Skip to main content Accessibility help
×
Home
  • Print publication year: 2013
  • Online publication date: November 2013

5 - Multiple exciton generation in semiconductor quantum dots and electronically coupled quantum dot arrays for application to thirdgeneration photovoltaic solar cells

References

1 W. Shockley, H. J. Queisser, Detailed balance limit of efficiency of P–N junction solar cells. Journal of Applied Physics, 32 (1961), 510.
2 M. A. Green, K. Emery, Y. Hishikawa, W. Warta, Solar cell efficiency tables (version 36). Progress in Photovoltaics, 18 (2010), 346–352.
3 R. T. Ross, A. J. Nozik, Efficiency of hot-carrier solar-energy converters. Journal of Applied Physics, 53 (1982), 3813–3818.
4 M. A. Green, Third Generation Photovoltaics. Sydney: Bridge Printery, 2001.
5 J. M. Olsen, D. J. Friedman, S. Kurtz, High efficiency III–V multijunction solar cells. In: A. Luque, S. Hegedus, editors. Handbook of Photovoltaic Science and Engineering, p. 359. Hoboken: John Wiley & Sons LTd, 2003.
6 D. S. Boudreaux, F. Williams, A. J. Nozik, Hot carrier injection at semiconductor–electrolyte junctions. Journal of Applied Physics, 51 (1980), 2158–2163.
7 A. J. Nozik, Quantum Dot Solar Cells. Physica E, 14 (2002), 115–120-PII S1386–9477(02)00374–0.
8 S. Kolodinski, J. H. Werner, T. Wittchen, H. J. Queisser, Quantum efficiencies exceeding unity due to impact ionization in silicon solar-cells. Applied Physics Letters, 63 (1993), 2405–2407.
9 P. T. Landsberg, H. Nussbaumer, G. Willeke, Band–band impact ionization and solar-cell efficiencyJournal of Applied Physics, 74 (1993), 1451–1452.
10 A. Luque, A. Marti, Increasing the efficiency of ideal solar cells by photon induced transitions at intermediate levels. Physical Review Letters, 78 (1997), 5014–5017.
11 R. D. Schaller, V. I. Klimov, High efficiency carrier multiplication in PbSe nanocrystals: implications for solar energy conversion. Physical Review Letters, 92 (2004), ARTN 186601.
12 M. C. Beard, A. G. Midgett, M. C. Hanna, et al., Comparing multiple exciton generation in quantum dots to impact ionization in bulk semiconductors: implications for enhancement of solar energy conversion. Nano Letters, 10 (2010), 3019–3027.
13 S. Koc, The quantum efficiency of the photo-electric effect in germanium for the 0.3–2 micron wavelength region. Czech Journal of Physics, 7 (1957), 91–95.
14 V. S. Vavilov, On photo-ionization by fast electrons in germanium and silicon. Journal of the Physics and Chemistry of Solids, 8 (1959), 223.
15 J. Tauc, Electron impact ionization in semiconductors. Journal of the Physics and Chemistry of Solids, 8 (1959), 219.
16 V. N. Ivakhno, Quantum yield of internal photoeffect and impact ionization in Pbs. Fizika Tverdogo Tela, 14 (1972), 578-&.
17 V. N. Ivakhno, Quantum efficiency of internal photoelectric effect and impact ionization in silicon. Soviet Physics Semiconducturs, 6 (1973), 1391–1392.
18 O. Christensen, Quantum efficiency of internal photoelectric effect in silicon and germanium. Journal of Applied Physics, 47 (1976), 689–695.
19 A. R. Beattie, Impact ionization and quatum efficiency in InSb. Physics Status Solidi B, 111 (1982), 141–153.
20 A. R. Beattie, Optically created hole multiplication in InSb. Journal of Physics C Solid State Physics, 16 (1983), L791–L795.
21 N. S. Baryshev, C. Shchetinmp, A. Kharionoys, Quantum efficiency and impact ionization in lead and lead–tin chalcogenides. Soviet Physics–Semiconducturs, 8 (1974), 192–194.
