Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-19T23:42:50.766Z Has data issue: false hasContentIssue false

7 - Essentials of upconversion laser physics

Published online by Cambridge University Press:  07 December 2009

W. P. Risk
Affiliation:
IBM Almaden Research Center, New York
T. R. Gosnell
Affiliation:
Los Alamos National Laboratory
A. V. Nurmikko
Affiliation:
Brown University, Rhode Island
Get access

Summary

The organizing idea of the previous chapters is that nonlinear, nonresonant, properties of insulating materials can be exploited to convert long-wavelength coherent radiation into short-wavelength radiation. As was discussed at length, this compels the device designer to simultaneously satisfy two demanding operational constraints: (1) Optical intensities at a first-harmonic frequency must be sufficiently high that the electromagnetic response of dielectric media is pushed into the nonlinear regime. (2) A travelling wave thus generated at the second-harmonic frequency must propagate at the same phase velocity as the fundamental wave lest the second harmonic switch roles from receiver to donor of optical power in the device. However, nonlinear frequency generation hardly requires that the operative interactions take place off resonance. Photon adding functions can be accomplished equally well with the aid of resonant optical processes in insulating materials, in turn wholly eliminating the two challenging constraints just named. We are, of course, referring to upconversion lasers. In this chapter and the next, we present this second approach to the nonlinear generation of short visible wavelengths and discuss what different operational challenges arise in creating a practical upconversion device.

INTRODUCTION TO UPCONVERSION LASERS AND RARE-EARTH OPTICAL PHYSICS

Upconversion lasers function just as ordinary lasers do, at least insofar as the mechanism by which their output beams are generated: A population inversion is created between two widely separated states thus making possible optical gain and laser oscillation in whatever media play host to the atoms, ions, or molecules possessing those states. The difference comes in the pumping mechanism.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2003

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×