Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-tj2md Total loading time: 0 Render date: 2024-04-23T07:42:06.732Z Has data issue: false hasContentIssue false

14 - COMBUSTION IN SUPERSONIC FLOWS

Published online by Cambridge University Press:  06 July 2010

Chung K. Law
Affiliation:
Princeton University, New Jersey
Get access

Summary

In almost all the combustion problems studied so far, the flows are sufficiently subsonic such that M ≪ 1, where M is the Mach number. There are, however, situations in which reactions take place in flows whose velocities can be sufficiently high such that they either are close to sonic or are supersonic. Examples are combustion within supersonic ramjet (scramjet) engines and the initiation and propagation of blast waves.

In nonreactive fluid mechanics such high-speed flows are called compressible flows because density now varies appreciably with the flow velocity. Such a density variation is to be distinguished from that caused by the large amount of heat release in reactive, low subsonic flows studied in previous chapters. It is therefore important to recognize that density can still vary significantly in an aerodynamically incompressible, low subsonic flow due to heat release. When it is actually assumed to be constant for such a flow, either due to the smallness of the heat release or for analytical expediency, then the flow is said to be one of constant density.

There are several fundamental differences between high-speed flows and low subsonic flows. First, the isobaric assumption of Section 5.2.4 ceases to hold. Second, the kinetic energy of the flow is now appreciable as compared to the chemical energy and frequently needs to be considered. Indeed, we have already encountered this issue in Section 12.5 on supersonic boundary-layer flows. Third, while diffusion is an essential process in low subsonic flows, convection frequently dominates over diffusion in high-speed flows except for situations involving steep gradients such as those within boundary layers.

Type
Chapter
Information
Combustion Physics , pp. 634 - 692
Publisher: Cambridge University Press
Print publication year: 2006

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×