22 A. J. Nozik, Spectroscopy and hot electron relaxation dynamics in semiconductor quantum wells and quantum dots. Annual Review of Physical Chemistry, 52 (2001), 193–231.
23 A. Efros, Auger Processes in Nanosize Semiconductor Crystals. New York: Kluwer Academic/Plenum Publishers, 2003.
24 A. Shabaev, A. L. Efros, A. J. Nozik, Multiexciton generation by a single photon in nanocrystals. Nano Letters, 6 (2006), 2856–2863.
25 M. C. Beard, R. J. Ellingson, Multiple exciton generation in semiconductor nanocrystals: toward efficient solar energy conversion. Laser Photonics Review, 2 (2008), 377–399.
26 J. J. H. Pijpers, R. Ulbricht, K. J. Tielrooijet al., Assessment of carrier-multiplication efficiency in bulk PbSe and PbS. Nature Physics, 5 (2009), 811–814.
27 R. J. Ellingson, M. C. Beard, J. C. Johnsonet al., Highly efficient multiple exciton generation in colloidal PbSe and PbS quantum dots. Nano Letters, 5 (2005), 865–871.
28 J. E. Murphy, M. C. Beard, A. G. Normanet al., PbTe colloidal nanocrystals: synthesis, characterization, and multiple exciton generation. Journal of the American Chemical Society, 128 (2006), 3241–3247.
29 M. T. Trinh, A. J. Houtepen, J. M. Schins, et al., In spite of recent doubts carrier multiplication does occur in PbSe nanocrystals. Nano Letters, 8 (2008), 1713–1718.
30 M. B. Ji, S. Park, S. T. Connor, et al., Efficient multiple exciton generation observed in colloidal PbSe quantum dots with temporally and spectrally resolved intraband excitation. Nano Letters, 9 (2009), 1217–1222.
31 R. D. Schaller, M. Sykora, S. Jeong, V. I. Klimov, High-efficiency carrier multiplication and ultrafast charge separation in semiconductor nanocrystals studied via time-resolved photoluminescence. Journal of Physical Chemistry B, 110 (2006), 25332–25338.
32 R. D. Schaller, M. A. Petruska, V. I. Klimov, Effect of electronic structure on carrier multiplication efficiency: comparative study of PbSe and CdSe nanocrystals. Applied Physics Letters, 87 (2005), ARTN 253102.
33 J. J. H. Pijpers, E. Hendry, M. T. W. Milderet al., Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots. Journal of Physical Chemistry C, 111 (2007), 4146–4152.
34 R. D. Schaller, J. M. Pietryga, V. I. Klimov, Carrier multiplication in InAs nanocrystal quantum dots with an onset defined by the energy conservation limit. Nano Letters, 7 (2007), 3469–3476.
35 M. C. Beard, K. P. Knutsen, P. R. Yu, et al., Multiple exciton generation in colloidal silicon nanocrystals. Nano Letters, 7 (2007), 2506–2512.
36 S. K. Stubbs, S. J. O. Hardman, D. M. Graham, et al., Efficient carrier multiplication in InP nanoparticles. Physical Revies B, 81 (2010), ARTN 081303.
37 Y. Kobayashi, T. Udagawa, N. Tamai, Carrier multiplication in CdTe quantum dots by single-photon timing spectroscopy. Chemistry Letters, 38 (2009), 830–831.
38 S. J. Wang, M. Khafizov, X. M. Tu, M. Zheng, T. D. Krauss, Multiple exciton generation in single-walled carbon nanotubes. Nano Letters, 10 (2010), 2381–2386.
39 D. Gachet, A. Avidan, I. Pinkas, D. Oron, An upper bound to carrier multiplication efficiency in type II colloidal quantum dots. Nano Letters, 10 (2010), 164–170.
