., Higgins, S. I., Bond, W.J., & Swemmer, L. (2013) Influence of competition and rainfall manipulation on the growth responses of savanna trees and grasses. Ecology 94: 11551164.CrossRefGoogle ScholarPubMed
Gordijn, P.J., Rice, E., & Ward, D. (2012) The effects of fire on woody plant encroachment are exacerbated by succession of trees of decreased palatability. Perspectives in Plant Ecology, Evolution and Systematics 14: 411422.CrossRefGoogle Scholar
Higgins, S. I. & Scheiter, S. (2012) Atmospheric CO2 forces abrupt vegetation shifts locally, but not globally. Nature 488: 209212.CrossRefGoogle Scholar
Higgins, S. I., Bond, W. J., & Trollope, W. S. (2000) Fire, resprouting and variability: a recipe for grass–tree coexistence in savanna. Journal of Ecology 88: 213229.CrossRefGoogle Scholar
Higgins, S. I., Bond, W. J., Combrink, H., et al. (2012) Which traits determine shifts in the abundance of tree species in a fire-prone savanna? Journal of Ecology 100: 14001410.CrossRefGoogle Scholar
Hoffmann, W. A., Adasme, R., Haridasan, M., et al. (2009) Tree topkill, not mortality, governs the dynamics of savanna–forest boundaries under frequent fire in central Brazil. Ecology 90: 13261337.CrossRefGoogle Scholar
Hoffmann, W. A., Geiger, E. L., Gotsch, S. G., et al. (2012) Ecological thresholds at the savanna–forest boundary: how plant traits, resources and fire govern the distribution of tropical biomes. Ecology Letters 15: 759768.CrossRefGoogle ScholarPubMed
Holdo, R. M., Holt, R. D., & Fryxell, J. M. (2009) Grazers, browsers, and fire influence the extent and spatial pattern of tree cover in the Serengeti. Ecological Applications 19: 95109.CrossRefGoogle ScholarPubMed
Jurena, P. N. & Archer, S. (2003) Woody plant establishment and spatial heterogeneity in grasslands. Ecology 84: 907919.CrossRefGoogle Scholar
Kgope, B. S., Bond, W.J., & Midgley, G. F. (2010) Growth responses of African savanna trees implicate atmospheric [CO2] as a driver of past and current changes in savanna tree cover. Austral Ecology 35: 451463.CrossRefGoogle Scholar
Maze, K. E. (2001) Fire survival and life histories of Acacia and Dichrostachys species in a South African savanna. MSc thesis, University of Cape Town, Cape Town.Google Scholar
Midgley, J.J. & Bond, W.J. (2001) A synthesis of the demography of African acacias. Journal of Tropical Ecology 17: 871886.CrossRefGoogle Scholar
Midgley, J.J., McLean, P., Botha, M., & Balfour, D. (2001) Why do some African thorn trees (Acacia spp.) have a flat-top: a grazer–plant mutualism hypothesis? African Journal of Ecology 39: 226228.CrossRefGoogle Scholar
Midgley, J. J., Lawes, M. J., & Chamaillé-Jammes, S. (2010) Savanna woody plant dynamics: the role of fire and herbivory, separately and synergistically. Australian Journal of Botany 58: 111.CrossRefGoogle Scholar
Moncrieff, G. R., Kruger, L. M., & Midgley, J. J. (2008) Stem mortality of Acacia nigrescens induced by the synergistic effects of elephants and fire in Kruger National Park, South Africa. Journal of Tropical Ecology 24: 655662.CrossRefGoogle Scholar
Moncrieff, G. R., Chamaillé-Jammes, S., Higgins, S. I., O'Hara, R. B., & Bond, W.J. (2011) Tree allometries reflect a lifetime of herbivory in an African savanna. Ecology 92: 23102315.CrossRefGoogle Scholar
Moncrieff, G. R., Scheiter, S., Bond, W. J., & Higgins, S. I. (2014) Increasing atmospheric CO2 overrides the historical legacy of multiple stable biome states in Africa. New Phytologist 201: 908915.CrossRefGoogle ScholarPubMed
O'Connor, T. G. & Crow, V. R. T. (1999) Rate and pattern of bush encroachment in Eastern Cape savanna and grassland. African Journal of Range and Forage Science 16: 2631.CrossRefGoogle Scholar
O'Connor, T. G., Puttick, J. R., & Hoffman, M. T. (2014) Bush encroachment in southern Africa: changes and causes. African Journal of Range & Forage Science 31: 6788.CrossRefGoogle Scholar
