Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-2lccl Total loading time: 0 Render date: 2024-04-25T21:05:03.670Z Has data issue: false hasContentIssue false

8 - Shear thickening

Published online by Cambridge University Press:  05 December 2011

Jan Mewis
Affiliation:
Katholieke Universiteit Leuven, Belgium
Norman J. Wagner
Affiliation:
University of Delaware
Get access

Summary

Introduction

A commonplace example of the phenomenon of shear thickening in suspensions is cornstarch. Mixed in water under the right conditions, it exhibits a well-known behavior: although it can flow under gravity and be stirred, when it is stirred fast or kneaded, it appears to nearly solidify and strongly resists stirring [1]. Upon a reduction in the stirring speed or applied stress, the material returns to its fluid-like state. Such aqueous dispersions of starch are commonly found in classroom demonstrations, as this remarkable rheological behavior continues to inspire very young students as well as accomplished scientists to inquire more deeply into the nature of multiphase flows.

In a seminal review of shear thickening in suspensions [2], Howard Barnes writes:

We shall find that so many kinds of suspensions show shear thickening that one is soon forced to the conclusion that given the right circumstances, all suspensions of solid particles will show the phenomenon. It is important to note also that in suspensions, the shear thickening is almost immediately reversible, that is to say as soon as the shear rate is decreased, the viscosity (however high it might be) immediately decreases.

Indeed, as discussed in Chapter 3, shear thickening is predicted and observed for dilute dispersions of hard spheres. Figure 3.1 demonstrates that shear thickening can lead to a viscosity higher than the zero shear viscosity, so that very high stresses are encountered in the high shear rate flow of colloidal dispersions. This can be a challenge to the processing of suspensions, limiting pumping, coating, and spraying operations as well.

Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2011

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Williamson, R. V.Heckert, W. W.Some properties of dispersions of the quicksand typeInd Eng Chem 23 1931 667CrossRefGoogle Scholar
Barnes, H. A.Shear-thickening (dilatancy) in suspensions of nonaggregating solid particles dispersed in Newtonian liquidsJ Rheol 33 1989 329CrossRefGoogle Scholar
Reynolds, O.On the dilatancy of media composed of rigid particles in contact, with experimental illustrationsPhil Mag Ser 5 20 1885 469CrossRefGoogle Scholar
Mead, W. J.The geologic role of dilatancyJ Geol 33 1925 685CrossRefGoogle Scholar
Bagnold, R. A.Experiments on a gravity-free dispersion of large solid spheres in a Newtonian fluid under shearProc R Soc A. 225 1954 49CrossRefGoogle Scholar
Bagnold, R. A.Shearing and dilatation of dry sand and singing mechanismProc R Soc A 295 1966CrossRefGoogle Scholar
Hunt, M. L.Zenit, R.Campbell, C. S.Brennen, C. E.Revisiting the 1954 suspension experiments of R. A. BagnoldJ Fluid Mech 452 2002 1CrossRefGoogle Scholar
Juliusburger, F.Pirquet, A.Thixotropy and rheopexy of V2O5 solsTrans Faraday Soc 32 1936 0445CrossRefGoogle Scholar
Toussaint, F.Roy, C.Jézéquel, P.-H.Reducing shear thickening of cement-based suspensionsRheol. Acta 48 2009CrossRefGoogle Scholar
Feys, D.Verhoeven, R.De Schutter, G.Why is fresh self-compacting concrete shear thickening?Cem Concr Res 39 2009 510CrossRefGoogle Scholar
Lootens, D.Hebraud, P.Lecolier, E.Van Damme, H.Gelation, shear-thinning and shear-thickening in cement slurriesOil Gas Sci Technol 59 2004 31CrossRefGoogle Scholar
Laun, H. M.Bung, R.Schmidt, F.Rheology of extremely shear thickening polymer dispersions (passively viscosity switching fluids)J Rheol 35 1991 999CrossRefGoogle Scholar
Fischer, C.Braun, S. A.Bourban, P. E.Michaud, V.Plummer, C. J. G.Manson, J. A. E.Dynamic properties of sandwich structures with integrated shear-thickening fluidsSmart Mater Struct 15 2006 1467CrossRefGoogle Scholar
Lee, Y. S.Wetzel, E. D.Wagner, N. J.The ballistic impact characteristics of Kevlar (R) woven fabrics impregnated with a colloidal shear thickening fluidJ Mater Sci 38 2003 2825CrossRefGoogle Scholar
Decker, M. J.Halbach, C. J.Nam, C. H.Wagner, N. J.Wetzel, E. D.Stab resistance of shear thickening fluid (STF)-treated fabricsComp Sci Techn 67 2007 565CrossRefGoogle Scholar
Shenoy, S. S.Wagner, N. J.Bender, J. W.E-FiRST: Electric field responsive shear thickening fluidsRheol Acta 42 2003 287CrossRefGoogle Scholar
Williamson, R. V.Some unusual properties of colloidal dispersionsJ Phys Chem 35 1931 354CrossRefGoogle Scholar
Scott Blair, G. W.An Introduction to Industrial RheologyLondonJ. & A. Churchill 1938Google Scholar
Freundlich, H.Röder, H. L.Dilatancy and its relation to thixotropyTrans Faraday Soc 34 1938 0308CrossRefGoogle Scholar
Metzner, A. B.Whitlock, M.Flow behavior of concentrated (dilatant) suspensionsTrans Soc Rheol 2 1958 239CrossRefGoogle Scholar
Bauer, W. H.Collins, E. A.Thixotropy and dilatancyEirich, F. R.Rheology: Theory and Applications, Vol. 4New YorkAcademic Press 1967 423CrossRefGoogle Scholar
Morgan, R. J.A study of the phenomenon of rheological dilatancy in an aqueous pigment suspensionTrans Soc Rheol 12 1968 511CrossRefGoogle Scholar
Lee, D. I.Reder, A. S.The rheological properties of clay suspensions, latexes, and clay-latex systemsPapers Presented at the 23rd Annual TAPPI Coating Conference, San Francisco, May 1972Norcross, GATechnical Association of the Pulp and Paper Industry 1972Google Scholar
Hoffman, R. L.Discontinuous and dilatant viscosity behavior in concentrated suspensions: 1. Observations of a flow instabilityTrans Soc Rheol 16 1972Google Scholar
