Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-zzh7m Total loading time: 0 Render date: 2024-04-25T09:43:42.301Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  26 October 2017

Tandy Warnow
Affiliation:
University of Illinois, Urbana-Champaign
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Computational Phylogenetics
An Introduction to Designing Methods for Phylogeny Estimation
, pp. 339 - 375
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Afrasiabi, C., Samad, B., Dineen, D., Meacham, C., and Sjölander, K. 2013. The Phylo-Facts FAT-CAT web server: ortholog identification and function prediction using fast approximate tree classification. Nucleic Acids Research, 41(W1), W242-W248.Google Scholar
Agarwala, R., and Fernández-Baca, D. 1994. A polynomial-time algorithm for the perfect phylogeny problem when the number of character states is fixed. SIAM Journal on Computing, 23, 1216-1224.Google Scholar
Agarwala, R., and Fernández-Baca, D. 1996. Simple algorithms for perfect phylogeny and triangulating colored graphs. International Journal of Foundations of Computer Science, 7, 11-21.Google Scholar
Agarwala, R., Bafna, V., Farach, M., Paterson, M., and Thorup, M. 1998. On the approximability of numerical taxonomy (fitting distances by tree metrics). SIAM Journal on Computing, 28(3), 1073-1085.Google Scholar
Aho, A., Sagiv, Y., Szymanski, T., and Ullman, J. 1978. Inferring a tree from lowest common ancestors with an application to the optimization of relational expressions. Pages 54-63 of: Proceedings of the 16th Annual Allerton Conference on Communication, Control, and Computing.
Ailon, N., and Charikar, M. 2005. Fitting tree metrics: hierarchical clustering and phylogeny. Pages 73-82 of: 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS–05). doi:10.1109/SFCS.2005.36.CrossRef
Akaike, H. 1974. A new look at the statistical model identification. IEEE Transactions on Automatic Control, 19, 716-723.Google Scholar
Aldous, D.J. 1991. The continuum random tree II: an overview. Pages 23-70 of: Barlow, M.T., and Bingham, N.H. (eds.), Stochastic Analysis. Cambridge: Cambridge University Press.
Aldous, D.J. 2001. Stochastic models and descriptive statistics for phylogenetic trees, from Yule to today. Statistical Science, 16, 23-34.Google Scholar
Alfaro, M.E., and Holder, M.T. 2006. The posterior and the prior in Bayesian phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 19-42.Google Scholar
Allison, L., Wallace, C.S., and Yee, C.N. 1992a. Finite-state models in the alignment of macromolecules. Journal of Molecular Evolution, 35, 77-89.Google Scholar
Allison, L., Wallace, C.S., and Yee, C.N. 1992b. Minimum message length encoding, evolutionary trees and multiple alignment. Pages 663-674 of: Hawaii International Conference Systems Science, vol. 1.
Allman, E.S., Ané, C., and Rhodes, J. 2008. Identifiability of a Markovian model of molecular evolution with Gamma-distributed rates. Advances in Applied Probability, 40(1), 229-249.Google Scholar
Allman, E.S., Degnan, J.H., and Rhodes, J.A. 2011. Identifying the rooted species tree from the distribution of unrooted gene trees under the coalescent. Journal of Mathematical Biology, 62(6), 833-862.Google Scholar
Allman, E., Degnan, J.H., and Rhodes, J. 2016. Species tree inference from gene splits by unrooted STAR methods. IEEE/ACM Transactions on Computional Biology and Bioinformatics. doi: 10.1109/TCBB.2016.2604812.CrossRef
Altenhoff, A.M., Boeckmann, B., Capella-Gutierrez, S., Dalquen, D.A., et al. 2016. Standardized benchmarking in the quest for orthologs. Nature Methods, 13, 425-430.Google Scholar
Altschul, S.F. 1998. Generalized affine gap costs for protein sequence alignment. Proteins: Structure, Function and Genomics, 32, 88-96.Google Scholar
Altschul, S.F., Gish, W., Miller, W., Myers, E.W., and Lipman, D.J. 1990. Basic local alignment search tool. Journal of Molecular Biology, 215(3), 403-410.Google Scholar
Altschul, S.F., Madden, T.L., Schäffer, A.A., Zhang, J., Zhang, Z., Miller, W., and Lipman, D.J. 1997. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Research, 25, 3389-3402.Google Scholar
Amenta, N., and Klingner, J. 2002. Case study: Visualizing sets of evolutionary trees. Pages 71-74 of: Proceedings of Information Visualization (INFOVIS) 2002.
Amenta, N., Clarke, F., and St. John, K. 2003. A linear-time majority tree algorithm. Pages 216-227 of: Benson, G., and Page, R. (eds.), Proceedings of the Workshop on Algorithms in Bioinformatics (WABI) 2003. Berlin Heidelberg: Springer.
Amir, A., and Keselman, D. 1994. Maximum agreement subtree in a set of evolutionary trees: metrics and efficient algorithms. In: Proceedings of the 35th IEEE Symposium on the Foundations of Computer Science (FOCS).
Ané, C. 2016. PhyloNetworks: analysis for phylogenetic networks in Julia. Software available online at https://github.com/crsl4/PhyloNetworks.jl.
Angiuoli, S.V., and Salzberg, S.L. 2011. Mugsy: fast multiple alignment of closely related whole genomes. Bioinformatics, 27(3): 334-342.CrossRefGoogle Scholar
Anisimova, M., and Kosiol, C. 2009. Investigating protein-coding sequence evolution with probabilistic codon substitution models. Molecular Biology and Evolution, 26(2), 255-271.Google Scholar
Atteson, K. 1999. The performance of neighbor-joining methods of phylogenetic reconstruction. Algorithmica, 25, 251-278.Google Scholar
Avni, E., Cohen, R., and Snir, S. 2015. Weighted quartets phylogenetics. Systematic Biology, 64(2), 233-242.Google Scholar
Ayling, S.C., and Brown, T.A. 2008. Novel methodology for construction and pruning of quasi-median networks. BMC Bioinformatics, 9, 115.Google Scholar
Bader, D.A., Moret, B.M.E., and Yan, M. 2001. A linear-time algorithm for computing inversion distances between signed permutations with an experimental study. Journal of Computational Biology, 8(5), 483-491.Google Scholar
Bafna, V., and Pevzner, P.A. 1996. Genome rearrangements and sorting by reversals. SIAM Journal on Computing, 25(2), 272-289.Google Scholar
Bafna, V., and Pevzner, P.A. 1998. Sorting by transpositions. SIAM Journal on Discrete Mathematics, 11(2), 224-240.Google Scholar
Bandelt, H.J. 1994. Phylogenetic networks. Verhandl Naturwiss Vereins Hamburg, 34, 51-71.Google Scholar
Bandelt, H.J., and Dress, A.W.M., 1992. Split decomposition: a new and useful approach to phylogenetic analysis of distance data. Molecular Phylogenetics and Evolution, 1, 242-252.Google Scholar
Bandelt, H.J., and Dress, A.W.M., 1993. A relational approach to split decomposition. Pages 123-131 of: Optiz, O., Lausen, B., and Klar, R. (eds.), Information and Classification. Berlin: Springer.
Bandelt, H.J., Macauley, V., and Richards, M. 2000. Median networks: speedy construction and greedy reduction, one simulation, and two case studies from human mtDNA. Molecular Phylogenetics and Evolution, 16, 8-28.Google Scholar
Bansal, M.S., and Eulenstein, O. 2013. Algorithms for genome-scale phylogenetics using gene tree parsimony. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(4), 939-956.Google Scholar
Bansal, M., Burleigh, J.G., Eulenstein, O., and Fernández-Baca, D. 2010. Robinson-Foulds Supertrees. Algorithms for Molecular Biology, 5, 18.Google Scholar
Barthélemy, J.P., and McMorris, F.R. 1986. The median procedure for n-trees. Journal of Classification, 3, 329-334.Google Scholar
Bastkowski, S., Moulton, V., Spillner, A., and Wu, T. 2016. The minimum evolution problem is hard: a link between tree inference and graph clustering problems. Bioinformatics, 32(4), 518-522.Google Scholar
Bateman, A., Birney, E., Cerruti, L., Durbin, R., Etwiller, L., Eddy, S.R., Griffiths-Jones, S., Howe, K.L., Marshall, M., and Sonnhammer, E.L.L., 2002. The Pfam protein families database. Nucleic Acids Research, 30, 276-280.Google Scholar
Baum, B.R., and Ragan, M.A. 2004. The MRP method. Pages 17-34 of: Bininda-Emonds, Olaf, R.P. (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Dordrecht: Kluwer Academic.
Baum, L.E. 1972. An equality and associated maximization technique in statistical estimation for probabilistic functions of Markov processes. Inequalities, 3, 1-8.Google Scholar
Bayzid, Md. S., and Warnow, T. 2013. Naive binning improves phylogenomic analyses. Bioinformatics, 29(18), 2277-2284.Google Scholar
Bayzid, Md. S., Hunt, T., and Warnow, T. 2014. Disk covering methods improve phylogenomic analyses. BMC Genomics, 15(Suppl 6), S7.Google Scholar
Bayzid, Md. S., Mirarab, S., and Warnow, T. 2013. Inferring optimal species trees under gene duplication and loss. Pages 250-261 of: Pacific Symposium on Biocomputing, vol. 18.
Bayzid, Md. S., Mirarab, S., Boussau, B., and Warnow, T. 2015. Weighted statistical binning: enabling statistically consistent genome-scale phylogenetic analyses. PLoS One, 10(6), 30129183.Google Scholar
Berge, C. 1967. Some classes of perfect graphs. Pages 155-166 of: Harary, F. (ed.), Graph Theory and Theoretical Physics. New York: Academic Press.
Berger, M.P., and Munson, P.J. 1991. A novel randomized iterative strategy for aligning multiple protein sequences. Computer Applications in the Biosciences: CABIOS, 7(4), 479-484.Google Scholar
Berger, S.A., and Stamatakis, A. 2011. Aligning short reads to reference alignments and trees. Bioinformatics, 27(15), 2068-2075.Google Scholar
Berger, S.A., Krompass, D., and Stamatakis, A. 2011. Performance, accuracy, and web server for evolutionary placement of short sequence reads under maximum likelihood. Systematic Biology, 60(3), 291-302.Google Scholar
Bernardes, J., Zaverucha, G., Vaquero, C., and Carbone, A. 2016. Improvement in protein domain identification is reached by breaking consensus, with the agreement of many profiles and domain co-occurrence. PLoS Computational Biology, 12(7), e1005038.Google Scholar
Berry, A., and Pogorelcnik, R. 2011. A simple algorithm to generate the minimal separators and the maximal cliques of a chordal graph. Information Processing Letters, 111(11), 508-511.Google Scholar
Berry, A., Pogorelcnik, R., and Simonet, G. 2010. An introduction to clique minimal separator decomposition. Algorithms, 3(2), 197-215.Google Scholar
Berry, V., and Bryant, D. 1999. Faster reliable phylogenetic analysis. Page 59-68 of: Proceedings 3rd Annual International Conference on Computational Molecular Biology (RECOMB).
Berry, V., and Gascuel, O. 1997. Inferring evolutionary trees with strong combinatorial evidence. Pages 111-123 of: Proceedings 3rd Annual International Conference on Computing and Combinatorics (COCOON97). Berlin: Springer.
Berry, V., Jiang, T., Kearney, P., Li, M., and Wareham, T. 1999. Quartet cleaning: improved algorithms and simulations. Pages 313-324 of: Proceedings European Symposium on Algorithms (ESA99). Berlin: Springer.
Berry, V., Bryant, D., Kearney, P., Li, M., Jiang, T., Wareham, T., and Zhang, H. 2000. A practical algorithm for recovering the best supported edges in an evolutionary tree. Pages 287-296 of Proceedings ACM/SIAM Symposium on Discrete Algorithms (SODA).
Berthouly, C., Leroy, G., Van, T.N., et al. 2009. Genetic analysis of local Vietnamese chickens provides evidence of gene flow from wild to domestic populations. BMC Genetics, 10(1), 1.Google Scholar
Billera, L.J., Holmes, S.P., and Vogtmann, K. 2001. Geometry of the space of phylogenetic trees. Advances in Applied Mathematics, 27, 733-767.Google Scholar
Binet, M., Gascuel, O., Scornavacca, C., Douzery, E.J.P., and Pardi, F. 2016. Fast and accurate branch lengths estimation for phylogenomic trees. BMC Bioinformatics, 17(1), 23.Google Scholar
Bishop, M.J., and Thompson, E.A. 1986. Maximum likelihood alignment of DNA sequences. Journal of Molecular Biology, 190, 156-165.Google Scholar
Blackburne, B.P., and Whelan, S. 2013. Class of multiple sequence alignment algorithm affect genomic analysis. Molecular Biology and Evolution, 30(3), 642-653.Google Scholar
Blair, J.R.S., and Peyton, B.W. 1993. An introduction to chordal graphs and clique trees. Pages 1-29 of: George, A., et al. (eds.), Graph Theory and Sparse Matrix Computation. New York: Springer.
Blanchette, M., Bourque, G., and Sankoff, D. 1997. Breakpoint phylogenies. Genome Informatics, 8, 25-34.Google Scholar
Blanchette, M., Kunisawa, T., and Sankoff, D. 1999. Gene order breakpoint evidence in animal mitochondrial phylogeny. Journal of Molecular Evolution, 49(2), 193-203.Google Scholar
Blanchette, M., Kent, W.J., Riemer, C., Elnitski, L., Smit, A.F.A., Roskin, K.M., Baertsch, R., Rosenbloom, K., Clawson, H., Green, E.D., Haussler, D., and Miller, W. 2004. Aligning multiple genomic sequences with the threaded blockset aligner. Genome Research, 14, 708-715.Google Scholar
Bloomquist, E.W., and Suchard, M.A. 2010. Unifying vertical and nonvertical evolution: a stochastic ARG-based framework. Systematic Biology, 59(1), 27-41.Google Scholar
Blum, M.G.B., and Francois, O. 2006. Which random processes describe the Tree of Life? A large-scale study of phylogenetic tree imbalance. Systematic Biology, 55, 685-691.Google Scholar
Bodlaender, H., Fellows, M., and Warnow, T. 1992. Two strikes against perfect phylogeny. Pages 273-283 of: Proceedings 19th International Colloquium on Automata, Languages, and Programming (ICALP). Berlin: Springer.
Bogusz, M., and Whelan, S. 2017. Phylogenetic tree estimation with and without alignment: new distance methods and benchmarking. Systematic Biology, 66(2), 218-231.Google Scholar
Bordewich, M., and Mihaescu, R. 2010. Accuracy guarantees for phylogeny reconstruction algorithms based on balanced minimum evolution. Pages 250-261 of: Moulton, V., and Singh, M. (eds.), Proceedings of the 2010 Workshop on Algorithms for Bioinformatics. Berlin Heidelberg: Springer.
Bordewich, M., and Semple, C. 2016. Determining phylogenetic networks from inter-taxa distances. Journal of Mathematical Biology, 73(2), 283-303. doi:10.1007/s00285-015-0950-8.CrossRefGoogle Scholar
Bordewich, M., and Tokac, N. 2016. An algorithm for reconstructing ultrametric tree-child networks from inter-taxa distances. Discrete Applied Mathematics, 213, 47-59.Google Scholar
Bordewich, M., Gascuel, O., Huber, K.T., and Moulton, V. 2009. Consistency of topological moves based on the balanced minimum evolution principle of phylogenetic inference. IEEE/ACM Transactions on Computational Biology and Bioinformatics (TCBB), 6, 110-117.Google Scholar
Bouchard-Côté, A., and Jordan, M.I. 2013. Evolutionary inference via the Poisson Indel Process. Proceedings of the National Academy of Sciences (USA), 110(4), 1160-1166.Google Scholar
Boussau, B., and Gouy, M. 2006. Efficient likelihood computations with non-reversible models of evolution. Systematic Biology, 5(55), 756-768.Google Scholar
Boussau, B., Szöllʺosi, G.J., Duret, L., Gouy, M., Tannier, E., and Daubin, V. 2013. Genomescale co-estimation of species and gene trees. Genome Research, 23, 323-330.Google Scholar
Bradley, R.K., Roberts, A., Smoot, M., Juvekar, S., Do, J., Dewey, C., Holmes, I., and Pachter, L. 2009. Fast statistical alignment. PLoS Computational Biology, 5(5), e1000392.Google Scholar
Brandstetter, M.G., Danforth, B.N., Pitts, J.P., Faircloth, B.C., Ward, P.S., Buffington, M.L., Gates, M.W., Kula, R.R., and Brady, S.G. 2016. Phylogenomic insights into the evolution of stinging wasps and the origins of ants and bees. Current Biology, 27(7), 1019-1025.Google Scholar
Bray, N., and Pachter, L. 2004. MAVID: constrained ancestral alignment of multiple sequences. Genome Research, 14, 693-699.Google Scholar
Brinkmeyer, M., Griebel, T., and Böcker, S. 2011. Polynomial supertree methods revisited. Advances in Bioinformatics, 2011. Article ID 524182.Google Scholar
Brown, D.G., and Truszkowski, J. 2012. Fast phylogenetic tree reconstruction using locality-sensitive hashing. Pages 14-29 of: International Workshop on Algorithms in Bioinformatics. Berlin Heidelberg: Springer.
Brown, D.P., Krishnamurthy, N., and Sjölander, K. 2007. Automated protein subfamily identification and classification. PLoS Computational Biology, 3(8), 31-60.Google Scholar
Brown, M., Hughey, R., Krogh, A., Mian, I.S., Sjölander, K., and Haussler, D. 1993. Using Dirichlet mixture priors to derive hidden Markov models for protein families. Pages 47-55 of: Proceedings of the First International Conference on Intelligent Systems for Molecular Biology (ISMB).