O'Kane, C. A., Duffy, K. J., Page, B. R., & Macdonald, D. W. (2012) Heavy impact on seedlings by the impala suggests a central role in woodland dynamics. Journal of Tropical Ecology 28: 291297.CrossRefGoogle Scholar
Owen-Smith, N. (1987) Pleistocene extinctions: the pivotal role of megaherbivores. Paleobiology 13: 351362.CrossRefGoogle Scholar
Parr, C. L., Gray, E. F., & Bond, W.J. (2012) Cascading biodiversity and functional consequences of a global change-induced biome switch. Diversity and Distributions 18: 493503.CrossRefGoogle Scholar
Prins, H. H. T. & van der Jeugd, H. P. (1993) Herbivore population crashes and woodland structure in East Africa. Journal of Ecology 81: 305314.CrossRefGoogle Scholar
Russell, J. M. & Ward, D. (2014) Remote sensing provides a progressive record of vegetation change in northern KwaZulu-Natal, South Africa, from 1944 to 2005. International Journal of Remote Sensing 35: 904926.CrossRefGoogle Scholar
Sankaran, M., Augustine, D.J., & Ratnam, J. (2013) Native ungulates of diverse body sizes collectively regulate long-term woody plant demography and structure of a semi-arid savanna. Journal of Ecology 101: 13891399.CrossRefGoogle Scholar
Scheiter, S. & Higgins, S. I. (2009) Impacts of climate change on the vegetation of Africa: an adaptive dynamic vegetation modelling approach. Global Change Biology 15: 22242246.CrossRefGoogle Scholar
Scheiter, S., Higgins, S. I., Osborne, C. P., et al. (2012) Fire and fire-adapted vegetation promoted C4 expansion in the late Miocene. New Phytologist 195: 653666.CrossRefGoogle ScholarPubMed
Scholes, R. J. & Archer, S. R. (1997) Tree–grass interactions in savannas. Annual Review of Ecology and Systematics 28: 517544.CrossRefGoogle Scholar
Scholes, R.J. & Walker, B. H. (1993) An African savanna: synthesis of the Nylsvley study. Cambridge University Press, Cambridge.CrossRefGoogle Scholar
Schutz, A. E. N., Bond, W. J., & Cramer, M. D. (2009) Juggling carbon: allocation patterns of a dominant tree in a fire-prone savanna. Oecologia 160: 235246.CrossRefGoogle Scholar
Silva, L. C., Hoffmann, W. A., Rossatto, D. R., et al. (2013) Can savannas become forests? A coupled analysis of nutrient stocks and fire thresholds in central Brazil. Plant and Soil 373: 829842.CrossRefGoogle Scholar
Skarpe, C., Aarrestad, P. A., Andreassen, H. P., et al. (2004) The return of the giants: ecological effects of an increasing elephant population. Ambio 33: 276282.CrossRefGoogle ScholarPubMed
Skowno, A. L., Midgley, J. J., Bond, W. J., & Balfour, D. (1999) Secondary succession in Acacia nilotica (L.) savanna in the Hluhluwe Game Reserve, South Africa. Plant Ecology 145: 19.CrossRefGoogle Scholar
Staver, A. C. & Bond, W. J. (2014) Is there a ‘browse trap’? Dynamics of herbivore impacts on trees and grasses in an African savanna. Journal of Ecology 102: 595602.CrossRefGoogle Scholar
Staver, A. C. & Levin, S. A. (2012) Integrating theoretical climate and fire effects on savanna and forest systems. American Naturalist 180: 211224.CrossRefGoogle ScholarPubMed
Staver, A. C., Bond, W.J., Stock, W. D., van Rensburg, S.J., & Waldram, M. S. (2009) Browsing and fire interact to suppress tree density in an African savanna. Ecological Applications 19: 19091919.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., & February, E. C. (2011) History matters: tree establishment variability and species turnover in an African savanna. Ecosphere 2: art49.CrossRefGoogle Scholar
Staver, A. C., Bond, W.J., Cramer, M. D., & Wakeling, J. L. (2012) Top-down determinants of niche structure and adaptation among African Acacias. Ecology Letters 15: 673679.CrossRefGoogle ScholarPubMed
Stevens, N. (2014) Exploring the potential impacts of global change on the woody component of South African savannas. PhD thesis, University of Cape Town, Cape Town.Google Scholar