40 E. H. Sargent, Infrared photovoltaics made by solution processing. Nature Photonics, 3 (2009), 325–331.
41 J. Tang, L. Brzozowski, D. A. R. Barkhouse, et al., Quantum dot photovoltaics in the extreme quantum confinement regime: the surface-chemical origins of exceptional air- and light-stability. ACS Nano, 4 (2010), 869–878.
42 J. M. Luther, J. B. Gao, M. T. Lloyd, et al., Stability assessment on a 3% bilayer PbS/ZnO quantum dot heterojunction solar cell. Advanced Materials, 22 (2010), 3704-+.
43 J. M. Luther, M. Law, M. C. Beard, et al., Schottky solar cells based on colloidal nanocrystal films. Nano Letters, 8 (2008), 3488–3492.
44 J. J. Choi, Y. F. Lim, M. B. Santiago-Berrios, et al., PbSe nanocrystal excitonic solar cells. Nano Letters, 9 (2009), 3749–3755.
45 K. S. Leschkies, T. J. Beatty, M. S. Kang, D. J. Norris, E. S. Aydil, Solar cells based on junctions between colloidal PbSe nanocrystals and thin ZnO films. ACS Nano, 3 (2009), 3638–3648.
46 M. Law, M. C. Beard, S. Choi, et al., Determining the internal quantum efficiency of PbSe nanocrystal solar cells with the aid of an optical model. Nano Letters, 8 (2008), 3904–3910.
47 A. G. Pattantyus-Abraham, I. J. Kramer, A. R. Barkhouse, et al., Depleted-heterojunction colloidal quantum dot solar cells. ACS Nano, 4 (2010), 3374–3380.
48 G. Nair, S. M. Geyer, L. Y. Chang, M. G. Bawendi, Carrier multiplication yields in PbS and PbSe nanocrystals measured by transient photoluminescence. Physical Review B, 78 (2008), ARTN 125325.
49 G. Nair, M. G. Bawendi, Carrier multiplication yields of CdSe and CdTe nanocrystals by transient photoluminescence spectroscopy. Physical Review B, 76 (2007), ARTN 081304.
50 M. Ben-Lulu, D. Mocatta, M. Bonn, U. Banin, S. Ruhman. On the absence of detectable carrier multiplication in a transient absorption study of InAs/CdSe/ZnSe core/shell1/shell2 quantum dots. Farkas Ctr Light Induced Proc, Inst Chem, IL-91904 Jerusalem, Israel sandy@fh.huji.ac.il: 2008:1207.
51 J. J. H. Pijpers, E. Hendry, M. T. W. Milder, et al., Carrier multiplication and its reduction by photodoping in colloidal InAs quantum dots. Journal of Physical Chemistry C, 111 (2007), 4146.
52 J. A. McGuire, J. Joo, J. M. Pietryga, R. D. Schaller, V. I. Klimov. New aspects of carrier multiplication in semiconductor nanocrystals. Accounts of Chemical Research, 41 (2008), 1810–1819.
53 J. A. McGuire, M. Sykora, J. Joo, J. M. Pietryga, V. I. Klimov, Apparent versus true carrier multiplication yields in semiconductor nanocrystals. Nano Letters, 10 (2010), 2049–2057.
54 M. C. Beard, A. G. Midgett, M. Law, et al., Variations in the quantum efficiency of multiple exciton generation for a series of chemically treated PbSe nanocrystal films. Nano Letters, 9 (2009), 836–845.
55 A. G. Midgett, H. W. Hillhouse, B. K. Huges, A. J. Nozik, M. C. Beard, Flowing versus static conditions for measuring multiple exciton generation in PbSe quantum dots. Journal of Physical Chemistry C, 114 (2010), 17486–17500.
56 O. E. Semonin, J. C. Johnson, J. M. Luther, et al., Absolute photoluminescence quantum yields of Ir-26 dye, PbS, and PbSe quantum dots. Journal of Physical Chemistry Letters, 1 (2010), 2445–2450.