Brudno, M., Chapman, M., Gottgens, B., Batzoglou, S., and Morgenstern, B. 2003a. Fast and sensitive multiple alignment of long genomic sequences. BMC Bioinformatics, 4:66.Google Scholar
Brudno, M., Do, C., Cooper, G., Kim, M., Davydov, E., NISC Comparative Sequencing Program, Green, E.D., Sidow, A., and Batzoglou, S. 2003b. LAGAN and Multi-LAGAN: efficient tools for large-scale multiple alignment of genomic DNA. Genome Research, 13, 721-731.Google Scholar
Bruno, W.J., Socci, N.D., and Hapern, A.L. 2000. Weighted neighbor joining: a likelihoodbased approach to distance-based phylogeny reconstruction. Molecular Biology and Evolution, 17(1), 189-197.Google Scholar
Bryant, D. 1997. Hunting for trees, building trees and comparing trees: theory and method in phylogenetic analysis. Ph.D. thesis, University of Canterbury, Christchurch, New Zealand.
Bryant, D. 2003. A classification of consensus methods for phylogenetics. Pages 163-184 of: Janowitz, M.F., Lapointe, F.J., McMorris, F.R., Mirkin, B., and Roberts, F.S. (eds.), Bioconsensus. Providence, RI: American Mathematical Society.
Bryant, D. 2005. On the uniqueness of the selection criterion of neighbor-joining. Journal of Classification, 22, 3-15.Google Scholar
Bryant, D., and Moulton, V. 1999. A polynomial time algorithm for constructing the refined Buneman tree. Applied Mathematics Letters, 12, 51-56.Google Scholar
Bryant, D., and Moulton, V. 2002. NeighborNet: an agglomerative method for the construction of planar phylogenetic networks. Pages 375-391 of: Proceeding of Workshop on Algorithms for Bioinformatics. Berlin/Heidelberg: Springer.
Bryant, D., and Steel, M.A. 2001. Constructing optimal trees from quartets. Journal of Algorithms, 38, 237-259.Google Scholar
Bryant, D., and Steel, M.A. 2009. Computing the distribution of a tree metric. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(3), 420-426.Google Scholar
Bryant, D., and Waddell, P. 1998. Rapid evaluation of least-squares and minimum-evolution criteria on phylogenetic trees. Molecular Biology and Evolution, 15, 1346-1359.Google Scholar
Bryant, D., Bouckaert, R., Felsenstein, J., Rosenberg, N.A., and RoyChoudhury, A. 2012. Inferring species trees directly from biallelic genetic markers: bypassing gene trees in a full coalescent analysis. Molecular Biology and Evolution, 29(8), 1917-1932.Google Scholar
Bulteau, L., Fertin, G., and Rusu, I. 2011. Sorting by transpositions is difficult. In: Proceedings of the 38th International Colloquium on Automata, Languages, and Programming (ICALP 2011). Berlin: Springer.
Buneman, P. 1971. The recovery of trees from measures of dissimilarity. Pages 387-395 of: Hodson, F., Kendall, D., and Tautu, P. (eds.), Mathematics in the Archaeological and Historical Sciences. Edinburgh: Edinburgh University Press.
Buneman, P. 1974a. A characterization of rigid circuit graphs. Discrete Mathematics, 9(3), 205-212.Google Scholar
Buneman, P. 1974b. A note on the metric properties of trees. Journal of Combinatorial Theory (B), 17, 48-50.Google Scholar
Burleigh, J.G., Eulenstein, O., Fernández-Baca, D., and Sanderson, M.J. 2004. MRF supertrees. Pages 65-86 of: Bininda-Emonds, O.R.P., (ed.), Phylogenetic Supertrees: Combining Information to Reveal the Tree of Life. Dordrecht: Kluwer Academic.
Burleigh, J.G., Bansal, M.S., Eulenstein, O., Hartmann, S., Wehe, A., and Vision, T.J. 2011. Genome-scale phylogenetics: inferring the plant tree of life from 18,896 gene trees. Systematic Biology, 60(2), 117-125.Google Scholar
Cannone, J.J., Subramanian, S., Schnare, M.N., Collett, J.R., D'Souza, L.M., Du, Y., Feng, B., Lin, N., Madabusi, L.V., Muller, K.M., Pande, N., Shang, Z., Yu, N., and Gutell, R.R. 2002. The Comparative RNA Web (CRW) site: an online database of comparative sequence and structure information for ribosomal, intron and other RNAs. BMC Bioinformatics, 3(15).Google Scholar
Capella-Gutiérrez, S., and Galbadón, T. 2013. Measuring guide-tree dependency of inferred gaps for progressive aligners. Bioinformatics, 29(8), 1011-1017.Google Scholar
Cardona, G., Llabrés, M., Rosselló, F., and Valiente, G. 2009. On Nakhleh's metric for reduced phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 6(4), 629-638.Google Scholar
Cartwright, Reed A. 2006. Logarithmic gap costs decrease alignment accuracy. BMC Bioinformatics, 7(527).Google Scholar
Cavender, J.A. 1978. Taxonomy with confidence. Mathematical Biosciences, 40, 271-280.Google Scholar
Chan, C.X., and Ragan, M.A. 2013. Next-generation phylogenomics. Biology Direct, 8(3).Google Scholar
Chan, C.X., Bernard, G., Poirion, O., Hogan, J.M., and Ragan, M.A. 2014. Inferring phylogenies of evolving sequences without multiple sequence alignment. Scientific Reports, 4: article number 6504.Google Scholar
Chang, J.T. 1996. Full reconstruction of Markov models on evolutionary trees: identifiability and consistency. Mathematical Biosciences, 137, 51-73.Google Scholar
Chang, M., and Benner, S. 2004. Empirical analysis of protein insertions and deletions: determining parameters for the correct placement of gaps in protein sequence alignments. Journal of Molecular Biology, 341, 671-631.Google Scholar
Chaudhary, R. 2015. MulRF: a software package for phylogenetic analysis using multicopy gene trees. Bioinformatics, 31, 432-433.Google Scholar
Chaudhary, R., Bansal, M.S., Wehe, A., Fernández-Baca, D., and Eulenstein, O. 2010. iGTP: a software package for large-scale gene tree parsimony analysis. BMC Bioinformatics, 11, 574.Google Scholar
Chaudhary, R., Burleigh, J.G., and Fernández-Baca, D. 2012. Fast local search for unrooted Robinson-Foulds supertrees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9, 1004-1013.Google Scholar
Chen, D., Diao, L., Eulenstein, O., Fernández-Baca, D., and Sanderson, M.J. 2003. Flipping: a supertree construction method. Pages 135-160 of: Bioconsensus. Providence, RI: American Mathematical Society.
Chen, D., Eulenstein, O., Fernández-Baca, D., and Burleigh, J.G. 2006. Improved heuristics for minimum-flip supertree construction. Evolutionary Bioinformatics, 2, 401-410.Google Scholar
Chen, M.H., Kuo, L., and Lewis, P.O. (eds.). 2014. Bayesian Phylogenetics: Methods, Algorithms, and Applications. Boca Raton, FL CRC Press.
Chifman, J., and Kubatko, L. 2014. Quartet inference from SNP data under the coalescent. Bioinformatics, 30(23), 3317-3324.Google Scholar
Chifman, J., and Kubatko, L. 2015. Identifiability of the unrooted species tree topology under the coalescent model with time-reversible substitution processes, site-specific rate variation, and invariable sites. Journal of Theoretical Biology, 374, 35-47.Google Scholar
Chou, J., Gupta, A., Yaduvanshi, S., Davidson, R., Nute, M., Mirarab, S., and Warnow, T. 2015. A comparative study of SVDquartets and other coalescent-based species tree estimation methods. BMC Genomics, 16(Suppl 10), S2.Google Scholar
Collingridge, P., and Kelly, S. 2012. MergeAlign: improving multiple sequence alignment performance by dynamic reconstruction of consensus multiple sequence alignments. BMC Bioinformatics, 13: 117.Google Scholar
Cotton, J.A., and Wilkinson, M. 2007. Majority rule supertrees. Systematic Biology, 56(3), 445-452.Google Scholar
Cotton, J.A., and Wilkinson, M. 2009. Supertrees join the mainstream of phylogenetics. Trends in Ecology & Evolution, 24, 1-3.Google Scholar
Criscuolo, A., and Gascuel, O. 2008. Fast NJ-like algorithms to deal with incomplete distance matrices. BMC Bioinformatics, 9(166).Google Scholar
Criscuolo, A., Berry, V., Douzery, E., and Gascuel, O. 2006. SDM: a fast distancebased approach for (super) tree building in phylogenomics. Systematic Biology, 55, 740-755.Google Scholar
Cummings, M.P., Otto, S.P., and Wakeley, J. 1995. Sampling properties of DNA sequence data in phylogenetic analysis. Molecular Biology and Evolution, 12, 814-822.Google Scholar
Darling, A.C.E., Mau, B., Blatter, F.R., and Perna, N.T. 2004. Mauve: multiple alignment of conserved genomic sequence with rearrangements. Genome Research, 14, 1394-1403.Google Scholar
Darling, A.C.E., Mau, B, and Perna, N.T. 2010. progressiveMauve: multiple genome alignment with gene gain, loss and rearrangement. PLoS One, 5(6), e11147.Google Scholar
Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. 2011. ProtTest 3: fast selection of best-fit models of protein evolution. Bioinformatics, 27(8), 1164-1165.Google Scholar
Darriba, D., Taboada, G.L., Doallo, R., and Posada, D. 2012. jModelTest 2: more models, new heuristics and parallel computing. Nature Methods, 9(8), 772.Google Scholar
Dasarathy, G., Nowak, R., and Roch, S. 2015. Data requirement for phylogenetic inference from multiple loci: a new distance method. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 12(2), 422-432.Google Scholar
Daskalakis, C., and Roch, S. 2010. Alignment-free phylogenetic reconstruction: sample complexity via a branching process analysis. The Annals of Applied Probability, 23(2), 693-721.Google Scholar
Daskalakis, C., and Roch, S. 2016. Species trees from gene trees despite a high rate of lateral genetic transfer: a tight bound. Pages 1621-1630: Proceedings of the 27th Annual ACM-SIAM Symposium on Discrete Algorithms (SODA).
Daskalakis, C., Mossel, E., and Roch, S. 2006. Optimal phylogenetic reconstruction. Pages 159-168 of: STOC06: Proceedings of the 38th Annual ACM Symposium on Theory of Computing.
Davidson, R., Vachaspati, P., Mirarab, S., and Warnow, T. 2015. Phylogenomic species tree estimation in the presence of incomplete lineage sorting and horizontal gene transfer. BMC Genomics, 16(Suppl 10), S1.Google Scholar
Day, W.H.E., 1987. Computational complexity of inferring phylogenies from dissimilarity matrices. Bulletin of Mathematical Biology, 49, 461-467.Google Scholar
Day, W.H.E., and Sankoff, D. 1986. Computational complexity of inferring phylogenies by compatibility. Systematic Biology, 35(2), 224-229.Google Scholar
Dayhoff, M.O., Schwartz, R.M., and Orcutt, B.C. 1978. A model of evolutionary change in proteins. Pages 345-352 of: Atlas of Protein Sequence and Structure, vol. 5. Washington, DC: National Biomedical Research Foundation.
De Maio, N., Holmes, I., Schlötterer, C., and Kosiol, C. 2013. Estimating empirical codon hidden Markov models. Molecular Biology and Evolution, 30(3), 725-736.Google Scholar
De Maio, N., Schrempf, D., and Kosiol, C. 2015. PoMo: an allele frequency-based approach for species tree estimation. Systematic Biology, 64(6), 1018-1031.Google Scholar
De Oliveira Martins, L., Mallo, D., and Posada, D. 2016. A Bayesian supertree model for genome-wide species tree reconstruction. Systematic Biology, 65(3), 397-416.Google Scholar
DeBlasio, D., and Kececioglu, J. 2015. Learning parameter-advising sets for multiple sequence alignment. IEEE/ACM Transactions on Computational Biology and Bioinformatics, PP(99), 1.Google Scholar
DeGiorgio, M.I., and Degnan, J.H. 2010. Fast and consistent estimation of species trees using supermatrix rooted triples. Molecular Biology and Evolution, 27(3), 552-569.Google Scholar
DeGiorgio, M., and 2014. Robustness to divergence time underestimation when inferring species trees from estimated gene trees. Systematic Biology, 63(1), 66-82.Google Scholar
Degnan, J.H. 2013. Anomalous unrooted gene trees. Systematic Biology, 62(4), 574-590.Google Scholar
Degnan, J.H., and Rosenberg, N.A. 2006. Discordance of species trees with their most likely gene trees. PLoS Genetics, 2, 762-768.Google Scholar
Degnan, J.H., DeGiorgio, M., Bryant, D., and Rosenberg, N.A. 2009. Properties of consensus methods for inferring species trees from gene trees. Systematic Biology, 58, 35-54.Google Scholar
Della Vedova, G., Jiang, T., Li, J., and Wen, J. 2002. Approximating minimum quartet inconsistency. Pages 894-895 of: Proceedings ACM/SIAM Symposium on Discrete Algorithms (SODA) 2002.
Deng, X., and Cheng, J. 2011. MSACompro: protein multiple sequence alignment using predicted secondary structure, solvent accessibility, and residue-residue contacts. BMC Bioinformatics, 12, 472.Google Scholar
DeSantis, T.Z., Hugenholtz, P., Keller, K., Brodie, E.L., Larsen, N., Piceno, Y.M., Phan, R., and and erson, G.L. 2006. NAST: a multiple sequence alignment server for comparative analysis of 16S rRNA genes. Nucleic Acids Research, 34, W394-399.Google Scholar
Desper, R., and Gascuel, O. 2002. Fast and accurate phylogeny reconstruction algorithm based on the minimum-evolution principle. Journal of Computational Biology, 9, 687-705.Google Scholar
Desper, R., and Gascuel, O. 2004. Theoretical foundations of the balanced minimum evolution method of phylogenetic inference and its relationship to weighted leastsquares tree fitting. Molecular Biology and Evolution, 21(3), 587-598.Google Scholar
Desper, R., and Gascuel, O. 2005. The minimum-evolution distance-based approach to phylogeny inference. Pages 1-32 of: Gascuel, O. (ed.), Mathematics of Evolution and Phylogeny. Oxford: Oxford University Press.
Devroye, L., and Gyʺorfi, L. 1990. No empirical probability measure can converge in the total variation sense for all distributions. The Annals of Statistics, 18(3), 1496-1499.Google Scholar
Dewey, C.N. 2007. Aligning multiple whole genomes with Mercator and MAVID. Methods in Molecular Biology, 395, 221-236.Google Scholar
Dirac, G.A. 1974. On rigid circuit graphs. Abhandlungen aus dem Mathematischen Seminar der Univiversität Hamburg, 25, 71-76.Google Scholar
Do, C.B., Mahabhashyam, M.S.P., Brudno, M., and Batzoglou, S. 2005. ProbCons: probabilistic consistency-based multiple sequence alignment. Genome Research, 15(2), 330-340.Google Scholar
Dobzhansky, T. 1973. Nothing in biology makes sense except in the light of evolution. American Biology Teacher, 35, 125-129.Google Scholar
Domelevo-Entfellner, J.B., and Gascuel, O. 2008. Une approche phylo-HMM pour la recherche de séquences. Pages 133-139 of: van Helden, J., and Moreau, Y. (eds.), JOBIM–08: Journées Ouvertes Biologie, Informatique, Mathématiques, vol. 408.Google Scholar
Dotsenko, Y., Coarfa, C., Mellor-Crummey, J., Nakhleh, L., and Roshan, U. 2006. PRec-I-DCM3: a parallel framework for fast and accurate large scale phylogeny reconstruction. International Journal on Bioinformatics Research and Applications (IJBRA), 2, 407-419.Google Scholar
Douady, C.J., Delsuc, F., Boucher, Y., Doolittle, W.F., and Douzery, E.J.P., 2003. Comparison of Bayesian and maximum likelihood bootstrap measures of phylogenetic reliability. Molecular Biology and Evolution, 20(2), 248-254.Google Scholar
Doyon, J.P., Ranwez, V., Daubin, V., and Berry, V. 2011. Models, algorithms and programs for phylogeny reconciliation. Briefings in Bioinformatics, 12(5), 392-400.Google Scholar
Dress, A., and Steel, M.A. 1992. Convex tree realizations of partitions. Applied Mathematics Letters, 5(3), 3-6.Google Scholar
Du, S.Z., Zhang, Y., and Feng, Q. 1991. On better heuristic for Euclidian Steiner minimum trees. Pages 431-439 of: Proceedings of the 32nd Symposium on the Foundations of Computer Science (FOCS).
Du, Z., Stamatakis, A., Lin, F., Roshan, U., and Nakhleh, L. 2005a. Parallel divideand-conquer phylogeny reconstruction by maximum likelihood. Pages 776-785 of: International Conference on High Performance Computing and Communications. Berlin: Springer.
Du, Z., Lin, F., and Roshan, U. 2005b. Reconstruction of large phylogenetic trees: a parallel approach. Computational Biology and Chemistry, 29(4), 273-280.Google Scholar
Dubchak, I., Poliakov, A., Kislyuk, A., and Brudno, M. 2009. Multiple whole-genome alignments without a reference organism. Genome Research, 19, 682-689.Google Scholar
Durbin, R., Eddy, S., Krogh, A., and Mitchison, G. 1998. Biological Sequence Analysis: Probabilistic Models of Proteins and Nucleic Acids. Cambridge: Cambridge University Press.
Durrett, R. 2008. Probability Models for DNA Sequence Evolution. Second edition. New York: Springer.