Hoffman, R. L.Discontinuous and dilatant viscosity behavior in concentrated suspensions: 2. Theory and experimental testsJ Colloid Interface Sci 46 1974 491CrossRefGoogle Scholar
Bossis, G.Brady, J. F.The rheology of Brownian suspensionsJ Chem Phys 91 1989 1866CrossRefGoogle Scholar
Brady, J. F.Bossis, G.Stokesian dynamicsAnn Rev Fluid Mech 20 1988 111CrossRefGoogle Scholar
Laun, H. M.Bung, R.Hess, S.Rheological and small-angle neutron-scattering investigation of shear-induced particle structures of concentrated polymer dispersions submitted to plane Poiseuille and Couette flowJ Rheol 36 1992CrossRefGoogle Scholar
Chow, M. K.Zukoski, C. F.Nonequilibrium behavior of dense suspensions of uniform particles: Volume fraction and size dependence of rheology and microstructureJ Rheol 39 1995 33CrossRefGoogle Scholar
Kalman, D. P.Wagner, N. J.Microstructure of shear-thickening concentrated suspensions determined by flow-USANSRheol Acta 48 2009 897CrossRefGoogle Scholar
Lee, Y. S.Wagner, N. J.Rheological properties and small-angle neutron scattering of a shear thickening, nanoparticle dispersion at high shear ratesInd Eng Chem Res 45 2006 7015CrossRefGoogle Scholar
Maranzano, B. J.Wagner, N. J.Flow-small angle neutron scattering measurements of colloidal dispersion microstructure evolution through the shear thickening transitionJ Chem Phys 117 2002 10291CrossRefGoogle Scholar
Newstein, M. C.Wang, H.Balsara, N. P.Microstructural changes in a colloidal liquid in the shear thinning and shear thickening regimesJ Chem Phys 111 1999 4827CrossRefGoogle Scholar
Watanabe, H.Yao, M. L.Osaki, K.Nonlinear rheology and flow-induced structure in a concentrated spherical silica suspensionRheol Acta 37 1998 1CrossRefGoogle Scholar
Butera, R. J.Wolfe, M. S.Bender, J.Wagner, N. J.Formation of a highly ordered colloidal microstructure upon flow cessation from high shear ratesPhys Rev Lett 77 1996 2117CrossRefGoogle ScholarPubMed
D'Haene, P.Mewis, J.Fuller, G. G.Scattering dichroism measurements of flow-induced structure of a shear thickening suspensionJ Colloid Interface Sci 156 1993 350CrossRefGoogle Scholar
Bender, J. W.Wagner, N. J.Optical measurement of the contributions of colloidal forces to the rheology of concentrated suspensionsJ Colloid Interface Sci 172 1995 171CrossRefGoogle Scholar
Bender, J.Wagner, N. J.Reversible shear thickening in monodisperse and bidisperse colloidal dispersionsJ Rheol 40 1996 899CrossRefGoogle Scholar
O’Brien, V. T.Mackay, M. E.Stress components and shear thickening of concentrated hard sphere suspensionsLangmuir 16 2000 7931Google Scholar
Bergenholtz, J.Brady, J. F.Vicic, M.The non-Newtonian rheology of dilute colloidal suspensionsJ Fluid Mech 456 2002 239CrossRefGoogle Scholar
Batchelor, G. K.Green, J. T.The hydrodynamic interaction of two small freely-moving spheres in a linear flow fieldJ Fluid Mech 56 1972 375CrossRefGoogle Scholar
Russel, W. B.Sperry, P. R.Effect of microstructure on the viscosity of hard sphere dispersions and modulus of compositesProg Org Coat 23 1994 305CrossRefGoogle Scholar
Wagner, N. J.Bender, J. W.The role of nanoscale forces in colloid dispersion rheologyMRS Bulletin 29 2004 100CrossRefGoogle Scholar
Rastogi, S. R.Wagner, N. J.Lustig, S. R.Rheology, self-diffusion, and microstructure of charged colloids under simple shear by massively parallel nonequilibrium Brownian dynamicsJ Chem Phys 104 1996 9234CrossRefGoogle Scholar
Krishnamurthy, L. N.Wagner, N. J.Mewis, J.Shear thickening in polymer stabilized colloidal dispersionsJ Rheol 49 2005 1347CrossRefGoogle Scholar
Shenoy, S. S.Wagner, N. J.Influence of medium viscosity and adsorbed polymer on the reversible shear thickening transition in concentrated colloidal dispersionsRheol Acta 44 2005 360CrossRefGoogle Scholar