57 P. Guyot-Sionnest, B. Wehrenberg, D. Yu, Intraband relaxation in CdSe nanocrystals and the strong influence of the surface ligands. Journal of Chemical Physics, 123 (2005), ARTN 074709.
58 A. Pandey, P. Guyot-Sionnest, Slow electron cooling in colloidal quantum dots. Science, 322 (2008), 929–932.
59 W. S. Pelouch, R. J. Ellingson, P. E. Powers, et al., Investigation of hot-carrier relaxation in quantum-well and bulk GaAs at high carrier densities. Semicondor Science and Technology, 7 (1992), B337-B339.
60 J. Ulstrup, J. Jortner, Effect of intramolecular quantum modes on free-energy relationships for electron-transfer reactions. Journal of Chemical Physics, 63 (1975), 4358–4368.
61 Y. Rosenwaks, M. C. Hanna, D. H. Levi, et al., Hot-carrier cooling in GaAs – quantum-wells versus bulk. Physical Review B, 48 (1993), 14675–14678.
62 W. S. Pelouch, R. J. Ellingson, P. E. Powers, et al., Comparison of hot-carrier relaxation in quantum-wells and bulk GaAs at high carrier densities. Physical Review B, 45 (1992), 1450–1453.
63 F. Williams, A. J. Nozik, Irreversibilities in mechanism of photoelectrolysis. Nature, 271 (1978), 137–139.
64 F. Williams, A. J. Nozik, Solid-state perspectives of the photoelectrochemistry of semiconductor electrolyte junctions. Nature, 312 (1984), 21–27.
65 H. Benisty, C. M. Soto-Mayor Torres, C. Weisbuch, Intrinsic mechanism for the poor luminescence properties of quantum-box systems. Physical Review B, 44 (1991), 10945–10948.
66 U. Bockelmann, G. Bastard, Phonon-scattering and energy relaxation in two-dimensional, one-dimensional, and zero-dimensional electron gases. Physical Review B, 42 (1990), 8947–8951.
67 J. L. Blackburn, R. J. Ellingson, O. I. Micic, A. J. Nozik, Electron relaxation in colloidal InP quantum dots with photogenerated excitons or chemically injected electrons. Journal of Physical Chemistry B, 107 (2003), 102–109.
68 R. J. Ellingson, J. L. Blackburn, P. R. Yu, et al., Excitation energy dependent efficiency of charge carrier relaxation and photoluminescence in colloidal InP quantum dots. Journal of Physical Chemistry B, 106 (2002), 7758–7765.
69 V. I. Klimov, Optical nonlinearities and ultrafast carrier dynamics in semiconductor nanocrystals. Journal of Physical Chemistry B, 104 (2000), 6112–6123.
70 U. Bockelmann, T. Egeler, Electron relaxation in quantum dots by means of Auger processes. Physical Review B, 46 (1992), 15574–15577.
71 H. Benisty, Reduced electron–phonon relaxation rates in quantum-box systems – theoretical analysis. Physical Review B, 51 (1995), 13281–13293.
72 A. L. Efros, V. A. Kharchenko, M. Rosen, Breaking the phonon bottleneck in nanometer quantum dots – role of Auger-like processes. Solid State Communications, 93 (1995), 281–284.
73 I. Vurgaftman, J. Singh, Effect of spectral broadening and electron-hole scattering on carrier relaxation in GaAs quantum dots. Applied Physics Letters, 64 (1994), 232–234.
74 P. C. Sercel, Multiphonon-assisted tunneling through deep levels – a rapid energy-relaxation mechanism nonideal quantum-dot heterostructures. Physical Review B, 51 (1995), 14532–14541.
75 T. Inoshita, H. Sakaki, Electron relaxation in a quantum dot – significance of multiphonon processes. Physical Review B, 46 (1992), 7260–7263.
76 T. Inoshita, H. Sakaki, Density of states and phonon-induced relaxation of electrons in semiconductor quantum dots. Physical Review B, 56 (1997), R4355–R4358.
