Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-m8qmq Total loading time: 0 Render date: 2024-04-24T13:13:57.209Z Has data issue: false hasContentIssue false

2 - Mesoscale description of polydisperse systems

Published online by Cambridge University Press:  05 March 2013

Daniele L. Marchisio
Affiliation:
Politecnico di Torino
Rodney O. Fox
Affiliation:
Iowa State University
Get access

Summary

In this chapter, the governing equations needed to describe polydisperse multiphase flows are presented without a rigorous derivation from the microscale model. (See Chapter 4 for a complete derivation.) For clarity, the discussion of the governing equations in this chapter will be limited to particulate systems (e.g. crystallizers, fluidized beds, and aerosol processes). However, the reader familiar with disperse multiphase flow modeling will recognize that our comments hold in a much more general context. Indeed, the extension of the modeling concepts developed in this chapter to many other multiphase systems is straightforward, and will be discussed in later chapters.

The primary purpose of this chapter is to introduce the key concepts and notation needed to develop models for polydisperse multiphase flows. We thus begin with a general discussion of the number-density function (NDF) in its various forms, followed by example transport equations for the NDF with known (PBE) and computed (GPBE) particle velocity. These transport equations are written in terms of “averaged” quantities whose precise definitions will be presented in Chapter 4. We then consider the moment-transport equations that are derived from the NDF transport equation by integration over phase space. Finally, we briefly describe how turbulence modeling can be undertaken starting from the moment-transport equations.

Number-density functions (NDF)

The disperse phase is constituted by discrete elements. One of the main assumptions of our analysis is that the characteristic length scales of the elements are smaller than the characteristic length scale of the variation of properties of interest (i.e. chemical species concentration, temperature, continuous phase velocities).

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2013

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×