Maranzano, B. J.Wagner, N. J.The effects of interparticle interactions and particle size on reversible shear thickening: Hard-sphere colloidal dispersionsJ Rheol 45 2001 1205CrossRefGoogle Scholar
Maranzano, B. J.Wagner, N. J.The effects of particle-size on reversible shear thickening of concentrated colloidal dispersionsJ Chem Phys 114 2001 10514CrossRefGoogle Scholar
Kalman, D.Microstructure and Rheology of Concentrated Suspensions of Near Hard-Sphere ColloidsUniversity of Delaware 2010Google Scholar
Liberatore, M. W.Nettesheim, F.Wagner, N. J.Porcar, L.Spatially resolved small-angle neutron scattering in the 1–2 plane: A study of shear-induced phase-separating wormlike micellesPhys Rev E 73 2006CrossRefGoogle ScholarPubMed
Melrose, J. R.Ball, R. C.Contact networks” in continuously shear thickening colloidsJ Rheol 48 2004 961CrossRefGoogle Scholar
Banchio, A. J.Brady, J. F.Accelerated Stokesian dynamics: Brownian motionJ Chem Phys 118 2003 10323CrossRefGoogle Scholar
Melrose, J. R.Ball, R. C.Continuous shear thickening transitions in model concentrated colloids: The role of interparticle forcesJ Rheol 48 5 2004CrossRefGoogle Scholar
Foss, D. R.Brady, J. F.Structure, diffusion and rheology of Brownian suspensions by Stokesian dynamics simulationJ Fluid Mech 407 2000 167CrossRefGoogle Scholar
Lee, M.Alcoutlabi, M.Magda, J. J.The effect of the shear-thickening transition of model colloidal spheres on the sign of N-1 and on the radial pressure profile in torsional shear flowsJ Rheol 50 2006 293CrossRefGoogle Scholar
Morris, J. F.A review of microstructure in concentrated suspensions and its implications for rheology and bulk flowRheol Acta 48 2009 909CrossRefGoogle Scholar
Egres, R. G.The Effects of Particle Anisotropy on the Rheology and Microstructure of Concentrated Colloidal Suspensions through the Shear Thickening TransitionUniversity of Delaware 2005Google Scholar
Mewis, J.Biebaut, G.Shear thickening in steady and superposition flows effect of particle interaction forcesJ Rheol 45 2001 799CrossRefGoogle Scholar
Fredrickson, G. H.Pincus, P.Drainage of compressed polymer layers: Dynamics of a squeezed spongeLangmuir 7 1991 786CrossRefGoogle Scholar
Potanin, A. A.Russel, W. B.Hydrodynamic interaction of particles with grafted polymer brushes and applications to rheology of colloidal dispersionsPhys Rev E 52 1995 730CrossRefGoogle ScholarPubMed
Potanin, A. A.Russel, W. B.Erratum: Hydrodynamic interaction of particles with grafted polymer brushes and applications to rheology of colloidal dispersionsPhys Rev E 54 1996CrossRefGoogle ScholarPubMed
Gopalakrishnan, V.Zukoski, C. F.Effect of attractions on shear thickening in dense suspensionsJ Rheol 48 2004 1321CrossRefGoogle Scholar
Brown, E.Forman, N. A.Orellana, C. S.Generality of shear thickening in dense suspensionsNat Mater 9 2010 220CrossRefGoogle ScholarPubMed
D’Haene, P.Rheology of Polymerically Stabilized SuspensionsKatholieke Universiteit Leuven 1992Google Scholar
Hunt, W. J.Zukoski, C. F.The rheology of bimodal mixtures of colloidal particles with long-range, soft repulsionsJ Colloid Interface Sci 210 1999 343CrossRefGoogle ScholarPubMed
Chang, C.Powell, R.Dynamic simulation of bimodal suspensions of hydrodynamically interacting spherical particlesJ Fluid Mech 253 1993 1CrossRefGoogle Scholar
Chang, C. Y.Powell, R. L.Effect of particle size distributions on the rheology of concentrated bimodal suspensionsJ Rheol 38 1994 85CrossRefGoogle Scholar
Martys, N. S.Study of a dissipative particle dynamics based approach for modeling suspensionsJ Rheol 49 2005 401CrossRefGoogle Scholar
Fagan, M. E.Zukoski, C. F.The rheology of charge stabilized silica suspensionsJ Rheol 41 1997 373CrossRefGoogle Scholar
Chen, L. B.Ackerson, B. J.Zukoski, C. F.Rheological consequences of microstructural transitions in colloidal crystalsJ Rheol 38 1994 193CrossRefGoogle Scholar