Earl, D., Nguyen, N., Hickey, G., Harris, R.S., Fitzgerald, S., Beal, K., Seledtsov, I., Molodtsov, V., Raney, B.J., Clawson, H., Kim, J., Kemena, C., Chang, J.M., Erb, I., Poliakov, A., Hou, M., Herrero, J., Kent, W. James, Solovyev, V., Darling, A.E., Ma, J., Notredame, C., Brudno, M., Dubchak, I., Haussler, D., and Paten, B. 2014. Alignathon: a competitive assessment of whole-genome alignment methods. Genome Research, 24, 2077-2089.Google Scholar
Eddy, S.R. 2009. A new generation of homology search tools based on probabilistic inference. Genome Informatics, 23, 205-211.Google Scholar
Edgar, R.C. 2004a. MUSCLE: a multiple sequence alignment method with reduced time and space complexity. BMC Bioinformatics, 5(113), 113.Google Scholar
Edgar, R.C. 2004b. MUSCLE: a multiple sequence alignment with high accuracy and high throughput. Nucleic Acids Research, 32(5), 1792-1797.Google Scholar
Edgar, R.C., and Sjölander, K. 2003. COACH: profile-profile alignment of protein families using hidden Markov models. Bioinformatics, 20(8), 1309-1318.Google Scholar
Edgar, R.C., and Sjölander, K. 2004. A comparison of scoring functions for protein sequence profile alignment. Bioinformatics, 20(8), 1301-1308.Google Scholar
Efron, B., Halloran, E., and Holmes, S. 1996. Bootstrap confidence levels for phylogenetic trees. Proceedings of the National Academy of Science (USA), 93, 13429-13434.Google Scholar
El-Mabrouk, N., and Sankoff, D. 2012. Analysis of gene order evolution beyond singlecopy genes. Pages 397-429 of: Anisimova, M. (ed.), Evolutionary Genomics: Statistical and Computational Methods, vol. 1. Berlin: Springer.
Erdös, P.L., Steel, M.A., Székely, L., and Warnow, T. 1997. Local quartet splits of a binary tree infer all quartet splits via one dyadic inference rule. Computers and Artificial Intelligence, 16(2), 217-227.Google Scholar
Erdös, P.L., Steel, M.A., Székely, L., and Warnow, T. 1999a. A few logs suffice to build (almost) all trees (I). Random Structures and Algorithms, 14, 153-184.Google Scholar
Erdös, P.L., Steel, M.A., Székely, L., and Warnow, T. 1999b. A few logs suffice to build (almost) all trees (II). Theoretical Computer Science, 221, 77-118.Google Scholar
Estabrook, G., Johnson, C., and McMorris, F. 1975. An idealized concept of the true cladistic character. Mathematical Biosciences, 23, 263-272.Google Scholar
Evans, S.N., and Warnow, T. 2005. Unidentifiable divergence times in rates-across-sites models. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1, 130-134.Google Scholar
Ewens, W.J. 2000. Mathematical Population Genetics: I. Theoretical Introduction. Second edition. Berlin: Springer.
Ewens, W.J., and Grant, G.R. 2001. Statistical Methods in Bioinformatics: An Introduction. New York: Springer.
Ezawa, K. 2016. General continuous-time Markov model of sequence evolution via insertions/deletions: are alignment probabilities factorable? BMC Bioinformatics, 17(1), 304. erratur, 17, 457.
Faghih, F., and Brown, D.G. 2010. Answer set programming or hypercleaning: where does the magic lie in solving maximum quartet consistency. Technical Report, University of Waterloo, CS-2010-20.
Fakcharoenphol, J., Rao, S., and Talwar, K. 2003. A tight bound on approximating arbitrary metrics by tree metrics. Pages 448-455 of: Proceedings 35th Annual ACM Symposium on the Theory of Computing (STOC). New York ACM Press.
Farach, M., and Thorup, M. 1994. Fast comparison of evolutionary trees. Pages 481-488 of: Proceedings 5th Annual ACM-SIAM Symposium on Discrete Algorithms.
Farris, J.S. 1973. A probability model for inferring evolutionary trees. Systematic Zoology, 22, 250-256.Google Scholar
Felsenstein, J. 1978. Cases in which parsimony and compatibility methods will be positively misleading. Systematic Zoology, 27, 401-410.Google Scholar
Felsenstein, J. 1981. Evolutionary trees from DNA sequences: a maximum likelihood approach. Journal of Molecular Evolution, 17(6), 368-376.Google Scholar
Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution, 39(4), 783-791.Google Scholar
Felsenstein, J. 2004. Inferring Phylogenies. Sunderland, MA: Sinauer Associates.
Felsenstein, J., and Churchill, G.A. 1996. A hidden Markov model approach to variation among sites in rates of evolution. Molecular Biology and Evolution, 13, 93-104.Google Scholar
Feng, D.F., and Doolittle, R. 1987. Progressive sequence alignment as a prerequisite to correct phylogenetic trees. Journal of Molecular Evolution, 25, 351-360.Google Scholar
Fernández-Baca, D. 2000. The perfect phylogeny problem. Pages 203-234 of: Du, D.Z., and Cheng, X. (eds.), Steiner Trees in Industries. Dordrecht: Kluwer Academic.
Finden, C.R., and Gordon, A.D. 1995. Obtaining common pruned trees. Journal of Classification, 2, 255-276.Google Scholar
Finn, R.D., Clements, J., and Eddy, S.R. 2011. HMMER web server: interactive sequence similarity searching. Nucleic Acids Research, 39, W29-W37.Google Scholar
Fiorini, S., and Joret, G. 2012. Approximating the balanced minimum evolution problem. Operations Research Letters, 40, 31-55.Google Scholar
Fisher, R.A. 1922. On the dominance ratio. Proceedings of the Royal Society of Edinburgh, 42, 321-341.Google Scholar
Fitch, W.M. 1971. Toward defining the course of evolution: minimal change for a specific tree topology. Systematic Zoology, 20, 406-416.Google Scholar
Fitch, W.M., and Margoliash, E. 1967. Construction of phylogenetic trees. Science, 155, 279-284.Google Scholar
Fletcher, W., and Yang, Z. 2009. Indelible: a flexible simulator of biological sequence evolution. Molecular Biology and Evolution, 26(8), 1879-1888.Google Scholar
Fletcher, W., and Yang, Z. 2010. The effect of insertions, deletions, and alignment errors on the branch-site test of positive selection. Molecular Biology and Evolution, 27(10), 2257-2267.Google Scholar
Foulds, L.R., and Graham, R.L. 1982. The Steiner problem in phylogeny is NP-complete. Advances in Applied Mathematics, 3, 43-49.Google Scholar
Francis, A.R., and Steel, M.A. 2015. Tree-like reticulation networks: when do tree-like distances also support reticulation evolution? Mathematical Biosciences, 259, 12-19.Google Scholar
Frati, F., Simon, C., Sullivan, J., and Swofford, D.L. 1997. Evolution of the mitochondrial COII gene in Collembola. Journal of Molecular Evolution, 44, 145-158.Google Scholar
Frith, M.C., and Kawaguchi, R. 2015. Split-alignment of genomes finds orthologies more accurately. Genome Biology, 16, 106.Google Scholar
Fu, Z., Chen, X., Vacic, V., Nan, P., Zhong, Y., and Jiang, T. 2007. MSOAR: a highthroughput ortholog assignment system based on genome rearrangement. Journal of Computational Biology, 14(9), 1160-1175.Google Scholar
Gaither, J., and Kubatko, L. 2016. Hypothesis tests for phylogenetic quartets, with applications to coalescent-based species tree inference. Journal of Theoretical Biology, 408, 179-186.Google Scholar
Ganapathy, G., and Warnow, T. 2001. Finding the maximum compatible tree for a bounded number of trees with bounded degree is solvable in polynomial time. Pages 156-163 of: Proceedings of the First InternationalWorkshop on Algorithms and Bioinformatics (WABI). Berlin: Springer.
Ganapathy, G., and Warnow, T. 2002. Approximating the complement of the maximum compatible subset of leaves of k trees. Pages 122-134 of: Proceedings of the Fifth International Workshop on Approximation Algorithms for Combinatorial Optimization.
Ganapathy, G., Ramachandran, V., and Warnow, T. 2003. Better hill-climbing seaches for parsimony. Pages 245-258 of: Proceedings of the Third International Workshop on Algorithms in Bioinformatics (WABI).
Ganapathy, G., Ramachandran, V., and Warnow, T. 2004. On contract-and-refinetransformations between phylogenetic trees. Pages 893-902 of: ACM/SIAM Symposium on Discrete Algorithms (SODA–04).
Gardner, D.P., Xu, W., Miranker, D.P., Ozer, S., Cannonne, J., and Gutell, R. 2012. An accurate scalable template-based alignment algorithm. Pages 237-243 of: Proceedings International Conference on Bioinformatics and Biomedicine, 2012.
Gascuel, O. 1997. Concerning the NJ algorithm and its unweighted version, UNJ. Pages 149-170 of: Roberts, F.S., and Rzhetsky, A. (eds.), Mathematical Hierarchies and Biology. Providence, RI American Mathematical Society.
Gascuel, O. 2000. On the optimization principle in phylogenetic analysis and the minimumevolution criterion. Molecular Biology and Evolution, 17(3), 401-405.Google Scholar
Gascuel, O., and Steel, M.A. 2006. Neighbor-joining revealed. Molecular Biology and Evolution, 23(11), 1997-2000.Google Scholar
Gascuel, O., and Steel, M.A. 2016. A “stochastic safety radius” for distance-based tree reconstruction. Algorithmica, 74(4), 1386-1403.Google Scholar
Gascuel, O., Bryant, D., and Denis, F. 2001. Strengths and limitations of the minimum evolution principle. Systematic Biology, 50(5), 621-627.Google Scholar
Gatesy, J.P., and Springer, M.S. 2014. Phylogenetic analysis at deep timescales: unreliable gene trees, bypassed hidden support, and the coalescence/concatalescence conundrum. Molecular Phylogenetics and Evolution, 80, 231-266.Google Scholar
Gatesy, J., Meredith, R.W., Janecka, J.E., Simmons, M.P., Murphy, W.J., and Springer, M.S. 2016. Resolution of a concatenation/coalescence kertuffle: partitioned coalescence support and a robust family-level tree for Mammalia. Cladistics. DOI: 10.1111/cla.12170.CrossRef
Gavril, F. 1972. Algorithms for minimum coloring, maximum clique, minimum covering by cliques, and maximum independent set of a chordal graph. SIAM Journal on Computing, 1(2), 180-187.Google Scholar
Gavril, F. 1974. The intersection graphs of subtrees in trees are exactly the chordal graphs. Journal of Combinatorial Theory (B), 16, 47-56.Google Scholar
Ge, F., Wang, L.S., and Kim, J. 2005. The cobweb of life revealed by genome-scale estimates of horizontal gene transfer. PLoS Biology, 3(10), e316.Google Scholar
Gerstein, M.B., Bruce, C., Rozowsky, J.S., Zheng, D., Du, J., Korbel, J.O., Emanuelsson, O., Zhang, Z.D., Weissman, S., and Snyder, M. 2007. What is a gene, post-ENCODE? History and updated definition. Genome Research, 17(6), 669-681.Google Scholar
Giarla, T.C., and Esselstyn, J.A. 2015. The challenges of resolving a rapid, recent radiation: empirical and simulated phylogenomics of Philippine shrews. Systematic Biology, 64(5), 727-740.Google Scholar
Gogarten, J.P., and Townsend, J.P. 2005. Horizontal gene transfer, genome innovation and evolution. Nature Reviews Microbiology, 3(9), 679-687.Google Scholar
Gogarten, J.P., Doolittle, W.F., and Lawrence, J.G. 2002. Prokaryotic evolution in light of gene transfer. Molecular Biology and Evolution, 19(12), 2226-2238.Google Scholar
Goldman, N., and Yang, Z. 1994. A codon-based model of nucleotide substitution for protein-coding DNA sequences. Molecular Biology and Evolution, 11, 725-736.Google Scholar
Goloboff, P.A. 1999. Analyzing large data sets in reasonable times: solution for composite optima. Cladistics, 15, 415-428.Google Scholar
Golumbic, M. 2004. Algorithmic Graph Theory and Perfect Graphs. Second edition. New York: Elsevier.
Gordon, A.D. 1986. Consensus supertrees: the synthesis of rooted trees containing overlapping sets of labeled leaves. Journal of Classification, 3, 335-348.Google Scholar
Gordon, K., Ford, E., and St. John, K. 2013. Hamiltonian walks of phylogenetic treespaces. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 10(4), 1076-1079.Google Scholar
Gori, K., Suchan, T., Alvarez, N., Goldman, N., and Dessimoz, C. 2016. Clustering genes of common evolutionary history. Molecular Biology and Evolution, 33(6): 1590-1605.CrossRefGoogle Scholar
Gotoh, O. 1990. Consistency of optimal sequence alignments. Bulletin of Mathematical Biology, 52, 509-525.Google Scholar
Gotoh, O. 1994. Further improvement in methods of group-to-group sequence alignment with generalized profile operations. Computer Applications in the Biosciences: CABIOS, 10, 379-387.Google Scholar
Gould, S.J., Raup, D.M., Spekowski, J.J., and Schopf, T.J.M., 1997. The shape of evolution: a comparison of real and random clades. Paleobiology, 3, 23-40.Google Scholar
Grass Phylogeny Working Group. 2001. Phylogeny and subfamilial classification of the grasses (Poacea). Annals of the Missouri Botanical Garden, 88(3), 373-457.
Grauer, D. 2016. Molecular and Genome Evolution. Sunderland, MA: Sinauer Associates.
Grauer, D., and Li, W.H. 2000. Fundamentals of Molecular Evolution. Sunderland, MA: Sinauer Associates.
Graybeal, A. 1998. Is it better to add taxa or characters to a difficult phylogenetic problem? Systematic Biology, 47(1), 9-17.Google Scholar
Gribskov, M., McLachlan, A.D., and Eisenberg, D. 1987. Profile analysis: detection of distantly related proteins. Proceedings of the National Academy of Sciences (USA), 84(13), 4355-4358.Google Scholar
Gu, X., and Li, W.H. 1995. The size distribution of insertions and deletions in human and rodent pseudogenes suggests the logarithmic gap penalty for sequence alignment. Journal of Molecular Evolution, 40, 464-473.Google Scholar
Guindon, S., and Gascuel, O. 2003. A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Systematic Biology, 52(5), 696-704.Google Scholar
Guo, S.,Wang, L.S., and Kim, J. 2009. Large-scale simulation of RNA macroevolution by an energy-dependent fitness model. arXiv:0912.2326.
Gusfield, D. 1991. Efficient algorithms for inferring evolutionary trees. Networks, 21, 19-28.Google Scholar
Gusfield, D. 1993. Efficient methods for multiple sequence alignment with guaranteed error bounds. Bulletin of Mathematical Biology, 55(1), 141-154.Google Scholar
Gusfield, D. 2014. ReCombinatorics: The Algorithmics of Ancestral Recombination Graphs and Explicit Phylogenetic Networks. Cambridge, MA: MIT Press.
Guyer, C., and Slowinski, J.B. 1991. Comparisons of observed phylogenetic topologies with null expectations among three monophyletic lineages. Evolution, 45, 340-350.Google Scholar
Hagopian, R., Davidson, J.D., Datta, R.S., Jarvis, G., and Sjölander, K. 2010. SATCHMOJS: a webserver for simultaneous protein multiple sequence alignment and phylogenetic tree construction. Nucleic Acids Research, 38 (Web Server Issue), W29-W34.Google Scholar
Hahn, M.W., and Nakhleh, L. 2016. Irrational exuberance for resolved species trees. Evolution, 70(1), 7-17.Google Scholar
Hallett, M.T., and Lagergren, J. 2000. New algorithms for the duplication-loss model. Pages 138-146 of: Proceedings of the Annual International Conference on Research in Compututional Molecular Biology (RECOMB) 2000. New York: ACM Press.
Hallström, B.M., and Janke, A. 2010. Mammalian evolution may not be strictly bifurcating. Molecular Biology and Evolution, 27, 2804-2806.Google Scholar
Hamada, M., and Asai, K. 2012. A classification of bioinformatics algorithms from the viewpoint of Maximizing Expected Accuracy (MEA). Journal of Computational Biology, 19(5), 532-549.Google Scholar
Hannenhalli, S., and Pevzner, P.A. 1995. Transforming men into mice (polynomial algorithm for genomic distance problem). Pages 581-592 of: Proceedings of the 36th Annual Symposium on the Foundations of Computer Science (FOCS).
Hartigan, J.A. 1973. Minimum mutation fits to a given tree. Biometrics, 29(1), 53-65.Google Scholar
Hastings, W.K. 1970. Monte Carlo sampling methods using Markov chains and their applications. Biometrika, 57(1), 97-109.Google Scholar
Haussler, D., Krogh, A.,Mian, I.S., and Sjölander, K. 1993. Protein modelling using hidden Markov models: analysis of globins. Pages 792-802 of: Proceedings Twenty-Sixth Annual Hawaii International Conference on System Sciences, vol. 1. Washington, DC: IEEE Computer Society Press.
Haws, D., Hodge, T.L., and Yoshida, R. 2011. Optimality of the neighbor joining algorithm and faces of the balanced minimum evolution polytope. Bulletin of Mathematical Biology, 73(11).Google Scholar
Heard, S.B., and Mooers, A.O. 2002. Signatures of random and selective mass extinctions in phylogenetic tree balance. Systematic Biology, 51, 889-897.Google Scholar
Heath, T.A., Hedtke, S.M., and Hillis, D.M. 2008. Taxon sampling and the accuracy of phylogenetic analyses. Journal of Systematics and Evolution, 46(3), 239-257.Google Scholar
Hein, J., Jiang, T., Wang, L., and Zhang, K. 1996. On the complexity of comparing evolutionary trees. Discrete Applied Mathematics, 71, 153-169.Google Scholar
Hein, J., Wiuf, C., Knudsen, B., Møller, M.B., and Wibling, G. 2000. Statistical alignment: computational properties, homology testing and goodness-of-fit. Journal of Molecular Biology, 302, 265-279.Google Scholar
Heled, J., and Drummond, A.J. 2010. Bayesian inference of species trees from multilocus data. Molecular Biology and Evolution, 27, 570-580.Google Scholar
Helmkamp, L.J., Jewett, E.M., and Rosenberg, N.A. 2012. Improvements to a class of distance matrix methods for inferring species trees from gene trees. Journal of Computational Biology, 19(6), 632-649.Google Scholar
Hendy, M., and Penny, D. 1989. A framework for the quantitative study of evolutionary trees. Systematic Zoology, 38, 297-309.Google Scholar
Herman, J.L., Challis, C.J., Novák, A., Hein, J., and Schmidler, S.C. 2014. Simultaneous Bayesian estimation of alignment and phylogeny under a joint model of protein sequence and structure. Molecular Biology and Evolution, 31(9), 2251-2266.Google Scholar
Herman, J.L., Novák, A., Lyngso, R., Szabó, A., Miklós, I., and Hein, J. 2015. Efficient representation of uncertainty in multiple sequence alignments using directed acyclic graphs. BMC Bioinformatics, 16(1), 1-26.Google Scholar
Higgins, D.G., and Sharp, P.M. 1988. CLUSTAL: a package for performing multiple sequence alignment on a microcomputer. GENE, 73(1), 237-244.Google Scholar
Hillis, D.M. 1996. Inferring complex phylogenies. Nature, 383, 130-131.Google Scholar
Hillis, D. 1997. Response from D.M. Hillis. Trends in Ecology & Evolution, 12(9), 358.Google Scholar
Hillis, D.M., Huelsenbeck, J.P., and Swofford, D.L. 1994. Hobgoblin of phylogenetics. Nature, 369, 363-364.Google Scholar
Hillis, D.M., Moritz, C., and Mable, B.K. (eds.). 1996. Molecular Systematics Second edition. Sunderland, MA: Sinauer Associates.