77 V. I. Klimov, Spectral and dynamical properties of multilexcitons in semiconductor nanocrystals. Annual Review of Physical Chemistry, 58 (2007), 635–673.
78 V. I. Klimov, A. A. Mikhailovsky, D. W. McBranch, C. A. Leatherdale, M. G. Bawendi, Quantization of multiparticle Auger rates in semiconductor quantum dots. Science, 287 (2000), 1011–1013.
79 P. R. Yu, M. C. Beard, R. J. Ellingson, et al., Absorption cross-section and related optical properties of colloidal InAs quantum dots. Journal of Physical Chemistry B, 109 (2005), 7084–7087.
80 W. W. Yu, L. H. Qu, W. Z. Guo, X. G. Peng, Experimental determination of the extinction coefficient of CdTe, CdSe, and CdS nanocrystals. Chemistry of Materials, 15 (2003), 2854–2860.
81 C. A. Leatherdale, W. K. Woo, F. V. Mikulec, M. G. Bawendi, On the absorption cross section of CdSe nanocrystal quantum dots. Journal of Physical Chemistry B, 106 (2002), 7619–7622.
82 I. Moreels, K. Lambert, D. De Muynck, et al., Composition and size-dependent extinction coefficient of colloidal PbSe quantum dots. Chemistry of Materials, 19 (2007), 6101–6106.
83 I. Moreels, K. Lambert, D. Smeets, et al., Size-dependent optical properties of colloidal PbS quantum dots. ACS Nano, 3 (2009), 3023–3030.
84 I. Robel, R. Gresback, U. Kortshagen, R. D. Schaller, V. I. Klimov, Universal size-dependent trend in Auger recombination in direct-gap and indirect-gap semiconductor nanocrystals. Physical Review Letters, 102 (2009), 177404.
85 M. Nirmal, B. O. Dabbousi, M. G. Bawendi, et al., Fluorescence intermittency in single cadmium selenide nanocrystals. Nature, 383 (1996), 802–804.
86 D. E. Gomez, M. Califano, P. Mulvaney, Optical properties of single semiconductor nanocrystals. Physical Chemistry Chemical Physics, 8 (2006), 4989–5011.
87 F. Cichos, C. van Borczyskowski, M. Orrit, Power-law intermittency of single emitters. Current Opinion in Colloid and Interface Science, 12 (2007), 272–284.
88 A. L. Efros, M. Rosen, Random telegraph signal in the photoluminescence intensity of a single quantum dot. Physical Review Letters, 78 (1997), 1110–1113.
89 R. Verberk, A. M. van Orijen, M. Orrit, Simple model for the power-law blinking of single semiconductor nanocrystals. Physical Revies B, 66 (2002), ARTN 233202.
90 B. Mahler, P. Spinicelli, S. Buil, et al., Towards non-blinking colloidal quantum dots. Nature Materials, 7 (2008), 659–664.
91 S. Hohng, T. Ha, Near-complete suppression of quantum dot blinking in ambient conditions. Journal of the American Chemical Society, 126 (2004), 1324–1325.
92 X. Y. Wang, X. F. Ren, K. Kahen, et al., Non-blinking semiconductor nanocrystals. Nature, 459 (2009), 686–689.
93 K. T. Shimizu, R. G. Neuhauser, C. A. Leatherdale, et al., Blinking statistics in single semiconductor nanocrystal quantum dots. Physical Review B, 63 (2001), ARTN 205316.
94 R. C. Alig, S. Bloom, C. W. Sruck, Electron–hole-pair creation energies in semiconductors. Bulletin of the American Physical Society, 25 (1980), 175–175.
95 R. C. Alig, S. Bloom, Electron–hole-pair creation energies in semiconductors. Physical Review Letters, 35 (1975), 1522–1525.
96 B. Ziaja, R. A. London, J. Hajdu, Ionization by impact electrons in solids: Electron mean free path fitted over a wide energy range. Journal of Applied Physics, 99 (2006), ARTN 033514.