Chen, L. B.Chow, M. K.Ackerson, B. J.Zukoski, C. F.Rheological and microstructural transitions in colloidal crystalsLangmuir 10 1994 2817CrossRefGoogle Scholar
Lee, Y. S.Wagner, N. J.Dynamic properties of shear thickening colloidal suspensionsRheol Acta 42 2003 199Google Scholar
Klein, C. O.Spiess, H. W.Calin, A.Balan, C.Wilhelm, M.Separation of the nonlinear oscillatory response into a superposition of linear, strain hardening, strain softening, and wall slip responseMacromolecules 40 2007 4250CrossRefGoogle Scholar
Chang, L.Friedrich, K.Schlarb, A. K.Tanner, R.Ye, L.Shear-thickening behavior of concentrated polymer dispersions under steady and oscillatory shearJ Mater Sci 46 2011 339CrossRefGoogle Scholar
Raghavan, S. R.Khan, S. A.Shear-thickening response of fumed silica suspensions under steady and oscillatory shearJ Colloid Interface Sci 185 1997 57CrossRefGoogle ScholarPubMed
Fischer, C.Plummer, C. J. G.Michaud, V.Bourban, P. E.Manson, J. A. E.Pre- and post-transition behavior of shear-thickening fluids in oscillating shearRheol Acta 46 2007 1099CrossRefGoogle Scholar
Doraiswamy, D.Mujumbar, A. N.Beris, A. A. N.Danforth, S. C.Metzner, A. B.The Cox-Merz rule extended: A rheological model for concentrated suspensions and other materials with a yield stressJ Rheol 35 1991 647CrossRefGoogle Scholar
Egres, R. G.Nettesheim, F.Wagner, N. J.Rheo-SANS investigation of acicular-precipitated calcium carbonate colloidal suspensions through the shear thickening transitionJ Rheol 50 2006 685CrossRefGoogle Scholar
Egres, R. G.Wagner, N. J.The rheology and microstructure of acicular precipitated calcium carbonate colloidal suspensions through the shear thickening transitionJ Rheol 49 2005 719CrossRefGoogle Scholar
Mock, E. B.Zukoski, C. F.Investigating microstructure of concentrated suspensions of anisotropic particles under shear by small angle neutron scatteringJ Rheol 51 2007 541CrossRefGoogle Scholar
Bergstrom, L.Rheological properties of Al2O3-SiC whisker composite suspensionsJ Mater Sci 31 1996 5257CrossRefGoogle Scholar
Meng, Q. J.Higdon, J. J. L.Large scale dynamic simulation of plate-like particle suspensions. II: Brownian simulationJ Rheol 52 2008 37CrossRefGoogle Scholar
Shenoy, S. S.Electric Field Effects on the Rheology of Shear Thickening Colloidal DispersionsUniversity of Delaware 2003Google Scholar
Chellamuthu, M.Arndt, E. M.Rothstein, J. P.Extensional rheology of shear-thickening nanoparticle suspensionsSoft Matter 5 2009 2117CrossRefGoogle Scholar
White, E. E. B.Chellamuthu, M.Rothstein, J. P.Extensional rheology of a shear-thickening cornstarch and water suspensionRheol Acta 49 2010 119CrossRefGoogle Scholar
Chow, M. K.Zukoski, C. F.Gap size and shear history dependencies in shear thickening of a suspensions ordered at restJ Rheol 39 1995 15CrossRefGoogle Scholar
Boersma, W. H.Baets, P. J. M.Laven, J.Stein, H. N.Time-dependent behavior and wall slip in concentrated shear thickening dispersionsJ Rheol 35 1991 1093CrossRefGoogle Scholar
Isa, L.Besseling, R.Morozov, A. N.Poon, W. C. K.Velocity oscillations in microfluidic flows of concentrated colloidal suspensionsPhys Rev Lett 102 2009CrossRefGoogle ScholarPubMed
Ball, R. C.Melrose, J. R.Lubrication breakdown in hydrodynamic simulations of concentrated colloidsAdv Colloid Interface Sci 59 1995 19CrossRefGoogle Scholar
Meeker, S. P.Bonnecaze, R. T.Cloitre, M.Slip and flow in pastes of soft particles: Direct observation and rheologyJ Rheol 48 2004 1295CrossRefGoogle Scholar
Meeker, S. P.Bonnecaze, R. T.Cloitre, M.Slip and flow in soft particle pastesPhys Rev Lett 92 2004CrossRefGoogle ScholarPubMed
Lim, A. S.Lopatnikov, S. L.Wagner, N. J.Gillespie, J. W.An experimental investigation into the kinematics of a concentrated hard-sphere colloidal suspension during Hopkinson bar evaluation at high stressesJ Non-Newtonian Fluid Mech 165 2010 1342CrossRefGoogle Scholar