Hillis, D.M., Pollock, D.D., McGuire, J.A., and Zwickl, D.J. 2003. Is sparse taxon sampling a problem for phylogenetic inference? Systematic Biology, 52(1), 124-126.Google Scholar
Hillis, D.M., Heath, T.A., and St. John, K. 2005. Analysis and visualization of tree space. Systematic Biology, 54(3), 471-482.Google Scholar
Hirosawa, M., Totoki, Y., Hoshida, M., and Ishikawa, M. 1995. Comprehensive study on iterative algorithms of multiple sequence alignment. Computer Applications in the Biosciences: CABIOS, 11(1), 13-18.Google Scholar
Hoff, M., Orf, S., Riehm, B., Darriba, D., and Stamatakis, A. 2016. Does the choice of nucleotide substitution models matter topologically? BMC Bioinformatics, 17, 143.Google Scholar
Hogeweg, P., and Hesper, B. 1984. The alignment of sets of sequences and the construction of phyletic trees: an integrated method. Journal of Molecular Evolution, 20, 175-186.Google Scholar
Hohl, M., Kurtz, S., and Ohlebusch, E. 2002. Efficient multiple genome alignment. Bioinformatics, 18, S312-S320.Google Scholar
Holder, M.T., and Lewis, P.O. 2003. Phylogeny estimation: traditional and Bayesian approaches. Nature Reviews Genetics, 43, 275-284.Google Scholar
Holland, B., and Moulton, V. 2003. Consensus networks: a method for visualizing incompatibilities in collections of trees. Pages 165-176 of: Proceedings of the Workshop on Algorithms in Bioinformatics. Berlin: Springer.
Holland, B.R., Huber, K.T., Moulton, V., and Lockhart, P.J. 2004. Using consensus networks to visualize contradictory evidence for species phylogeny. Molecular Biology and Evolution, 21, 1459-1461.Google Scholar
Holland, B.R., Delsuc, F., and Moulton, V. 2005. Visualizing conflicting evolutionary hypotheses in large collections of trees: using consensus networks to study the origins of placentrals and hexapods. Systematic Biology, 54, 66-76.Google Scholar
Holland, B.R., Jermiin, L.S., and Moulton, V. 2006. Improved consensus network techniques for genome-scale phylogeny. Molecular Biology and Evolution, 23, 848-855.Google Scholar
Holland, B., Conner, G., Huber, K., and Moulton, V. 2007. Imputing supertrees and supernetworks from quartets. Systematic Biology, 56(1), 57-67.Google Scholar
Holmes, I., and Bruno, W.J. 2001. Evolutionary HMMs: a Bayesian approach to multiple alignment. Bioinformatics, 17, 803-820.Google Scholar
Holmes, I., and Durbin, R. 1988. Dynamic programming alignment accuracy. Journal of Computational Biology, 5, 493-504.Google Scholar
Holmes, S. 1999. Phylogenies: an overview. Pages 81-118 of: Halloran, M., and Geisser, S. (eds.), Statistics and Genetics New York: Springer-Verlag.
Holmes, S. 2003. Bootstrapping phylogenetic trees: theory and methods. Statistical Science, 18(2), 241-255.Google Scholar
Holmes, S. 2005. Statistical approach to tests involving phylogenies. Pages 91-120 of: Gascuel, O. (ed.), Mathematics of Evolution and Phylogeny. Oxford: Oxford University Press.
Hosner, P.A., Faircloth, B.C., Glenn, T.C., Braun, E.L., and Kimball, R.T. 2016. Avoiding missing data biases in phylogenomic inference: an empirical study in the landfowl (Aves: Galliformes). Molecular Biology and Evolution, 33(4), 1110-1125.Google Scholar
Huang, H., and Knowles, L.L. 2016. Unforeseen consequences of excluding missing data from next-generation sequences: simulation study of RAD sequences. Systematic Biology, 65(3), 357-365.Google Scholar
Huang, H., He, Q., Kubatako, L.S., and Knowles, L.L. 2010. Sources of error inherent in species-tree estimation: impact of mutational and coalescent effects on accuracy and implications for choosing among different methods. Systematic Biology, 59, 573-583.Google Scholar
Huang, W., Zhou, G., Marchand, M., Ash, J.R., Morris, D., Dooren, P. Van, Brown, J.M., Gallivan, K.A., and Wilgenbusch, J.C. 2016. TreeScaper: visualizing and extracting phylogenetic signal from sets of trees. Molecular Biology and Evolution, 33(12), 3314-3316.Google Scholar
Hudson, R.R. 1983. Testing the constant-rate neutral allele model with protein sequence data. Evolution, 37, 203-217.Google Scholar
Hudson, R.R. 1991. Gene genealogies and the coalescent process. Pages 1-44 of: Futuyma, D., and Antonovics, J. (eds.), Oxford Surveys in Evolutionary Biology, vol. 7. Oxford: Oxford University Press.
Huelsenbeck, J.P., and Crandall, K.A. 1997. Phylogeny estimation and hypothesis testing using maximum likelihood. Annual Review of Ecology and Systematics, 28, 437-466.Google Scholar
Huelsenbeck, J.P., and Hillis, D.M. 1993. Success of phylogenetic methods in the fourtaxon case. Systematic Biology, 42(3), 247-265.Google Scholar
Huelsenbeck, J.P., Ronquist, F., Nielsen, R., and Bollback, J.P. 2001. Bayesian inference of phylogeny and its impact on evolutionary biology. Science, 294(5550), 2310-2314.Google Scholar
Huson, D.H. 2007. Split networks and reticulate networks. Pages 247-276 of: Gascuel, O., and Steel, M.A. (eds.), Reconstructing Evolution: New Mathematical and Computational Advances. Oxford: Oxford University Press.
Huson, D.H. 2016. SplitsTree4 Software for computing phylogenetic networks. Available online at www.splitstree.org.
Huson, D., Nettles, S., Parida, L.,Warnow, T., and Yooseph, S. 1998. A divide-and-conquer approach to tree reconstruction. In: Proceedings of the Workshop on Algorithms and Experiments (ALEX98). Trento.
Huson, D., Nettles, S., and Warnow, T. 1999a. Disk-covering, a fast converging method for phylogenetic tree reconstruction. Journal of Computational Biology, 6(3), 369-386.Google Scholar
Huson, D., Vawter, L., and Warnow, T. 1999b. Solving large scale phylogenetic problems using DCM2. Pages 118-129 of: Proceedings of the 7th International Conference on Intelligent Systems for Molecular Biology (ISMB–99). Cambridge, MA: AAAI Press.
Huson, D.H., Dezulian, T., Klöpper, T., and Steel, M.A. 2004. Phylognetic super-networks from partial trees. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 1, 151-158.Google Scholar
Huson, D.H., Rupp, R., and Scornavacca, C. 2010. Phylogenetic Networks: Concepts, Algorithms and Applications. Cambridge: Cambridge University Press.
Iantomo, S., Gori, K., Goldman, N., Gil, M., and Dessimoz, C. 2013. Who watches the watchmen? An appraisal of benchmarks for multiple sequence alignment. Pages 59-73 of: Russell, D. (ed.), Multiple Sequence Alignment Methods. New York: Springer.
Izquierdo-Carrasco, F., Smith, S., and Stamatakis, A. 2011. Algorithms, data structures, and numerics for likelihood-based phylogenetic inference of huge trees. BMC Bioinformatics, 12(1), 470.Google Scholar
Jacox, E., Chauve, C., Szöllʺosi, G.J., Ponty, Y., and Scornavacca, C. 2016. ecceTERA: comprehensive gene tree-species tree reconciliation using parsimony. Bioinformatics, 32(13), 2056-2058.Google Scholar
Janowitz, M.F., Lapointe, F.J., McMorris, F.R., Mirkin, B., and Roberts, F.S. (eds.). 2003. Bioconsensus. Providence, RI: American Mathematical Society.
Jansen, R., and Palmer, J. 1987. A chloroplast DNA inversion marks an ancient evolutionary split in the sunflower family (Asteraceae). Proceedings of the National Academy of Sciences (USA), 84, 5818-5822.Google Scholar
Jarvis, E., Mirarab, S., Aberer, A., et al. 2014. Whole-genome analyses resolve early branches in the tree of life of modern birds. Science, 346(6215), 1320-1331.Google Scholar
Jewett, E.M., and Rosenberg, N.A. 2012. iGLASS: an improvement to the GLASS method for estimating species trees from gene trees. Journal of Computational Biology, 19(3), 293-315.Google Scholar
Jiang, T., Kearney, P., and Li, M. 2001. A polynomial time approximation scheme for inferring evolutionary trees from quartet topologies and its application. SIAM Journal on Computing, 30, 1942-1961.Google Scholar
Jin, G., Nakhleh, L., Snir, S., and Tuller, T. 2006. Maximum likelihood of phylogenetic networks. Bioinformatics, 22, 2604-2611.Google Scholar
Jin, G., Nakhleh, L., Snir, S., and Tuller, T. 2007. Inferring phylogenetic networks by the maximum parsimony criterion: a case study. Molecular Biology and Evolution, 24(1), 324-337.Google Scholar
Joly, S., McLenachan, P.A., and Lockhart, P.J. 2009. A statistical approach for distinguishing hybridization and incomplete lineage sorting. The American Naturalist, 174(2), E54-E70.Google Scholar
Jones, D.T., Taylor, W.R., and Thornton, J.M. 1992. The rapid generation of mutation data matrices from protein sequences. Computing Applications in the Biosciences (CABIOS), 8, 275282. doi:10.1093/bioinformatics/8.3.275.CrossRefGoogle Scholar
Jones, G., Sagitov, S., and Oxelman, B. 2013. Statistical inference of allopolyploid species networks in the presence of incomplete lineage sorting. Systematic Biology, 62(3), 476-478.Google Scholar
Jones, S., and Thornton, J.M. 1996. Principles of protein-protein interactions. Proceedings of the National Academy of Sciences (USA), 93(1), 13-20.Google Scholar
Jukes, T.H., and Cantor, C.R. 1997. Evolution of protein molecules. Pages 21-132 in Munro, H.N. (ed.), Mammalian Protein Metabolism. New York: Academic Press.
Kannan, S., and Warnow, T. 1997. A fast algorithm for the computation and enumeration of perfect phylogenies when the number of character states is fixed. SIAM Journal on Computing, 26(6), 1749-1763.Google Scholar
Kannan, S., Warnow, T., and Yooseph, S. 1995. Computing the local consensus of trees. SIAM Journal on Computing, 27(6), 1695-1724.Google Scholar
Kaplan, H., Shamir, R., and Tarjan, R.E. 1997. Faster and simpler algorithm for sorting signed permutations by reversals. Pages 344-351 of: Proceedings of the ACM/SIAM Symposium on Discrete Algorithms (SODA).
Karp, R.M. 1972. Reducibility among combinatorial problems. Pages 85-103 of: Complexity of Computer Computations. New York: Plenum.
Karpinski, M., and Zelikovsky, A. 1997. New approximation algorithms for the Steiner Tree problems. Journal of Combinatorial Optimization, 1(1), 47-65.Google Scholar
Katoh, K., and Toh, H. 2007. PartTree: an algorithm to build an approximate tree from a large number of unaligned sequences. Bioinformatics, 23(3), 372-374.Google Scholar
Katoh, K., Kuma, K., Miyata, T., and Toh, H. 2005. Improvement in the acccuracy of multiple sequence alignment MAFFT. Genome Informatics, 16, 22-33.Google Scholar
Kececioglu, J.D. 1993. The maximum weight trace problem in multiple sequence alignment. Pages 106-119 of: Annual Symposium on Combinatorial Pattern Matching. Berlin: Springer.
Kececioglu, J., and Sankoff, D. 1995. Exact and approximation algorithms for sorting by reversals, with application to genome rearrangement. Algorithmica, 13(1-2), 180-210.Google Scholar
Kececioglu, J., and Starrett, D. 2004. Aligning alignments exactly. Pages 85-96 of: Proceedings 8th ACM Conference on Research in Computational Molecular Biology (RECOMB).
Kececioglu, J., and Zhang, W. 1998. Aligning alignments. Pages 189-208 of: Combinatorial Pattern Matching Berlin: Springer.
Kececioglu, J., Kim, E., and Wheeler, T. 2010. Aligning protein sequences with predicted secondary structure. Journal of Computational Biology, 17(3), 561-580.Google Scholar
Kemena, C., and Notredame, C. 2009. Upcoming challenges for multiple sequence alignment methods in the high-throughput era. Bioinformatics, 25, 2455-2465.Google Scholar
Kendall, D.G. 1948. On the generalized “birth-death” process. Annual Review Mathematical Statistics, 19, 1-15.Google Scholar
Kent, W.J., Baertsch, R., Hinrichs, A., Miller, W., and Haussler, D. 2003. Evolution's cauldron: duplication, deletion, and rearrangement in the mouse and human genomes. Proceedings National Academy of Sciences (USA), 100, 11484-11489.Google Scholar
Kidd, K.K., and Sgaramella-Zonta, L.A. 1971. Phylogenetic analysis: concepts and methods. American Journal of Human Genetics, 23, 235-252.Google Scholar
Kim, J. 1996. General inconsistency conditions for maximum parsimony: effects of branch lengths and increasing numbers of taxa. Systematic Biology, 45, 363-374.Google Scholar
Kim, J., and Ma, J. 2014. PSAR-Align: improving multiple sequence alignment through probabilistic sampling. Bioinformatics, 30(7), 1010-1012.Google Scholar
Kim, J., and Salisbury, B.A. 2001. A tree obscured by vines: horizontal gene transfer and the median tree method of estimating species phylogeny. Pages 571-582 of: Proceedings of the Pacific Symposium of Computing, vol. 6.
Kimura, M. 1980. A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. Journal of Molecular Evolution, 16, 111-120.Google Scholar
Kingman, J.F.C., 1982. The coalescent. Stochastic Processes and Applications, 13, 235-248.Google Scholar
Knowles, L.L., and Kubatko, L.S. (eds.). 2011. Estimating Species Trees: Practical and Theoretical Aspects. Hoboken, NJ: John Wiley and Sons.
Koch, M.A., Dobes, C., Kiefer, C., Schmickl, R., Klimes, L., and Lysak, M.A. 2007. Supernetwork identifies multiple events of plastid trnF(GAA) pseudogene evolution in the Brassicaceae. Molecular Biology and Evolution, 24(1), 63-73.Google Scholar
Kolaczkowski, B., and Thornton, J.W. 2004. Performance of maximum parsimony and likelihood phylogenetics when evolution is heterogeneous. Nature, 431, 980-984.Google Scholar
Kosiol, C., Bofkin, L., and Whelan, S. 2006. Phylogenetics by likelihood: evolutionary modeling as a tool for understanding the genome. Journal Biomedical Informatics, 39, 51-61.Google Scholar
Kosiol, C., Holmes, I., and Goldman, N. 2007. An empirical codon model for protein sequence evolution. Molecular Biology and Evolution, 24(7), 1464-1479.Google Scholar
Kozlov, A.M., Aberer, A.J., and Stamatakis, A. 2015. ExaML version 3: a tool for phylogenomic analyses on supercomputers. Bioinformatics, 31(15), 2577.Google Scholar
Kreidl, M. 2011. Note on expected internode distances for gene trees in species trees. arXiv:1108.5154v1.
Krishnamurthy, N., Brown, D., and Sjölander, K. 2007. FlowerPower: clustering proteins into domain architecture classes for phylogenomic inference of protein function. BMC Evolutionary Biology, 7(1), 1-11.Google Scholar
Krogh, A., Brown, M., Mian, I., Sjölander, K., and Haussler, D. 1994. Hidden Markov models in computational biology: applications to protein modeling. Journal of Molecular Biology, 235, 1501-1531.Google Scholar
Kruskal, J.B. 1956. On the shortest spanning subtree of a graph and the travelling salesman problem. Proceedings of the American Mathematical Society, 7, 48-50.Google Scholar
Kubatko, L.S. 2009. Identifying hybridization events in the presence of coalescence via model selection. Systematic Biology, 58(5), 478-488.Google Scholar
Kubatko, L., and Chifman, J. 2015. An invariants-based method for efficient identification of hybrid species from large-scale genomic data. bioRxiv: 034348.