Svenning, J. C. (2002) A review of natural vegetation openness in north-western Europe. Biological Conservation 104: 133148.CrossRefGoogle Scholar
Tedder, M., Kirkman, K., Morris, C. & Fynn, R. (2014) Tree–grass competition along a catenal gradient in a mesic grassland, South Africa. Grassland Science 60: 18.CrossRefGoogle Scholar
Trollope, W. S. W. (1984) Fire in savanna. In: Ecological effects of fire in South African ecosystems (eds de V. Booysen, P. & Tainton, N. M.), pp. 149176. Springer-Verlag, Berlin.CrossRefGoogle Scholar
Trollope, W. S. W. (1993) Fire regime of the Kruger National Park for the period 1980–1992. Koedoe 36: 4552.CrossRefGoogle Scholar
Trollope, W. S. W., Potgieter, A. L. F., & Zambatis, N. (1995) Effect of fire intensity on the mortality and topkill of bush in the Kruger National Park in South Africa. Bulletin of the Grassland Society of Southern Africa 6: 66.Google Scholar
Viljoen, A.J. (1995) The influence of the 1991/92 drought on the woody vegetation of the Kruger National Park. Koedoe 38: 8597.CrossRefGoogle Scholar
Wakeling, J. L. & Bond, W.J. (2007) Disturbance and the frequency of root suckering in an invasive savanna shrub, Dichrostachys cinerea. African Journal of Range & Forage Science 24: 7376.CrossRefGoogle Scholar
Wakeling, J. L., Cramer, M. D., & Bond, W.J. (2010) Is the lack of leguminous savanna trees in grasslands of South Africa related to nutritional constraints? Plant and Soil 336: 173182.CrossRefGoogle Scholar
Wakeling, J. L., Staver, A. C., & Bond, W.J. (2011) Simply the best: the transition of savanna saplings to trees. Oikos 120: 14481451.CrossRefGoogle Scholar
Wakeling, J. L., Cramer, M. D., & Bond, W.J. (2012) The savanna–grassland ‘treeline’: why don't savanna trees occur in upland grasslands? Journal of Ecology 100: 381391.CrossRefGoogle Scholar
Wakeling, J. L., Bond, W.J., Ghaui, M., & February, E. C. (2015) Grass competition and the savanna–grassland ‘treeline’: a question of root gaps? South African Journal of Botany 101: 9197.CrossRefGoogle Scholar
Waldram, M. S., Bond, W.J., &, Stock, W. D. (2008) Ecological engineering by a mega-grazer: white rhino impacts on a South African savanna. Ecosystems 11: 101112.CrossRefGoogle Scholar
Walter, H. (1971) Ecology of tropical and subtropical vegetation. Oliver and Boyd, Edinburgh.Google Scholar
Watson, H. K. & Macdonald, I. A. W. (1983) Vegetation changes in the Hluhluwe-Umfolozi Game Reserve Complex from 1937 to 1975. Bothalia 14: 265269.CrossRefGoogle Scholar
Weigl, P. D. & Knowles, T. W. (2014) Temperate mountain grasslands: a climate–herbivore hypothesis for origins and persistence. Biological Reviews 89: 466476.CrossRefGoogle ScholarPubMed
Werner, P. A. & Prior, L. D. (2013) Demography and growth of subadult savanna trees: interactions of life history, size, fire season, and grassy understory. Ecological Monographs 83: 6793.CrossRefGoogle Scholar
Whateley, A. & Porter, R. N. (1983) The woody vegetation communities of the Hluhluwe–Corridor–Umfolozi Game Reserve Complex. Bothalia 14: 745758.CrossRefGoogle Scholar
White, A. M. & Goodman, P. S. (2010) Differences in woody vegetation are unrelated to use by African elephants (Loxodonta africana) in Mkhuze Game Reserve, South Africa. African Journal of Ecology 48: 215223.CrossRefGoogle Scholar
Wigley, B. J., Cramer, M. D., & Bond, W. J. (2009) Sapling survival in a frequently burnt savanna: mobilisation of carbon reserves in Acacia karroo. Plant Ecology 2003: 111.CrossRefGoogle Scholar
Wigley, B. J., Bond, W. J., & Hoffman, M. T. (2010) Thicket expansion in a South African savanna under divergent land use: local vs. global drivers? Global Change Biology 16: 964976.CrossRefGoogle Scholar
Wilson, S. L. & Kerley, G. I. (2003) Bite diameter selection by thicket browsers: the effect of body size and plant morphology on forage intake and quality. Forest Ecology and Management 181: 5165.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×