97 H. K. Jung, K. Taniguchi, C. Hamaguchi, Impact ionization model for full band Monte Carlo simulation in GaAs. Journal of Applied Physics, 79 (1996), 2473–2480.
98 B. K. Ridley, Quantum Processes in Semiconductors. New York, NY: Oxford University Press, 1988.
99 N. M. Gabor, Z. H. Zhong, K. Bosnick, J. Park, P. L. McEuen, Extremely efficient multiple electron–hole pair generation in carbon nanotube photodiodes. Science, 325 (2009), 1367–1371.
100 R. D. J. Miller, G. McLendon, A. J. Nozik, W. Schmickler, F. Willig. Surface Electron Transfer Processes. New York, NY: VCH Publishers, 1995.
101 C. B. Murray, C. R. Kagan, M. G. Bawendi, Synthesis and characterization of monodisperse nanocrystals and close-packed nanocrystal assemblies. Annual Review Materials Science, 30 (2000), 545–610.
102 A. Hagfeldt, M. Gratzel, Molecular photovoltaics. Accounts of Chemical Research, 33 (2000), 269–277.
103 J. E. Moser, P. Bonnote, M. Gratzel, Molecular photovoltaics. Coordination Chemistry Reviews, 171 (1998), 245–250.
104 M. Gratzel, Perspectives for dye-sensitized nanocrystalline solar cells. Progress in Photovoltaics, 8 (2000), 171–185.
105 R. Vogel, P. Hoyer, H. Weller, Quantum-sized PbS, CdS, Ag2S, Sb2S3, and Bi2S3 particles as sensitizers for various nanopourous wide-bandgap semiconductors. Journal of Physical Chemistry, 98 (1994), 3183–3188.
106 D. Liu, P. V. Kamat, Photoelectrochemical behavior of thin CdSe and coupled TiO2 CdSe semiconductor films, Journal of Physical Chemistry, 97 (1993), 10769–10773.
107 A. Zaban, O. I. Micic, B. A. Gregg, A. J. Nozik, Photosensitization of nanoporous TiO2 electrodes with InP quantum dots. Langmuir, 14 (1998), 3153–3156.
108 P. R. Yu, K. Zhu, A. G. Norman, et al., Nanocrystalline TiO2 solar cells sensitized with InAs quantum dots. Journal of Physical Chemistry B, 110 (2006), 25451–25454.
109 N. C. Greenham, X. G. Peng, A. P. Alivisatos, Charge separation and transport in conjugated-polymer/semiconductor–nanocrystal composites studied by photoluminescence quenching and photoconductivity. Physical Review B, 54 (1996), 17628–17637.
110 W. U. Huynh, X. G. Peng, A. P. Alivisatos, CdSe nanocrystal rods/poly(3-hexylthiophene) composite photovoltaic devices. Advanced Materials, 11 (1999), 923.
111 S. Dayal, N. Kopidakis, D. C. Olson, D. S. Ginley, G. Rumbles, Photovoltaic devices with a low band gap polymer and CdSe nanostructures exceeding 3% efficiency. Nano Letters, 10 (2010), 239–242.
112 A. C. Arango, S. A. Carter, P. J. Brock, Charge transfer in photovoltaics consisting of interpenetrating networks of conjugated polymer and TiO2 nanoparticles. Applied Physics Letters, 74 (1999), 1698–1700.
113 B. O. Dabbousi, M. G. Bawendi, O. Onitsuka, M. F. Rubner, Electroluminescence from CdSe quantum-dot polymer composites. Applied Physics Letters, 66 (1995), 1316–1318.
114 V. L. Colvin, M. C. Schlamp, A. P. Alivisatos, Light-emitting-diodes made from cadmium selenide nanocrystals and a semiconductor polymer. Nature, 370 (1994), 354–357.
115 M. C. Schlamp, X. G. Peng, A. P. Alivisatos, Improved efficiencies in light emitting diodes made with CdSe(CdS) core/shell type nanocrystals and a semiconducting polymer. Journal of Applied Physics, 82 (1997), 5837–5842.