Kubatko, L.S., and Degnan, J.H. 2007. Inconsistency of phylogenetic estimates from concatenated data under coalescence. Systematic Biology, 56, 17.Google Scholar
Kubatko, L.S., Carstens, B.C., and Knowles, L.L. 2009. STEM: species tree estimation using maximum likelihood for gene trees under coalescence. Bioinformatics, 25(7), 971-973.Google Scholar
Kuhner, M.K., and Felsenstein, J. 1994. A simulation comparison of phylogeny algorithms under equal and unequal evolutionary rates. Molecular Biology and Evolution, 11(3), 459-468.Google Scholar
Kullback, S. 1987. Letter to the editor: The Kullback-Leibler distance. The American Statistician, 41(4), 340-341.Google Scholar
Kupczok, A. 2011. Split-based computation of majority rule supertrees. BMC Evolutionary Biology, 11.Google Scholar
Lacey, M.R., and Chang, J.T. 2006. A signal-to-noise analysis of phylogeny estimation by neighbor-joining: insufficiency of polynomial length sequences. Mathematical Biosciences, 199(2), 188-215.Google Scholar
Lafond, M., and Scornavacca, C. 2016. On theWeighted Quartet Consensus problem. arXiv preprint arXiv:1610.00505.
Lagergren, J. 2002. Combining polynomial running time and fast convergence for the Disk- Covering Method. Journal of Computer and System Science, 65(3), 481-493.Google Scholar
Lanfear, R., Calcott, B., Ho, S.Y.W., and Guindon, S. 2012. PartitionFinder: combined selection of partitioning schemes and substitution models for phylogenetic analyses. Molecular Biology and Evolution, 29(6), 1695-1701.Google Scholar
Lapointe, F.J., and Cucumel, G. 1997. The average consensus procedure: combination of weighted trees containing identical or overlapping sets of taxa. Systematic Biology, 46(2), 306-312.Google Scholar
Lapointe, F.J., Wilkinson, M., and Bryant, D. 2003. Matrix representations with parsimony or with distances: two sides of the same coin? Systematic Biology, 52, 865-868.Google Scholar
Larget, B., Kotha, S.K., Dewey, C.N., and Ané, C. 2010. BUCKy: Gene tree/species tree reconciliation with the Bayesian concordance analysis. Bioinformatics, 26(22), 2910-2911.Google Scholar
Leaché, A.D., Chavez, A.S., Jones, L.N., Grummer, J.A., Gottscho, A.D., and Linkem, C.W. 2015. Phylogenomics of phrynosomatid lizards: conflicting signals from sequence capture versus restriction site associated DNA sequencing. Genome Biology and Evolution, 7(3), 706-719.Google Scholar
Leavitt, S.D., Grewe, F., Widhelm, T., Muggia, L., Wray, B., and Lumbsch, H.T. 2016. Resolving evolutionary relationships in lichen-forming fungi using diverse phylogenomic datasets and analytical approaches. Scientific Reports, 6(22262). doi: 10.1038/srep22262.CrossRefGoogle Scholar
Lechner, M., Hernandez-Rosales, M., Doerr, D., Wieseke, N., Thévenin, A., Stoye, J., Hartmann, R.K., Prohaska, S.J., and Stadler, P.F. 2014. Orthology detection combining clustering and synteny for very large datasets. PLoS ONE, 9(8), e105015. doi:10.1371/journal.pone.0105015.CrossRefGoogle Scholar
Lecointre, G.H., Philippe, H., Van Le, H.L., and Le Guyader, H. 1994. How many nucleotides are required to resolve a phylogenetic problem? The use of a new statistical method applicable to available sequences. Molecular Phylogenetics and Evolution, 3, 292-309.Google Scholar
Leebens-Mack, J., Raubeson, L.A., Cui, L., Kuehl, J.V., Fourcade, M.H., Chumley, T.W., Boore, J.L., Jansen, R.K., and dePamphilis, C.W. 2005. Identifying the basal angiosperm node in chloroplast genome phylogenies: sampling one's way out of the Felsenstein zone. Molecular Biology and Evolution, 22(10), 1948-1963.Google Scholar
Lefort, V., Desper, R., and Gascuel, O. 2015. FastME 2.0: a comprehensive, accurate, and fast distance-based phylogeny inference program. Molecular Biology and Evolution, 32(10), 2798-2800.Google Scholar
Leimer, H.G. 1993. Optimal decomposition by clique separators. Discrete Mathematics, 113, 99-123.Google Scholar
Lemmon, E.M., and Lemmon, A.R. 2013. High-throughput genomic data in systematics and phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 44, 99-121.Google Scholar
LeQuesne, W.J. 1969. A method of selection of characters in numerical taxonomy. Systematic Zoology, 18, 201-205.Google Scholar
Li, C., Medlar, A., and Löytynoja, A. 2016. Co-estimation of phylogeny-aware alignment and phylogenetic tree. bioRxiv, 077503. doi: https://doi.org/10.1101.07750.
Li, W.H. 1997. Molecular Evolution. Sunderland, MA: Sinauer Associates, Inc.
Li, W.H., and Tanimura, M. 1987. The molecular clock runs more slowly in man than in apes and monkeys. Nature, 326(6108), 93-96.Google Scholar
Lin, Y., and Moret, B. 2008. Estimating true evolutionary distances under the DCJ model. Bioinformatics, 24(13), i114-i122.Google Scholar
Lin, Y., Rajan, V., and Moret, B. 2012a. A metric for phylogenetic trees based on matching. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 9(4), 1014-1022.Google Scholar
Lin, Y., Rajan, V., and Moret, B. 2012b. TIBA: a tool for phylogeny inference from rearrangement data with bootstrap analysis. Bioinformatics, 28(24), 3324-3325.Google Scholar
Liu, K., and Warnow, T. 2012. Treelength optimization for phylogeny estimation. PLoS One, 7(3), e33104.Google Scholar
Liu, K., Raghavan, S., Nelesen, S., Linder, C.R., and Warnow, T. 2009a. Rapid and accurate large-scale coestimation of sequence alignments and phylogenetic trees. Science, 324(5934), 1561-1564.Google Scholar
Liu, K., Linder, C.R., and Warnow, T. 2012a. RAxML and FastTree: comparing two methods for large-scalemaximum likelihood phylogeny estimation. PLoS ONE, 6(11), e27731.Google Scholar
Liu, K.,Warnow, T., Holder,M.T., Nelesen, S.M., Yu, J., Stamatakis, A.P., and Linder, C.R. 2012b. SATé-II: very fast and accurate simultaneous estimation of multiple sequence alignments and phylogenetic trees. Systematic Biology, 61(1), 90-106.Google Scholar
Liu, L., and Yu, L. 2011. Estimating species trees from unrooted gene trees. Systematic Biology, 60(5), 661-667.Google Scholar
Liu, L., Yu, L., Pearl, D.K., and Edwards, S.V. 2009b. Estimating species phylogenies using coalescence times among sequences. Systematic Biology, 58(5), 468-477.Google Scholar
Liu, L., Yu, L., and Edwards, S.V. 2010. A maximum pseudo-likelihood approach for estimating species trees under the coalescent model. BMC Evolutionary Biology, 10(1), 302.Google Scholar
Lockhart, P., Novis, P., Milligan, B.G., Riden, J., Rambaut, A., and Larkum, T. 2006. Heterotachy and tree building: a case study with Plastids and Eubacteria. Molecular Biology and Evolution, 23(1), 40-45.Google Scholar
Lopez, P., Casane, D., and Philippe, H. 2002. Heterotachy, an important process of protein evolution. Molecular Biology and Evolution, 19(1), 1-7.Google Scholar
Löytynoja, A., and Goldman, N. 2005. An algorithm for progressive multiple alignment of sequences with insertions. Proceedings of the National Academy of Sciences (USA), 102, 10557-10562.Google Scholar
Löytynoja, A., and Goldman, N. 2008a. A model of evolution and structure for sequence alignment. Philosophical Transactions of the Royal Society (B), 363, 3913-3919.Google Scholar
Löytynoja, A., and Goldman, N. 2008b. Phylogeny-aware gap placement prevents errors in sequence alignment and evolutionary analysis. Science, 320(5883), 1632-1635.Google Scholar
Löytynoja, A., Vilella, A.J., and Goldman, N. 2012. Accurate extension of multiple sequence alignments using a phylogeny-aware graph algorithm. Bioinformatics, 28, 1685-1691.Google Scholar
Lunter, G.A., Miklós, I., Drummond, A., Jensen, J.L., and Hein, J. 2003a. Bayesian phylogenetic inference under a statistical indel model. Lecture Notes in Bioinformatics, Proceedings of the Workshop on Algorithms for Bioinformatics (WABI) 2003, 2812, 228-244.Google Scholar
Lunter, G.A., Miklos, I., Song, Y.S., and Hein, J. 2003b. An efficient algorithm for statistical multiple alignment on arbitrary phylogenetic trees. Journal of Computational Biology, 10, 869-889.Google Scholar
Lunter, G.A., Miklós, I., Drummond, A., Jensen, J.L., and Hein, J. 2005a. Bayesian coestimation of phylogeny and sequence alignment. BMC Bioinformatics, 6, 83.Google Scholar
Lunter, G.A., Drummond, A.J., Miklós, I., and Hein, J. 2005b. Statistical alignment: recent progress, new applications, and challenges. Pages 375-406 of: Nielsen, R. (ed.), Statistical Methods in Molecular Evolution (Statistics for Biology and Health). Berlin: Springer.
Ma, B.,Wang, Z., and Zhang, K. 2003. Alignment between two multiple alignments. Pages 254-265 of: Proceedings of the 14th Annual Conference on Combinatorial Pattern Matching. Berlin, Heidelberg: Springer.
Ma, J., Zhang, L., Suh, B.B., Raney, B.J., Burhans, R.C., Kent, W.J., Blanchette, M., Haussler, D., and Miller, W. 2006. Reconstructing contiguous regions of an ancestral genome. Genome Research, 16(12), 1557-1565.Google Scholar
Ma, J., Wang, S., Wang, Z., and Xu, J. 2014. MRFalign: protein homology detection through alignment of Markov random fields. PLoS Computational Biology, 10(3), e1003500. doi:10.1371/journal.pcbi.1003500.CrossRefGoogle Scholar
Maddison, D. 1991. The discovery and importance of multiple islands of most parsimonious trees. Systematic Zoology, 40, 315-328.Google Scholar
Maddison, D. 2016. The rapidly changing landscape of insect phylogenetics. Current Opinion in Insect Science, 18, 77-82.Google Scholar
Maddison, W.P. 1997. Gene trees in species trees. Systematic Biology, 46, 523-536.Google Scholar
Mallet, J. 2005. Hybridization as an invasion of the genome. Trends in Ecology & Evolution, 20, 229-237.Google Scholar
Mallo, D., and Posada, D. 2016. Multilocus inference of species trees and DNA barcoding. Philosophical Transactions of the Royal Society (B), 371, 20150335. http://dx.doi.org/10.1098/rstb.2015.0335. CrossRefGoogle Scholar
Matsen, F.A., Kodner, R.B., and Armbrust, E.V. 2010. pplacer: linear time maximumlikelihood and Bayesian phylogenetic placement of sequences onto a fixed reference tree. BMC Bioinformatics, 11, 538.Google Scholar
McCormack, J., Harvey, M., Faircloth, B., Crawford, N., Glenn, T., and Brumfield, R. 2013. A phylogeny of birds based on over 1,500 loci collected by target enrichment and high-throughput sequencing. PLoS One, 8, 54848.Google Scholar
McKenzie, A., and Steel, M.A. 2001. Properties of phylogenetic trees generated by Yuletype speciation models. Mathematical Biosciences, 170, 91-112.Google Scholar
McMorris, F.R., Warnow, T.J., and Wimer, T. 1994. Triangulating vertex-colored graphs. SIAM Journal on Discrete Mathematics, 7(2), 296-306.Google Scholar
Meiklejohn, K.A., Faircloth, B.C., Glenn, T.C., Kimball, R.T., and Braun, E.L. 2016. Analysis of a rapid evolutionary radiation using ultraconserved elements: evidence for a bias in some multispecies coalescent methods. Systematic Biology, 65(4), 612-627.Google Scholar
Meng, C., and Kubatko, L.S. 2009. Detecting hybrid speciation in the presence of incomplete lineage sorting using gene tree incongruence: a model. Theoretical Population Biology, 75, 35-45.Google Scholar
Metzler, D. 2003. Statistical alignment based on fragment insertion and deletion models. Bioinformatics, 19(4), 490-499.Google Scholar
Mihaescu, R., and Pachter, L. 2008. Combinatorics of least-squares trees. Proceedings of the National Academy of Sciences (USA), 105(36), 13206-13211.Google Scholar
Mihaescu, R., Levy, D., and Pachter, L. 2009. Why neighbor-joining works. Algorithmica, 54(1), 1-24.Google Scholar
Miklós, I. 2003. Algorithm for statistical alignment of sequences derived from a Poisson sequence length distribution. Discrete Applied Mathematics, 127(1), 79-84.Google Scholar
Miklós, I., Lunter, G.A., and Holmes, I. 2004. A “long indel model” for evolutionary sequence alignment. Molecular Biology and Evolution, 21(3), 529-540.Google Scholar
Miller, W., and Myers, E. 1988. Sequence comparison with concave weighting functions. Bulletin of Mathematical Biology, 50, 97-120.Google Scholar
Mindell, D.P. 2013. The Tree of Life: metaphor, model, and heuristic device. Systematic Biology 62(3), 478-489.Google Scholar
Mir arabbaygi (Mirarab), S. 2015. Novel scalable approaches for multiple sequence alignment and phylogenomic reconstruction. Ph.D. thesis, University of Texas at Austin.
Mirarab, S., and Warnow, T. 2011. FastSP: linear-time calculation of alignment accuracy. Bioinformatics, 27(23), 3250-3258.Google Scholar
Mirarab, S., and Warnow, T. 2015. ASTRAL-II: coalescent-based species tree estimation with many hundreds of taxa and thousands of genes. Bioinformatics, 31(12), i44-i52.Google Scholar
Mirarab, S., Nguyen, N., and Warnow, T. 2012. SEPP: SATé-enabled phylogenetic placement. Pages 247-58 of: Pacific Symposium on Biocomputing.
Mirarab, S., Reaz, R., Bayzid, Md. S., Zimmermann, T., Swenson, M.S., and Warnow, T. 2014a. ASTRAL: Accurate Species TRee ALgorithm. Bioinformatics, 30(17), i541-i548.Google Scholar
Mirarab, S., Bayzid, Md. S., Boussau, B., and Warnow, T. 2014b. Statistical binning improves phylogenomic analysis. Science, 346(6215), 1250463.Google Scholar
Mirarab, S., Nguyen, N., Wang, L.S., Guo, S., Kim, J., and Warnow, T. 2015a. PASTA: ultra-large multiple sequence alignment of nucleotide and amino acid sequences. Journal of Computational Biology, 22, 377-386.Google Scholar
Mirarab, S., Bayzid, M.S., Boussau, B., and Warnow, T. 2015b. Response to comment on “Statistical binning enables an accurate coalescent-based estimation of the avian tree.” Science, 350(6257), 171.Google Scholar
Mitchison, G.J. 1999. A probabilistic treatment of phylogeny and sequence alignment. Journal of Molecular Evolution, 49, 11-22.Google Scholar
Mitchison, G.J., and Durbin, R.M. 1995. Tree-based maximum likelihood substitution matrices and hidden Markov models. Journal of Molecular Evolution, 41, 1139-1151.Google Scholar
Money, D., and Whelan, S. 2012. Characterizing the phylogenetic tree-search problem. Systematic Biology, 61(2), 228-239.Google Scholar
Mooers, A.O. 2004. Effects of tree shape on the accuracy of maximum likelihood-based ancestor reconstructions. Systematic Biology, 53(5), 809-814.Google Scholar
Mooers, A., and Heard, S.B. 1997. Inferring evolutionary process from phylogenetic tree shape. Quantitative Review of Biology, 72(1), 31-54.Google Scholar
Moret, B.M.E., Roshan, U., and Warnow, T. 2002. Sequence length requirements for phylogenetic methods. Pages 343-356 of: Proceedings of the 2nd International Workshop on Algorithms in Bioinformatics (WABI–02). Berlin: Springer.
Moret, B.M.E., Lin, Y., and Tang, J. 2013. Rearrangements in phylogenetic inference: compare, model, or encode? Pages 147-171 of: Chauve, C., El-Mabrouk, N., and Tannier, E. (eds.), Models and Algorithms for Genome Evolution. London: Springer.
Morgenstern, B., Dress, A., and Wener, T. 1996. Multiple DNA and protein sequence based on segment-to-segment comparison. Proceedings of the National Academy of Sciences (USA), 93, 12098-12103.Google Scholar
Morgenstern, B., Frech, K., Dress, A., and Werner, T. 1998. DIALIGN: finding local similarities by multiple sequence alignment. Bioinformatics, 14(3), 290-294.Google Scholar
Morlon, H., Potts, M.D., and Plotkin, J.B. 2010. Inferring the dynamics of diversification: a coalescent approach. PLoS Biology, 8(9), e1000493.Google Scholar
Morrison, D.A. 2006. Multiple sequence alignment for phylogenetic purposes. Australian Systematic Botany, 19, 479-539.Google Scholar
Morrison, D. 2010a. Phylogenetic networks in systematic biology (and elsewhere). Pages 1-48 of: Mohan, R. (ed.), Research Advances in Systematic Biology. Trivandrum: Global Research Network.
Morrison, D.A. 2010b. Using data-display networks for exploratory data analysis in phylogenetic studies. Molecular Biology and Evolution, 27(5), 1044-1057.Google Scholar
Morrison, D.A. 2011. Introduction to Phylogenetic Networks. Uppsala: RJR Productions.
Morrison, D.A. 2014a. Is the Tree of Life the best mataphor, model, or heuristic for phylogenetics? Systematic Biology, 63(4), 628-638.Google Scholar
Morrison, D.A. 2014b. Next generation sequencing and phylogenetic networks. EMBnet. journal, 20, 3760.Google Scholar
Morrison, D.A. 2017. Next Generation Systematics. - Peter D. Olson, Joseph Hughe and James A. Cotton. Systematic Biology, 66(1), 121-123. doi: https://doi.org/10.1093/sysbio/syw081. Google Scholar
Morrison, D.A., Morgan, M.J., and Kelchner, S.A. 2015. Molecular homology and multiple-sequence alignment: an analysis of concepts and practice. Australian Systematic Biology, 28, 46-62.Google Scholar
Mossel, E., and Roch, S. 2011. Incomplete lineage sorting: consistent phylogeny estimation from multiple loci. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(1), 166-171.Google Scholar
Mossel, E., and Roch, S. 2013. Identifiability and inference of non-parametric ratesacross-sites models on large-scale phylogenies. Journal of Mathematical Biology, 67, 767-797.Google Scholar
Mossel, E., and Roch, S. 2015. Distance-based species tree estimation: informationtheoretic trade-off between number of loci and sequence length under the coalescent. arXiv preprint. arXiv:1504.05289v1. To appear, The Annals of Applied Probability.