Frith, W. J.Lips, A.The rheology of concentrated suspensions of deformable particlesAdv Colloid Interface Sci 61 1995 161CrossRefGoogle Scholar
Wolf, B.Lam, S.Kirkland, M.Frith, W. J.Shear thickening of an emulsion stabilized with hydrophilic silica particlesJ Rheol 51 2007 465CrossRefGoogle Scholar
Adams, S.Frith, W. J.Stokes, J. R.Influence of particle modulus on the rheological properties of agar microgel suspensionsJ Rheol 48 2004 1195CrossRefGoogle Scholar
Boersma, W. H.Laven, J.Stein, H. N.Shear thickening (dilatancy) in concentrated dispersionsAIChE J 36 1990 321CrossRefGoogle Scholar
Catherall, A. A.Melrose, J. R.Ball, R. C.Shear thickening and order-disorder effects in concentrated colloids at high shear ratesJ Rheol 44 2000 1CrossRefGoogle Scholar
Maranzano, B. J.Wagner, N. J.The effects of interparticle interactions and particle size on reversible shear thickening: Hard sphere colloidal dispersionsJ Rheol 45 2001CrossRefGoogle Scholar
Melrose, J. R.van Vliet, J. H.Ball, R. C.Continous shear thickening and colloid surfacesPhys Rev Lett 77 1996 4660CrossRefGoogle Scholar
Maranzano, B. J.Wagner, N. J.The effects of particle size on reversible shear thickening of concentrated colloidal dispersionsJ Chem Phys 114 2001 10514CrossRefGoogle Scholar
Bender, J.Wagner, N. J.Reversible shear thickening in monodisperse and bidisperse colloidal dispersionsJ Rheol 40 1996 899CrossRefGoogle Scholar
Franks, G. V.Zhou, Z. W.Duin, N. J.Boger, D. V.Effect of interparticle forces on shear thickening of oxide suspensionsJ Rheol 44 2000 759CrossRefGoogle Scholar
Laun, H. M.Rheological properties of aqueous polymer dispersionsAngew Makromol Chem 123 1984 335CrossRefGoogle Scholar
Kaldasch, J.Senge, B.Shear thickening in polymer stabilized colloidal suspensionsColloid Polym Sci 287 2009 1481CrossRefGoogle Scholar
Kaldasch, J.Senge, B.Laven, J.The impact of non-DLVO forces on the onset of shear thickening of concentrated electrically stabilized suspensionsRheol Acta 48 2009 665CrossRefGoogle Scholar
Brader, J. M.Nonlinear rheology of colloidal dispersionsJ Phys: Condens Matter 22 2010Google ScholarPubMed
Cates, M. E.Haw, M. D.Holmes, C. B.Dilatancy, jamming, and the physics of granulationJ Phys: Condens Matter 17 2005 S2517Google Scholar
Kulkarni, P. M.Morris, J. F.Suspension properties at finite Reynolds number from simulated shear flowPhys Fluids 20 4 2008CrossRefGoogle Scholar
Farr, R. S.Melrose, J. R.Ball, R. C.Kinetic theory of jamming in hard-sphere startup flowsPhys Rev E 55 1997 7203CrossRefGoogle Scholar
Melrose, J. R.Ball, R. C.The pathological behavior of sheared hard-spheres with hydrodynamic interactionsEurophys Lett 32 1995 535CrossRefGoogle Scholar
Holmes, C. B.Cates, M. E.Fuchs, M.Sollich, P.Glass transitions and shear thickening suspension rheologyJ Rheol 49 2005 237CrossRefGoogle Scholar
Holmes, C. B.Fuchs, M.Cates, M. E.Jamming transitions in a schematic model of suspension rheologyEurophys Lett 63 2003 240CrossRefGoogle Scholar
Koos, E.Willenbacher, N.Capillary forces in suspension rheologyScience 331 2011 897CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • Shear thickening
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.011
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • Shear thickening
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.011
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • Shear thickening
  • Jan Mewis, Katholieke Universiteit Leuven, Belgium, Norman J. Wagner, University of Delaware
  • Book: Colloidal Suspension Rheology
  • Online publication: 05 December 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511977978.011
Available formats
×