116 H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, et al., Composite thin films of CdSe nanocrystals and a surface passivating/electron transporting block copolymer: Correlations between film microstructure by transmission electron microscopy and electroluminescence. Journal of Applied Physics, 86 (1999), 4390–4399.
117 H. Mattoussi, L. H. Radzilowski, B. O. Dabbousi, et al., Electroluminescence from heterostructures of poly(phenylene vinylene) and inorganic CdSe nanocrystals. Journal of Applied Physics, 83 (1998), 7965–7974.
118 X. M. Jiang, R. D. Schaller, S. B. Lee, et al., PbSe nanocrystal/conducting polymer solar cells with an infrared response to 2 micron. J. Mater. Res., 22 (2007), 2204–2210.
119 D. H. Cui, J. Xu, T. Zhu, et al., Harvest of near infrared light in PbSe nanocrystal-polymer hybrid photovoltaic cells. Applied Physics Letters, 88 (2006), ARTN 183111.
120 K. P. Fritz, S. Guenes, J. Luther, et al., IV–VI nanocrystal-polymer solar cells. Journal of Photochemistry and Photobiology A, 195 (2008), 39–46.
121 S. A. McDonald, G. Konstantatos, S. G. Zhang, et al., Solution-processed PbS quantum dot infrared photodetectors and photovoltaics. Nature Materials, 4 (2005), 138-U14.
122 A. A. R. Watt, D. Blake, J. H. Warner, et al., Lead sulfide nanocrystal: conducting polymer solar cells. Journal of Physics D: Applied Physics, 38 (2005), 2006–2012.
123 J. B. Sambur, T. Novet, B. A. Parkinson, Multiple exciton collection in a sensitized photovoltaic system. Science, 330 (2010), 63–66.
124 B. B. Smith, A. J. Nozik, Theoretical studies of electronic state localization and wormholes in silicon quantum dot arrays. Nano Letters, 1 (2001), 36–41.
125 J. E. Murphy, M. C. Beard, A. J. Nozik, Time-resolved photoconductivity of PbSe nanocrystal arrays. Journal of Physical Chemistry B, 110 (2006), 25455–25461.
126 B. L. Wehrenberg, D. Yu, J. S. Ma, P. Guyot-Sionnest, Conduction in charged PbSe nanocrystal films. Journal of Physical Chemistry B, 109 (2005), 20192–20199.
127 R. M. Kraus, P. G. Lagoudakis, J. Muller, et al., Interplay between Auger and ionization processes in nanocrystal quantum dots. Journal of Physical Chemistry B, 109 (2005), 18214–18217.
128 B. L. Wehrenberg, P. Guyot-Sionnest, Electron and Hole Injection In PbSe Quantum Dot Films. Chicago, IL: University of Chicago, James Franck Inst, 2003, 7806.
129 D. Yu, C. J. Wang, P. Guyot-Sionnest, N-type conducting CdSe nanocrystal solids. Science, 300 (2003), 1277–1280.
130 J. J. Urban, D. V. Talapin, E. V. Shevchenko, C. B. Murray, Self-assembly of PbTe quantum dots into nanocrystal superlattices and glassy films. Journal of the American Chemical Society, 128 (2006), 3248–3255.
131 J. M. Luther, M. Law, Q. Song, et al., Structural, optical and electrical properties of self-assembled films of PbSe nanocrystals treated with 1,2-ethanedithiol. ACS Nano, 2 (2008), 271–280.
132 H. W. Hillhouse, M. C. Beard, Solar cells from colloidal nanocrystals: fundamentals, materials, devices, and economics. Current Opinion in Colloid and Interface Science, 14 (2009), 245–259.
133 Y. Liu, M. Gibbs, J. Puthussery, et al., Dependence of carrier mobility on nanocrystal size and ligand length in PbSe nanocrystal solids. Nano Letters, 10 (2010), 1960–1969.