Moyle, R.G., Oliveros, C.H., and ersen, M.J., Hosner, P.A., Benz, B.W., Manthey, J.D., Travers, S.L., Brown, R.M., and Faircloth, B.C. 2016. Tectonic collision and uplift of Wallacea triggered the global songbird radiation. Nature Communications, 7.Google Scholar
Nadeau, J.H., and Taylor, B.A. 1984. Lengths of chromosome segments conserved since divergence of man and mouse. Proceedings of the National Academy of Sciences (USA), 81, 814-818.Google Scholar
Nakhleh, L. 2010. A metric on the space of reduced phylogenetic networks. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(2), 218-222.Google Scholar
Nakhleh, L. 2016. Computational approaches to species phylogeny inference and gene tree reconciliation. Trends in Ecology ' Evolution, 28, 719-728.Google Scholar
Nakhleh, L., Roshan, U., St. John, K., Sun, J., and Warnow, T. 2001a. Designing fast converging phylogenetic methods. Bioinformatics, 17, 190-198.Google Scholar
Nakhleh, L., Roshan, U., St. John, K., Sun, J., and Warnow, T. 2001b. The performance of phylogenetic methods on trees of bounded diameter. Pages 189-203 of: Proceedings 1st Workshop on Algorithms in BioInformatics (WABI01). Berlin: Springer.
Nakhleh, L., Moret, B.M.E., Roshan, U., St. John, K., Sun, J., and Warnow, T. 2002. The accuracy of fast phylogenetic methods for large datasets. Pages 211-222 of: Proceedings of the 7th Pacific Symposium on Biocomputing (PSB02).
Nakhleh, L., Sun, J., Warnow, T., Linder, C.R., Moret, B.M.E., and Tholse, A. 2003. Towards the development of computational tools for evaluating phylogenetic network reconstruction methods. Pages 315-326 of: Proceedings of the 8th Pacific Symposium on Biocomputing (PSB 2003).
Nakhleh, L., Warnow, T., and Linder, C.R. 2004. Reconstructing reticulate evolution in species: theory and practice. Pages 337-346 of: Proceedings of the 8th International Conference on Computational Molecular Biology (RECOMB–04). New York: ACM Press.
Nakhleh, L., Warnow, T., Linder, C.R., and St. John, K. 2005a. Reconstructing reticulate evolution in species: theory and practice. Journal of Computational Biology, 12(6), 796-811.Google Scholar
Nakhleh, L., Ruths, D., and Wang, L.S. 2005b. RIATA-HGT: A fast and accurate heuristic for reconstructing horizontal gene transfer. Pages 84-93 of: The Eleventh International Computing and Combinatorics Conference (COCOON–05). Berlin: Springer.
Nawrocki, E.P. 2009. Structural RNA homology search and alignment using covariance models. Ph.D. thesis, Washington University in Saint Louis, School of Medicine.
Nawrocki, E.P., Kolbe, D.L., and Eddy, S.R. 2009. Infernal 1.0: inference of RNA alignments. Bioinformatics, 25, 1335-1337.Google Scholar
Needleman, S.B., and Wunsch, C.D. 1970. A general method applicable to the search for similarities in the amino acid sequence of two proteins. Journal of Molecular Biology, 48, 443-453.Google Scholar
Nei, M. 1986. Stochastic errors in DNA evolution and molecular phylogeny. Pages 515-534 of: Karlin, S., and Nevo, E. (eds.), Evolutionary Processes and Theory. New York: Academic Press.
Nei, M., Kumar, S., and Kumar, S. 2003. Molecular Evolution and Phylogenetics. Oxford: Oxford University Press.
Nelesen, S. 2009. Improved methods for phylogenetics. Ph.D. thesis, University of Texas at Austin.
Nelesen, S., Liu, K., Zhao, D., Linder, C.R., and Warnow, T. 2008. The effect of the guide tree on multiple sequence alignments and subsequent phylogenetic analyses. Pages 15-24 of: Pacific Symposium on Biocomputing, vol. 13.
Nelesen, S., Liu, K., Wang, L.S., Linder, C.R., and Warnow, T. 2012. DACTAL: divideand- conquer trees (almost) without alignments. Bioinformatics, 28, i274-i282.Google Scholar
Neuwald, A.F. 2009. Rapid detection, classification, and accurate alignment of up to a million or more related protein sequences. Bioinformatics, 25, 1869-1875.Google Scholar
Neves, D.T., and Sobral, J.L. 2017. Parallel SuperFine: a tool for fast and accurate supertree estimation - features and limitations. Future Generation Computer Systems, 67, 441-454.Google Scholar
Neves, D.T., Warnow, T., Sobral, J.L., and Pingali, K. 2012. Parallelizing SuperFine. Pages 1361-1367 of: 27th Symposium on Applied Computing (ACM-SAC), Bioinformatics. ACM. doi: 10.1145/2231936.2231992.CrossRef
Neyman, J. 1971. Molecular studies of evolution: a source of novel statistical problems. Page 127 of: Gupta, S.S., and Yackel, J. (eds.), Statistical Decision Theory and Related Topics. New York: Academic Press.
Nguyen, L.T., Schmidt, H.A., von Haeseler, A., and Minh, B.Q. 2015a. IQ-TREE: a fast and effective stochastic algorithm for estimating maximum-likelihood phylogenies. Molecular Biology and Evolution, 32(1), 268-274.Google Scholar
Nguyen, N., Mirarab, S., and Warnow, T. 2012. MRL and SuperFine+MRL: new supertree methods. Algorithms for Molecular Biology, 7(3).Google Scholar
Nguyen, N., Mirarab, S., Liu, B., Pop, M., and Warnow, T. 2014. TIPP: taxonomic identification and phylogenetic profiling. Bioinformatics, 30(24), 3548-3555.Google Scholar
Nguyen, N., Mirarab, S., Kumar, K., and Warnow, T. 2015b. Ultra-large alignments using phylogeny aware profiles. Genome Biology, 16(124).Google Scholar
Nguyen, N., Nute, M., Mirarab, S., and Warnow, T. 2016. HIPPI: highly accurate protein family classification with ensembles of hidden Markov models. BMC Bioinformatics, 17 (Suppl 10), 765.Google Scholar
Nixon, K.C. 1999. The parsimony ratchet, a new method for rapid parsimony analysis. Cladistics, 15, 407-414.Google Scholar
Notredame, C., Holm, L., and Higgins, D.G. 1998. COFFEE: an objective function for multiple sequence alignments. Bioinformatics, 14(5), 407-422.Google Scholar
Notredame, C., Higgins, D.G., and Heringa, J. 2000. T-Coffee: a novel method for fast and accurate multiple sequence alignment. Journal of Molecular Biology, 302, 205-217.Google Scholar
Noutahi, E., Semeria, M., Lafond, M., Seguin, J., Boussau, B., Guégen, L., and El-Mabrouk, N. 2015. Efficient gene tree correction guided by species and synteny evolution. HAL archive, https://hal.archives-ouvertes.fr/hal-01162963v2.
Novák, Á., Miklós, I., Lyngsoe, R., and Hein, J. 2008. Stat Align: an extendable software package for joint Bayesian estimation of alignments and evolutionary trees. Bioinformatics, 24, 2403-2404.Google Scholar
Nute, M., and Warnow, T. 2016. Scaling statistical multiple sequence alignment to large datasets. BMC Bioinformatics, 17(Suppl 10), 764.Google Scholar
Nye, T.M.W., 2008. Tree of trees: an approach to comparing multiple alternative phylogenies. Systematic Biology, 57, 785-794.Google Scholar
Ogden, T.H., and Rosenberg, M.S. 2006. Multiple sequence alignment accuracy and phylogenetic inference. Systematic Biology, 55(2), 314-328.Google Scholar
Ogden, T.H., and Rosenberg, M. 2007. Alignment and topological accuracy of the direct optimization approach via POY and traditional phylogenetics via ClustalW + PAUP*. Systematic Biology, 56(2), 182-193.Google Scholar
Ohno, S. 1970. Evolution by Gene Duplication. New York: Springer.
Oldman, J., Wu, T., and van Iersel, L. 2016. TriLoNet: piecing together small networks to reconstruct reticulate evolutionary histories. Molecular Biology and Evolution, 33(8), 2151-2162.Google Scholar
Olson, P.D., Hughes, J., and Cotton, J.A. (eds.). 2016. Next Generation Systematics. Cambridge: Cambridge University Press.
Ortuno, F.M., Valenzuela, O., Pomares, H., Rojas, F., Florido, J.P., Urquiza, J.M., and Rojas, I. 2013. Predicting the accuracy of multiple sequence alignment algorithms by using computational intelligent techniques. Nucleic Acids Research, 41(1).Google Scholar
O'Sullivan, O., Suhre, K., Abergel, C., Higgins, D.G., and Notredame, C. 2004. 3DCoffee: combining protein sequences and structure within multiple sequence alignments. Journal of Molecular Biology, 340, 385-395.Google Scholar
Page, R. 2002. Modified Mincut Supertrees. Pages 537-551 of: Guigó, R., and Gusfield, D. (eds.), Algorithms in Bioinformatics. Berlin: Springer.
Page, R., and Holmes, E. 1998. Molecular Evolution: A Phylogenetic Approach. Oxford: Blackwell Publishers.
Pais, F.S.-M., Ruy, P.d.C., Oliveira, G., and Coimbra, R.S. 2014. Assessing the efficiency of multiple sequence alignment programs. Algorithms for Molecular Biology, 9, 4.Google Scholar
Pamilo, P., and Nei, M. 1998. Relationship between gene trees and species trees. Molecular Biology and Evolution, 5, 568-583.Google Scholar
Papadopoulos, J.S., and Agarwala, R. 2007. COBALT: constraint-based alignment tool for multiple protein sequences. Bioinformatics, 23(9), 1073-1079.Google Scholar
Pardi, F., Guillemot, S., and Gascuel, O. 2012. Combinatorics of distance-based tree inference. Proceedings of the National Academy of Sciences (USA), 109(41), 16443-16448.Google Scholar
Patel, S., Kimball, R.T., and Braun, E.L. 2013. Error in phylogenetic estimation for bushes in the Tree of Life. Journal of Phylogenetics and Evolutionary Biology, 1, 110. doi:10.4172/2329-9002.1000110.CrossRefGoogle Scholar
Paten, B., Herrero, J., Beal, K., Fitzgerald, S., and Birney, E. 2008. Enredo and Pecan: genome-wide mammalian consistency-based multiple alignment with paralogs. Genome Research, 18, 1814-1828.Google Scholar
Paten, B., Herrero, J., Beal, K., and Birney, E. 2009. Sequence progressive alignment, a framework for practical large-scale probabilistic consistency alignment. Bioinformatics, 25(3), 295-301.Google Scholar
Paten, B., Earl, D., Nguyen, N., Diekhans, M., Zerbino, D., and Haussler, D. 2011. Cactus: algorithms for genome multiple sequence alignment. Genome Research, 21, 1512-1528.Google Scholar
Pauplin, Y. 2000. Direct calculation of a tree length using a distance matrix. Molecular Biology and Evolution, 51, 41-47.Google Scholar
Pe'er, I., and Shamir, R. 1998. The median problems for breakpoints are NP-complete. In: Electronic Colloquium on Computational Complexity, vol. 71.
Pei, J., and Grishin, N.V. 2006. MUMMALS: multiple sequence alignment improved by using hidden Markov models with local structural information. Nucleic Acids Research, 34, 4364-4374.Google Scholar
Pei, J., and Grishin, N.V. 2007. PROMALS: towards accurate multiple sequence alignments of distantly related proteins. Bioinformatics, 23, 802-808.Google Scholar
Pei, J., Sadreyev, R., and Grishin, N.V. 2003. PCMA: fast and accurate multiple sequence alignment based on profile consistency. Bioinformatics, 19, 427-428.Google Scholar
Penn, O., Privman, E., Landan, G., Graur, D., and Pupko, T. 2010. An alignment confidence score capturing robustness to guide tree uncertainty. Molecular Biology and Evolution, 27(8), 1759-1767.Google Scholar
Pennisi, E. 2016. Shaking up the Tree of Life. Science, 354, 817-821.Google Scholar
Phillimore, A.B., and Price, T.D. 2008. Density-dependent cladogenesis in birds. PLoS Biology, 6(3), e71.Google Scholar
Phillips, C.A., and Warnow, T. 1996. The asymmetric median tree: a new model for building consensus trees. Discrete Applied Mathematics, 71, 311-335.Google Scholar
Phuong, T.M., Do, C.B., Edgar, R.C., and Batzoglou, S. 2006. Multiple alignment of protein sequences with repeats and rearrangements. Nucleic Acids Research, 34(20), 5932-5942.Google Scholar
Poe, S. 2003. Evaluation of the strategy of long-branch subdivision to improve the accuracy of phylogenetic methods. Systematic Biology, 52, 423-428.Google Scholar
Pollock, D.D., Zwickl, D.J., McGuire, J.A., and Hillis, D.M. 2002. Increased taxon sampling is advantageous for phylogenetic inference. Systematic Biology, 51, 664-671.Google Scholar
Posada, D. 2016. Phylogenomics for systematic biology. Systematic Biology, 65, 353-356.Google Scholar
Posada, D., and Buckley, T.R. 2004. Model selection and model averaging in phylogenetics: advantages of Akaike information criterion and Bayesian approaches over likelihood ratio tests. Systematic Biology, 53(5), 793-808.Google Scholar
Posada, D., and Crandall, K.A. 1998. Modeltest: testing the model of DNA substitution. Bioinformatics, 14(9), 817-818.Google Scholar
Posada, D., and Crandall, K.A. 2001. Selecting the best-fit model of nucleotide substitution. Systematic Biology, 50(4), 580-601.Google Scholar
Pray, L.A. 2004. Epigenetics: genome, meet your environment - as the evidence for epigenetics, researchers reacquire a taste for Lamarckism. The Scientist, 14.
Preusse, E., Quast, C., Knittel, K., Fuchs, B.M., Ludwig, W., Peplies, J., and Glockner, F.O. 2007. SILVA: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with ARB. Nucleic Acids Research, 35, 718-796.Google Scholar
Price, M.N., Dehal, P.S., and Arkin, A.P. 2010. FastTree 2: approximately maximumlikelihood trees for large alignments. PLoS ONE, 5(3), e9490. doi:10.1371/journal. pone.0009490.CrossRefGoogle Scholar
Purvis, A., and Quicke, D.L.J., 1997a. Are big trees indeed easy? Reply from A. Purvis and D.L.J. Quicke. Trends in Ecology & Evolution, 12(9), 357-358.Google Scholar
Purvis, A., and Quicke, D.L.J., 1997b. Building phylogenies: are the big easy? Trends in Ecology & Evolution, 12(2), 49-50.
Qian, B., and Goldstein, R.A. 2001. Distribution of indel lengths. Proteins, 45, 102-104.Google Scholar
Qian, B., and Goldstein, R.A. 2003. Detecting distant homologs using phylogenetic treebased HMMs. PROTEINS: Structure, Function, and Genetics, 52, 446-453.Google Scholar
Rannala, B., and Yang, Z. 1996. Probability distribution of molecular evolutionary trees: a new method of phylogenetic inference. Journal of Molecular Evolution, 43, 304-311.Google Scholar
Rannala, B., and Yang, Z. 2003. Bayes estimation of species divergence times and ancestral population sizes using DNA sequences from multiple loci. Genetics, 164, 1645-1656.Google Scholar
Rannala, B., Huelsenbeck, J.P., Yang, Z., and Nielsen, R. 1998. Taxon sampling and the accuracy of large phylogenies. Systematic Biology, 47, 702-710.Google Scholar
Ranwez, V., and Gascuel, O. 2001. Quartet-based phylogenetic inference: improvements and limits. Molecular Biology and Evolution, 18(6), 1103-1116.Google Scholar
Ranwez, V., Criscuolo, A., and Douzery, E.J. 2010. SuperTriplets: a triplet-based supertree approach to phylogenomics. Bioinformatics, 26(12), i115-i123.Google Scholar
Raphael, B., Zhi, D., Tang, H., and Pevzner, P. 2004. A novel method for multiple alignment of sequences with repeated and shuffled elements. Genome Research, 14, 2336-2346.Google Scholar
Rasmussen, M.D., and Kellis, M. 2012. Unified modelling of gene duplication, loss, and coalescence using a locus tree. Genome Research, 22, 755-765.Google Scholar
Raubeson, L.A., and Jansen, R.K. 1992. Chloroplast DNA evidence on the ancient evolutionary split in vascular land plants. Science, 255, 1697-1699.Google Scholar
Raup, D.M. 1985. Mathematical models of cladogenesis. Paleobiology, 11(1), 42-52.Google Scholar
Raup, D.M., Gould, S.J., Schopf, T.J.M., and Simberloff, D.S. 1973. Stochastic-models of phylogeny and the evolution of diversity. Journal of Geology, 81, 525-542.Google Scholar
Reaz, R., Bayzid, M.S., and Rahman, M.S. 2014. Accurate phylogenetic tree reconstruction from quartets: a heuristic approach. PLoS One. doi: 10.1371/journal.pone.0104008.CrossRef
Redelings, B.D., and Suchard, M.A. 2005. Joint Bayesian estimation of alignment and phylogeny. Systematic Biology, 54(3), 401-418.Google Scholar
Reeck, G.R., de Haen, C., Teller, D.C., Doolitte, R., Fitch, W., Dickerson, R.E., Chambon, P., McLachlan, A.D., Margoliash, E., Jukes, T.H., and Zuckerkandl, E. 1987. “Homology” in proteins and nucleic acids: a terminology muddle and a way out of it. Cell, 50, 667.Google Scholar
Rheindt, F.E., Fujita, M.K., Wilton, P.R., and Edwards, S.V. 2014. Introgression and phenotypic assimilation in Zimmerius flycatchers (Tyrannidae): population genetic and phylogenetic inferences from genome-wide SNPs. Systematic Biology, 63(2), 134-152.Google Scholar
Rieseberg, L.H. 1997. Hybrid origins of plant species. Annual Review of Ecology and Systematics, 28, 359-389.Google Scholar
Rivas, E., and Eddy, S.R. 2008. Probabilistic phylogenetic inference with insertions and deletions. PLoS Computational Biology, 4(9), e1000172.Google Scholar
Rivas, E., and Eddy, S.R. 2015. Parameterizing sequence alignment with an explicit evolutionary model. BMC Bioinformatics, 16(1).Google Scholar
Roch, S. 2006. A short proof that phylogenetic tree reconstruction by maximum likelihood is hard. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(1), 92-94.Google Scholar
Roch, S. 2008. Sequence-length requirement for distance-based phylogeny reconstruction: breaking the polynomial barrier. Pages 729-738 of: Proceedings of the Symposium on Foundations of Computer Science (FOCS).
Roch, S. 2010. Towards extracting all phylogenetic information from matrices of evolutionary distances. Science, 327(5971), 1376-1379.Google Scholar
Roch, S., and Sly, A. 2016. Phase transition in the sample complexity of likelihood-based phylogeny inference. arXiv:1508.01964.
Roch, S., and Snir, S. 2013. Recovering the tree-like trend of evolution despite extensive lateral genetic transfer: a probabilistic analysis. Journal of Computational Biology, 20, 93-112.Google Scholar
Roch, S., and Steel, M.A. 2015. Likelihood-based tree reconstruction on a concatenation of aligned sequence data sets can be statistically inconsistent. Theoretical Population Biology, 100, 56-62.Google Scholar
Roch, S., and Warnow, T. 2015. On the robustness to gene tree estimation error (or lack thereof) of coalescent-based species tree methods. Systematic Biology, 64(4), 663-676.Google Scholar
Ronquist, F., and Huelsenbeck, J.P. 2003. Mr Bayes 3: Bayesian phylogenetic inference under mixed models. Bioinformatics, 19, 1572-1574.Google Scholar
Ronquist, F., Huelsenbeck, J.P., and Britton, T. 2004. Bayesian supertrees. Pages 193-224 of: Bininda-Emonds, O.R.P., (ed.), Phylogenetic Supertrees. New York: Springer.
Rose, D.J. 1970. Triangulated graphs and the elimination process. Journal of Mathematical Analysis and Applications, 32, 597-609.Google Scholar
Rose, D.J., Tarjan, R.E., and Lueker, G.S. 1976. Algorithmic aspects of vertex elimination on graphs. SIAM Journal on Computing, 5(2), 266-283.Google Scholar
Rosenberg, N.A. 2002. The probability of topological concordance of gene trees and species trees. Theoretical Population Biology, 61(2), 225-247.Google Scholar
Rosenberg, N.A. 2013. Discordance of species trees with their most likely gene trees: a unifying principle. Molecular Biology and Evolution, 30(12), 2709-2013.Google Scholar
Roshan, U., and Livesay, D.R. 2006. Probalign: multiple sequence alignment using partition function posterior probabilities. Bioinformatics, 22, 2715-2721.Google Scholar
Roshan, U., Moret, B.M.E., Warnow, T., and Williams, T.L. 2004. Rec-I-DCM3: a fast algorithmic technique for reconstructing large phylogenetic trees. In: Proceedings of the IEEE Computational Systems Bioinformatics Conference (CSB).
Rusinko, J., and McParlon, M. 2017. Species tree estimation using neighbor joining. Journal of Theoretical Biology, 414, 5-7.Google Scholar
Rzhetsky, A., and Nei, M. 1993. Theoretical foundation of the minimum evolution method of phylogenetic inference. Molecular Biology and Evolution, 10(5), 1073-1095.Google Scholar
Sadreyev, R., and Grishin, N. 2003. COMPASS: a tool for comparison of multiple protein alignments with assessment of statistical significance. Journal of Molecular Biology, 326, 317-336.Google Scholar
Saitou, N., and Nei, M. 1987. The neighbor-joining method: a new method for reconstructing phylogenetic trees. Molecular Biology and Evolution, 4, 406-425.Google Scholar
Sanderson, M.J., and Shaffer, H.B. 2002. Troubleshooting molecular phylogenetic analyses. Annual Review of Ecology and Systematics, 33(1), 49-72.Google Scholar
Sankoff, D. 1975. Minimal mutation trees of sequences. SIAM Journal of Applied Mathematics, 28(1), 35-42.Google Scholar
Sankoff, D., and Blanchette, M. 1998. Multiple genome rearrangement and breakpoint phylogeny. Journal of Computational Biology, 5(3), 555-570.Google Scholar
Sankoff, D., and Cedergren, R.J. 1983. Simultaneous comparison of three or more sequences related by a tree. Pages 253-264 of: Time Warps, String Edits, and Macromolecules: The Theory and Practice of Sequence Comparison. Boston, MA.
Sankoff, D., and Rousseau, P. 1975. Locating the vertices of a Steiner tree in an arbitrary metric space. Mathematical Programming, 9, 240-246.Google Scholar
Sankoff, D., Leduc, G., Antoine, N., Paquin, B., Lang, B.F., and Cedergren, R. 1992. Gene order comparisons for phylogenetic inference: evolution of the mitochondrial genome. Proceedings of the National Academy of Sciences (USA), 89(14), 6575-6579.Google Scholar
Sankoff, D., Abel, Y., and Hein, J. 1994. A tree- a window- a hill; generalization of nearestneighbor interchange in phylogenetic optimization. Journal of Classification, 11(2), 209-232.Google Scholar
Sattath, S., and Tversky, A. 1977. Additive similarity trees. Psychometrika, 42(3), 319-345.Google Scholar
Schrempf, D., Minh, B.Q., De Maio, N., von Haeseler, A., and Kosiol, C. 2016. Reversible polymorphism-aware phylogenetic models and their application to tree inference. Journal of Theoretical Biology, 407, 362-370.Google Scholar
Schwartz, S., Kent, W.J., Smit, A., Zhang, Z., Baertsch, R., Hardison, R.C., Haussler, D., and Miller, W. 2003. Human-mouse alignments with BLASTZ. Genome Research, 13(1), 103-107.Google Scholar
Schwarz, G. 1978. Estimating the dimension of a model. Annals of Statistics, 6, 461-464.Google Scholar
Schwikowski, B., and Vingron, M. 1997. The deferred path heuristic for the generalized tree alignment problem. Journal of Computational Biology, 4(3), 415-431.Google Scholar
Schwikowski, B., and Vingron, M. 2003. Weighted sequence graphs: boosting iterated dynamic programming using locally suboptimal solutions. Discrete Applied Mathematics, 127(1), 95-117.Google Scholar
Semple, C., and Steel, M.A. 2000. A supertree method for rooted trees. Discrete Applied Mathematics, 105(13), 147-158.Google Scholar
Sevillya, G., Frenkel, Z., and Snir, S. 2016. Triplet MaxCut: a new toolkit for rooted supertree. Methods in Ecology and Evolution, 7(11), 1359-1365.Google Scholar
Shao, M., and Moret, B.M.E., 2016. On computing breakpoint distances for genomes with duplicate genes. Pages 189-203 of: Singh, M. (ed.), Proceedings of the 28th Annual Conference for Research in Computational Molecular Biology (RECOMB 2016). New York: Springer.
Shigezumi, T. 2006. Robustness of greedy type minimum evolution algorithms. Pages 815-821 of: Proceedings of the International Conference on Computational Science. Berlin: Springer.
Siepel, A., and Haussler, D. 2004. Combining phylogenetic and hidden Markov models in biosequence analysis. Journal of Computational Biology, 11(2-3), 413-428.Google Scholar
Sievers, F., Wilm, A., Dineen, D., Gibson, T.J., Karplus, K., Li, W., Lopez, R.,McWilliams, H., Remmert, M., Soding, J., Thompson, J.D., and Higgins, D. 2011. Fast, scalable generation of high-quality protein multiple sequence alignments using Clustal Omega. Molecular Systems Biology, 7.Google Scholar
Sievers, F., Dineen, D., Wilm, A., and Higgins, D.G. 2013. Making automated multiple alignments of very large numbers of protein sequences. Bioinformatics, 29(8), 989-995.Google Scholar
Sjölander, K. 2004. Phylogenomic inference of protein molecular function: advances and challenges. Bioinformatics, 20(2), 170-179.Google Scholar
Sjölander, K., Karplus, K., Brown, M.P., Hughey, R., Krogh, A., Mian, I.S., and Haussler, D. 1996. Dirichlet mixtures: a method for improved detection of weak but significant protein sequence homology. Computing Applications in the Biosciences (CABIOS), 12, 327-45.Google Scholar
Sjölander, K., Datta, R.S., Shen, Y., and Shoffner, G.M. 2011. Ortholog identification in the presence of domain architecture rearrangement. Briefings in Bioinformatics, 12(5), 413-422.Google Scholar
Smith, J.V., Braun, E.L., and Kimball, R.T. 2013. Ratite non-monophyly: independent evidence from 40 novel loci. Systematic Biology, 62(1), 35-49.Google Scholar
Smith, S.A., Beaulieu, J.M., and Donoghue, M.J. 2009. Mega-phylogeny approach for comparative biology: an alternative to supertree and supermatrix approaches. BMC Evolutionary Biology, 9, 37.Google Scholar
Smith, T.F., and Waterman, M.S. 1981. Identification of common molecular subsequences. Journal of Molecular Biology, 147, 195-197.Google Scholar
Snir, S., and Rao, S. 2006. Using Max Cut to enhance rooted trees consistency. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 3(4), 323-333.Google Scholar
Snir, S., and Rao, S. 2010. Quartets MaxCut: a divide and conquer quartets algorithm. IEEE/ACM Transactions on Computational Biology and Bioinformatics, 7(4), 704-718.Google Scholar
Snir, S., Warnow, T., and Rao, S. 2008. Short quartet puzzling: a new quartet-based phylogeny reconstruction algorithm. Journal of Computational Biology, 15(1), 91-103.Google Scholar
Söding, J. 2005. Protein homology detection by HMM-HMM comparison. Bioinformatics, 21(7), 951-960.Google Scholar
Sokal, R., and Michener, C. 1958. A statistical method for evaluating systematic relationships. University of Kansas Science Bulletin, 38, 1409-1438.Google Scholar
Solís-Lemus, C., and Ané, C. 2016. Inferring phylogenetic networks with maximum pseudolikelihood under incomplete lineage sorting. PLoS Genetics, 12(3), e1005896.Google Scholar
Spencer, M., Bordalejo, B., Wang, L.S., Barbrook, A.C., Mooney, L.R., Robinson, P., Warnow, T., and Howe, C.J. 2003. Gene order analysis reveals the history of The Canterbury Tales manuscripts. Computers and the Humanities, 37(1), 97-109.Google Scholar
Springer, M.S., and Gatesy, J. 2016. The gene tree delusion. Molecular Phylogenetics and Evolution, 94, 1-33.Google Scholar
St. John, K. 2016. Review paper: the shape of phylogenetic treespace. Systematic Biology. doi:10.1093/sysbio/syw025.CrossRef
St. John, K., Warnow, T., Moret, B.M.E., and Vawter, L. 2003. Performance study of phylogenetic methods: (unweighted) quartet methods and neighbor-joining. Journal of Algorithms, 48, 173-193.Google Scholar
Stadler, T., and Degnan, J.H. 2012. A polynomial time algorithm for calculating the probability of a ranked gene tree given a species tree. Algorithms for Molecular Biology, 7(7).Google Scholar
Stamatakis, A. 2006. RAxML-VI-HPC: Maximum likelihood-based phylogenetic analyses with thousands of taxa and mixed models. Bioinformatics, 22, 2688-2690.Google Scholar
Steel, M.A. 1992. The complexity of reconstructing trees from qualitative characters and subtrees. Journal of Classification, 9, 91-116.Google Scholar
Steel, M.A. 1994a. The maximum likelihood point for a phylogenetic tree is not unique. Systematic Biology, 43(4), 560-564.Google Scholar
Steel, M.A. 1994b. Recovering a tree from the leaf colourations it generates under a Markov model. Applied Mathematics Letters, 7, 19-24.Google Scholar
Steel, M.A. 2013. Consistency of Bayesian inference of resolved phylogenetic trees. Journal of Theoretical Biology, 336, 246-249.Google Scholar
Steel, M.A., and Gascuel, O. 2006. Neighbor-joining revealed. Molecular Biology and Evolution, 23(11), 1997-2000.Google Scholar
Steel, M.A., and Rodrigo, A. 2008. Maximum likelihood supertrees. Systematic Biology, 57(2), 243-250.Google Scholar
Steel, M.A., and Warnow, T. 1993. Kaikoura tree theorems: the maximum agreement subtree problem. Information Processing Letters, 48, 77-82.Google Scholar
Steel, M.A., Linz, S., Huson, D.H., and Sanderson, M.J. 2013. Identifying a species tree subject to random lateral gene transfer. Journal of Theoretical Biology, 322, 81-93.Google Scholar
Stockham, C., Wang, L.S., and Warnow, T. 2002. Postprocessing of phylogenetic analysis using clustering. Bioinformatics 18(Supp.1), i285-i293.Google Scholar
Stolzer, M., Lai, H., Xu, M., Sathaye, D., Vernot, B., and Durand, D. 2012. Inferring duplications, losses, transfers and incomplete lineage sorting with nonbinary species trees. Bioinformatics, 28(18), i409-i415.Google Scholar
Stoye, J., Evers, D., and Meyer, F. 1998. Rose: generating sequence families. Bioinformatics, 14(2), 157-163.Google Scholar
Strimmer, K., and Moulton, V. 2000. Likelihood analysis of phylogenetic networks using directed graphical models. Molecular Biology and Evolution, 17(6), 875-881.Google Scholar
Strimmer, K, and von Haeseler, A. 1996. Quartet puzzling: a quartet maximim-likelihood method for reconstructing tree topologies. Molecular Biology and Evolution, 13(7), 964-969.Google Scholar
Studier, J.A., and Keppler, K.L. 1988. A note on the neighbor-joining algorithm of Saitou and Nei. Molecular Biology and Evolution, 5(6), 729-731.Google Scholar
Sturtevant, A., and Dobzhansky, T. 1936. Inversions in the third chromosome of wild races of Drosophila pseudoobscura and their use in the study of the history of the species. Proceedings of the National Academy of Sciences (USA), 22, 448-450.Google Scholar
Subramanian, A.R., Kaufmann, M., and Morgenstern, B. 2008. DIALIGN-TX: greedy and progressive approaches for segment-based multiple sequence alignment. Algorithms for Molecular Biology, 3, 6.Google Scholar
Suchard, M.A., and Redelings, B.D. 2006. BAli-Phy: simultaneous Bayesian inference of alignment and phylogeny. Bioinformatics, 22, 2047-2048.Google Scholar
Sugiura, N. 1978. Further analysis of the data by Akaike's information criterion and the finite corrections. Communications in Statistics: Theory and Methods, 7(1), 13-26.Google Scholar
Sullivan, J., and Joyce, P. 2005. Model selection in phylogenetics. Annual Review of Ecology, Evolution, and Systematics, 36, 445-466.Google Scholar
Sullivan, J., and Swofford, D.L. 1997. Are guinea pigs rodents? The importance of adequate models in molecular phylogenetics. Journal of Mammalian Evolution, 4, 77-86.Google Scholar
Sun, K., Meiklejohn, K.A., Faircloth, B.C., Glenn, T.C., Braun, E.L., and Kimball, R.T. 2014. The evolution of peafowl and other taxa with ocelli (eyespots): a phylogenomic approach. Proceedings of the Royal Society of London (B): Biological Sciences, 281(1790), 20140823.Google Scholar
Swenson, K.M., Doroftei, A., and El-Mabrouk, N. 2012a. Gene tree correction for reconciliation and species tree inference. Algorithms for Molecular Biology, 7(1), 1-11.Google Scholar
Swenson, M.S., Barbançon, F., Linder, C.R., and Warnow, T. 2010. A simulation study comparing supertree and combined analysis methods using SMIDGen. Algorithms for Molecular Biology, 5, 8.Google Scholar
Swenson, M.S., Suri, R., Linder, C.R., and Warnow, T. 2011. An experimental study of Quartets MaxCut and other supertree methods. Algorithms for Molecular Biology, 6, 7.Google Scholar
Swenson, M.S., Suri, R., Linder, C.R., and Warnow, T. 2012b. SuperFine: fast and accurate supertree estimation. Systematic Biology, 61(2), 214-227.Google Scholar
Swofford, D.L. 2002. PAUP*: Phylogenetic Analysis Using Parsimony (* And Other Methods) Ver. 4. Sunderland, MA: Sinauer Associates.
Swofford, D.L., Olson, G.J., Waddell, P.J., and Hillis, D.M. 1996. Phylogenetic Inference. Second edition. Sunderland, MA: Sinauer Associates.
Syvanen, M. 1985. Cross-species gene transfer; implications for a new theory of evolution. Journal of Theoretical Biology, 112, 333-343.Google Scholar
Szöllʺosi, G.J., Boussau, B., Abby, S.S., Tannier, E., and Daubin, V. 2012. Phylogenetic modeling of lateral gene transfer reconstructs the pattern and relative timing of speciations. Proceedings of the National Academy of Sciences (USA), 109, 17513-17518.Google Scholar
Szöllʺosi, G.J., Rosikiewicz, W., Boussau, B., Tannier, E., and Daubin, V. 2013. Efficient exploration of the space of reconciled gene trees. Systematic Biology, 62(6), 901-912.Google Scholar
Szöllʺosi, G.J., Tannier, E., Daubin, V., and Boussau, B. 2015. The inference of gene trees with species trees. Systematic Biology, 64, E42-E62.Google Scholar
Takahashi, H., and Matsuyama, A. 1980. An approximate solution for the Steiner problem in graphs. Mathematica Japonica, 24, 463-470.Google Scholar
Talavera, G., and Castresana, J. 2007. Improvement of phylogenies after removing divergent and ambiguously aligned blocks from protein sequence alignments. Systematic Biology, 56, 564-577.Google Scholar
Taly, J.F., Magis, C., Bussotti, G., Chang, J.M., Tommaso, P.D., Erb, I., Espinosa-Carrasco, J., Kemena, C., and Notredame, C. 2011. Using the T-Coffee package to build multiple sequence alignments of protein, RNA, DNA sequences and 3D structures. Nature Protocols, 6, 1669-1682.Google Scholar
Tan, G., Muffato, M., Ledergerber, C., Herrero, J., Goldman, N., Gil, M., and Dessimoz, C. 2015. Current methods for automated filtering of multiple sequence alignments frequently worsen single-gene phylogenetic inference. Systematic Biology, 64(5), 778-791.Google Scholar
Tang, J., and Moret, B.M.E., 2003. Scaling up accurate phylogenetic reconstruction from gene-order data. Bioinformatics, 19 (Suppl. 1), i305-i312.
Tarjan, R.E. 1985. Decomposition by clique separators. Discrete Mathematics, 55, 221-232.Google Scholar
Tavaré, S. 1986. Some probabilistic and statistical problems in the analysis of DNA sequences. Pages 57-86 of: Lectures on Mathematics in the Life Sciences, vol. 17. Providence, RI: American Mathematical Society.
Taylor, M.S., Kai, C., Kawai, J., Carninci, P., Hayashizaki, Y., and Semple, C.A.M., 2006. Heterotachy in mammalian promoter evolution. PLoS Genetics, 2(4), e30.Google Scholar
Than, C., and Nakhleh, L., 2009. Species tree inference by minimizing deep coalescences. PLoS Computational Biology, 5, 31000501.Google Scholar
Thompson, J., Plewniak, F., and Poch, O. 1999. BAliBASE: a benchmark alignments database for the evaluation of multiple sequence alignment programs. Bioinformatics, 15, 87-88. Extended collection of benchmarks is available at www-bio3d-igbmc.ustrasb.fr/balibase/.Google Scholar
Thompson, J.D., Higgins, D.G., and Gibson, T.J. 1994. CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting,position-specific gap penalties and weight matrix choice. Nucleic Acids Research, 22, 4673-4680.Google Scholar
Thorley, J.L., and Wilkinson, M. 2003. A view of supertree methods. DIMACS Series in Discrete Mathematics and Theoretical Computer Science, 61, 185-194.Google Scholar
Thorne, J.L., Kishino, H., and Felsenstein, J. 1991. An evolutionary model for maximum likelihood alignment of DNA sequences. Journal of Molecular Evolution, 33(2), 114-124.Google Scholar
Thorne, J.L., Kishino, H., and Felsenstein, J. 1992. Inching toward reality: an improved likelihood model of sequence evolution. Journal of Molecular Evolution, 34(1), 3-16.Google Scholar
Toth, A., Hausknecht, A., Krisai-Greilhuber, I., Papp, T., Vagvolgyi, C., and Nagy, L.G. 2013. Iteratively refined guide trees help improving alignment and phylogenetic inference in the mushroom family Bolbitiaceae. PLoS One, 8(2), e56143.Google Scholar
Tuffley, C., and Steel, M.A. 1997. Links between maximum likelihood and maximum parsimony under a simple model of site substitution. Bulletin of Mathematical Biology, 59, 581-607.Google Scholar
Tukey, J.W. 1997. Exploratory Data Analysis. Reading, MA: Addison-Wesley.
Ullah, I., Parviainen, P., and Lagergren, J. 2015. Species tree inference using a mixture model. Molecular Biology and Evolution, 32(9), 2469-2482.Google Scholar
Uricchio, L.H., Warnow, T., and Rosenberg, N.A. 2016. An analytical upper bound on the number of loci required for all splits of a species tree to appear in a set of gene trees. BMC Bioinformatics, 17(14), 241.Google Scholar
Vach, W. 1989. Least squares approximation of additive trees. Pages 230-238 of: Opitz, O. (ed.), Conceptual and Numerical Analysis of Data. Berlin: Springer.
Vachaspati, P., and Warnow, T. 2015. ASTRID: Accurate Species TRees from Internode Distances. BMC Genomics, 16(Suppl 10), S3.Google Scholar
Vachaspati, P., and Warnow, T. 2016. FastRFS: fast and accurate Robinson- Foulds Supertrees using constrained exact optimization. Bioinformatics. doi: 10.1093/bioinformatics/btw600.CrossRef
Varón, A., Vinh, L.S., Bomash, I., and Wheeler, W.C. 2007. POY Software. Documentation by A., Varon, L.S., Vinh, I., Bomash, W., Wheeler, K., Pickett, I., Temkin, J., Faivovich, T., Grant, and W.L., Smith. Available for download at www.amnh.org/our-research/computational-sciences/research/projects/systematic-biology/poy.
Vernot, B., Stolzer, M., Goldman, A., and Durand, D. 2008. Reconciliation with non-binary species trees. Journal of Computational Biology, 15(8), 981-1006.Google Scholar
Vinga, S., and Almeida, J. 2003. Alignment-free sequence comparison: a review. Bioinformatics, 19(4), 513-523.Google Scholar
Vingron, M., and Argos, P. 1991. Motif recognition and alignment for many sequences by comparison of dot-matrices. Journal of Molecular Biology, 218, 33-43.Google Scholar
Vingron, M., and von Haeseler, A. 1997. Towards integration of multiple alignment and phylogenetic tree construction. Journal of Computational Biology, 4(1), 22-34.Google Scholar
Vinh, L.S., and von Haeseler, A. 2005. Shortest triplet clustering: reconstructing large phylogenies using representative sets. BMC Bioinformatics, 6(1), 1-14.Google Scholar
Vitti, J.J., Grossman, S.R., and Sabeti, P.C. 2013. Detecting natural selection in genomic data. Annual Review of Genetics, 47, 97-120.Google Scholar
Vogt, H.G. 1895. Leçons sur la résolution algébrique des équations. Nony.
Wägele, J.W., and Mayer, C. 2007. Visualizing differences in phylogenetic information content of alignments and distinction of three classes of long-branch effects. BMC Evolutionary Biology, 7, 147.Google Scholar
Wakeley, J. 2009. Coalescent Theory: An Introduction. Greenwood Village, CO: Roberts & Company.
Wallace, I.M., O'Sullivan, O., Higgins, D.G., and Notredame, C. 2006. M-Coffee: combining multiple sequence alignment methods with T-Coffee. Nucleic Acids Research, 34, 1692-1699.Google Scholar
Wang, L., and Gusfield, D. 1997. Improved approximation algorithms for tree alignment. Journal of Algorithms, 25, 255-273.Google Scholar
Wang, L., and Jiang, T. 1994. On the complexity of multiple sequence alignment. Journal of Computational Biology, 1(4), 337-348.Google Scholar
Wang, L., Jiang, T., and Lawler, E.L. 1996. Approximation algorithms for tree alignment with a given phylogeny. Algorithmica, 16, 302-315.Google Scholar
Wang, L., Jiang, T., and Gusfield, D. 2000. A more efficient approximation scheme for tree alignment. SIAM Journal of Computing, 30(1), 283-299.Google Scholar
Wang, L.S., and Warnow, T. 2001. Estimating true evolutionary distances between genomes. In: Proceedings of the 33rd Symposium on the Theory of Computing (STOC01). New York: ACM Press.
Wang, L.S., and Warnow, T. 2006. Reconstructing chromosomal evolution. SIAM Journal on Computing, 36(1), 99-131.Google Scholar
Wang, L.S., Warnow, T., Moret, B.M.E., Jansen, R.K., and Raubeson, L.A. 2006. Distance-based genome rearrangement phylogeny. Journal of Molecular Evolution, 63(4), 473-483.Google Scholar
Wang, N., Braun, E.L., and Kimball, R.T. 2012. Testing hypotheses about the sister group of the Passeriformes using an independent 30-locus data set. Molecular Biology and Evolution, 29(2), 737-750.Google Scholar
Wang, N., Kimball, R.T., Braun, E.L., Liang, B., and Zhang, Z. 2016. Ancestral range reconstruction of Galliformes: the effects of topology and taxon sampling. Journal of Biogeography.
Wareham, H.T. 1995. A simplified proof of the NP- and MAX SNP-hardness of multiple sequence tree alignment. Journal of Computational Biology, 2(4), 509-514.Google Scholar
Warnow, T. 1993. Constructing phylogenetic trees efficiently using compatibility criteria. New Zealand Journal of Botany, 31(3), 239-248.Google Scholar
Warnow, T. 2015. Concatenation analyses in the presence of incomplete lineage sorting. PLoS Currents Tree of Life. Edition 1. doi: 10.1371/currents.tol.8d41ac0f13d1abedf4 c4a59f5d17b1f7.CrossRef
Warnow, T., Moret, B.M.E., and St. John, K. 2001. Absolute convergence: true trees from short sequences. Pages 186-195 of: Proceedings of ACM-SIAM Symposium on Discrete Algorithms (SODA 01). Philadelphia, PA: Society for Industrial and Applied Mathematics (SIAM).
Watterson, G., Ewens, W., Hall, T., and Morgan, A. 1982. The chromosome inversion problem. Journal of Theoretical Biology, 99(1), 1-7.Google Scholar
Wehe, A., Bansal, M.S., Burleigh, J.G., and Eulenstein, O. 2008. DupTree: a program for large-scale phylogenetic analyses using gene tree parsimony. Bioinformatics, 24(13), 1540-1541.Google Scholar
Wen, D., Yu, Y., and Nakhleh, L. 2016. Bayesian inference of reticulate phylogenies under the multispecies network coalescent. PLoS Genetics, 12(5), e1006006.Google Scholar
Wheeler, T., and Kececioglu, J. 2007. Multiple alignment by aligning alignments. Pages 559-568 of: Proceedings of the 15th ISCB Conference on Intelligent Systems for Molecular Biology.
Wheeler, W.C. 2015. Phylogenetic network analysis as a parsimony optimization problem. BMC Bioinformatics, 16, 296.Google Scholar
Wheeler, W.C., Aagesen, L., Arango, C.P., Faivovich, J., Grant, T., D'Haese, C., Janies, D., Smith, W.L., Varón, A., and Giribet, G. 2006. Dynamic Homology and Phylogenetic Systematics: A Unified Approach Using POY. New York: American Museum of Natural History.
Whelan, S., and Goldman, N. 2001. A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. Molecular Biology and Evolution, 18(5), 691-699.Google Scholar
Wickett, N.J., Mirarab, S., Nguyen, N., Warnow, T., Carpenter, E., Matasci, N., Ayyampalayam, S., Barker, M.S., Burleigh, J.G., Gitzendanner, M.A., et al. 2014. Phylotranscriptomic analysis of the origin and early diversification of land plants. Proceedings of the National Academy of Sciences (USA), 111(45), E4859-E4868.Google Scholar
Wilkinson, M. 1994. Common cladistic information and its consensus representations: reduced Adams and reduced cladistic consensus trees and profiles. Systematic Biology, 43, 343-368.Google Scholar
Wilkinson, M. 1995. More on reduced consensus methods. Systematic Biology, 44(3), 435-439.Google Scholar
Wilkinson, M., and Cotton, J.A. 2006. Supertree methods for building the Tree of Life: divide-and-conquer approaches to large phylogenetic problems. Reconstructing the Tree of Life: Taxonomy and Systematics of Species Rich Taxa, 61.Google Scholar
Wilkinson, M., Cotton, J.A., Creevey, C., Eulenstien, O., Harris, S.R., Lapointe, F.J., Levasseur, C., McInerney, J.O., Pisani, D., and Thorley, J.L. 2005. The shape of supertrees to come: tree shape related properties of fourteen supertree methods. Systematic Biology, 54(3), 419-431.Google Scholar
Willson, S.J. 2004. Constructing rooted supertrees using distances. Bulletin of Mathematical Biology, 66(6), 1755-1783.Google Scholar
Willson, S.J. 2012. Tree-average distances on certain phylogenetic networks have their weights uniquely determined. Algorithms for Molecular Biology, 7(1), 1.Google Scholar
Willson, S.J. 2013. Reconstruction of certain phylogenetic networks from their tree-average distances. Bulletin of Mathematical Biology, 75(10), 1840-1878.Google Scholar
Wright, S. 1931. Evolution in Mendelian populations. Genetics, 16, 97-159.Google Scholar
Wu, Y. 2012. Coalescent-based species tree inference from gene tree topologies under incomplete lineage sorting by maximum likelihood. Evolution, 66, 763-775.Google Scholar
Wu, Y. 2013. An algorithm for constructing parsimonious hybridization networks with multiple phylogenetic trees. In: Annual International Conference on Computational Molecular Biology (RECOMB 2013).
Xin, L., Ma, B., and Zhang, K. 2007. A new quartet approach for reconstructing phylogenetic trees: Quartet Joining method. Pages 40-50 of: Proceedings, Computing and Combinatorics (COCOON) 2007. Berlin: Springer.
Yamada, K., Tomii, K., and Katoh, K. 2016. Application of the MAFFT sequence alignment program to large data: reexamination of the usefulness of chained guide trees. Bioinformatics, 32(21), 3246-3251.Google Scholar
Yancopoulos, S., Attie, O., and Friedberg, R. 2005. Efficient sorting of genomic permutations by translocation, inversion and block interchange. Bioinformatics, 21(16), 3340-3346.Google Scholar
Yang, Z. 1995. A space-time process model for the evolution of DNA sequences. Genetics, 139, 993-1005.Google Scholar
Yang, Z. 2009. Computational Molecular Evolution. Oxford: Oxford University Press.
Yang, Z. 2014. Molecular Evolution: A Statistical Approach. Oxford: Oxford University Press.
Yang, Z., and Goldman, N. 1997. Are the big indeed easy? Trends in Ecology & Evolution, 12(9), 357.Google Scholar
Yang, Z., Nielsen, R., Goldman, N., and Pedersen, A.M.K., 2000. Codon-substitution models for heterogeneous selection pressure at amino acid sites. Genetics, 155(1), 431-449.Google Scholar
Yona, G., and Levitt, M. 2002. Within the twilight zone: a sensitive profile-profile comparison tool based on information theory. Journal of Molecular Biology, 315, 1257-1275.Google Scholar
Yu, Y., and Nakhleh, L. 2015a. A distance-based method for inferring phylogenetic networks. Pages 378-389 of: Proceedings International Symposium on Bioinformatics Research and Applications (ISBRA). Berlin: Springer.
Yu, Y., and Nakhleh, L. 2015b. A maximum pseudo-likelihood approach to phylogenetic networks. BMC Genomics, 16(10), 1-10.Google Scholar
Yu, Y., Warnow, T., and Nakhleh, L. 2011a. Algorithms for MDC-based multi-locus phylogeny inference: beyond rooted binary gene trees on single alleles. Journal of Computational Biology, 18, 1543-1559.Google Scholar
Yu, Y., Than, C., Degnan, J.H., and Nakhleh, L. 2011b. Coalescent histories on phylogenetic networks and detection of hybridization despite incomplete lineage sorting. Systematic Biology, 60(2), 138-149.Google Scholar
Yu, Y., Degnan, J.H., and Nakhleh, L. 2012. The probability of a gene tree topology within a phylogenetic network with applications to hybridization detection. PLoS Genetics, 8(4), e1002660.Google Scholar
Yu, Y., Ristic, N., and Nakhleh, L. 2013. Fast algorithms and heuristics for phylogenomics under ILS and hybridization. BMC Bioinformatics, 14(Suppl 15), S6.Google Scholar
Yu, Y., Dong, J., Liu, K., and Nakhleh, L. 2014. Maximum likelihood inference of reticulate evolutionary histories. Proceedings of the National Academy of Sciences (USA), 111(46), 16448-16453.Google Scholar
Yule, G.U. 1924. A mathematical theory of evolution, based on the conclusions of Dr. J.C. Willis. Philosophical Transactions of the Royal Society London, Series B, 213, 21-87.Google Scholar
Zharkikh, A., and Li, W.H. 1993. Inconsistency of the maximum-parsimony method: the case of five taxa with a molecular clock. Systematic Biology, 42, 113-125.Google Scholar
Zhou, H., and Zhou, Y. 2005. SPEM: improving multiple sequence alignment with sequence profiles and predicted secondary structures. Bioinformatics, 21(18), 3615-3261.Google Scholar
Zhou, Y., Rodrigue, N., Lartillot, N., and Philippe, H. 2007. Evaluation of the models handling heterotachy in phylogenetic inference. BMC Evolutionary Biology, 7, 206.Google Scholar
Zhu, J., Yu, Y., and Nakhleh, L. 2016. In the light of deep coalescence: revisiting trees within networks. arXiv preprint arXiv:1606.07350.
Zimmermann, T., Mirarab, S., and Warnow, T. 2014. BBCA: improving the scalability of *BEAST using random binning. BMC Genomics, 15(Suppl 6), S11.Google Scholar
Zuckerman, D. 2006. Linear degree extractors and the inapproximability of max clique and chromatic number. Pages 681-690 of: Proceedings 38th ACM Symposium on the Theory of Computing (STOC).
Zwickl, D.J., and Hillis, D.M. 2002. Increased taxon sampling greatly reduces phylogenetic error. Systematic Biology, 51(4), 588-598.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Tandy Warnow, University of Illinois, Urbana-Champaign
  • Book: Computational Phylogenetics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316882313.018
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Tandy Warnow, University of Illinois, Urbana-Champaign
  • Book: Computational Phylogenetics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316882313.018
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Tandy Warnow, University of Illinois, Urbana-Champaign
  • Book: Computational Phylogenetics
  • Online publication: 26 October 2017
  • Chapter DOI: https://doi.org/10.1017/9781316882313.018
Available formats
×