Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-45l2p Total loading time: 0 Render date: 2024-04-25T07:11:45.569Z Has data issue: false hasContentIssue false

Part IV - Treatment opportunities for ameliorating cognitive dysfunction in major depressive disorder

Published online by Cambridge University Press:  05 March 2016

Edited in association with
Roger S. McIntyre
Affiliation:
University of Toronto
Danielle S. Cha
Affiliation:
University of Toronto
Get access
Type
Chapter
Information
Cognitive Impairment in Major Depressive Disorder
Clinical Relevance, Biological Substrates, and Treatment Opportunities
, pp. 257 - 338
Publisher: Cambridge University Press
Print publication year: 2016

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Anaya, C., Aran, A. M., Ayuso-Mateos, J. L., Wykes, T., Vieta, E., & Scott, J. (2012). A systematic review of cognitive remediation for schizo-affective and affective disorders. Journal of Affective Disorders, 142(1–3): 1321.Google Scholar
Berlim, M. T., McGirr, A., Van den Eynde, F., Fleck, M. P. A., & Giacobbe, P. (2014). Effectiveness and acceptability of deep brain stimulation (DBS) of the subgenual cingulate cortex for treatment-resistant depression: A systematic review and exploratory meta-analysis. Journal of Affective Disorders, 159: 3138.Google Scholar
Bewernick, B. H., Kayser, S., Sturm, V., & Schlaepfer, T. E. (2012). Long-term effects of nucleus accumbens deep brain stimulation in treatment-resistant depression: Evidence for sustained efficacy. Neuropsychopharmacology, 37(9): 19751985.Google Scholar
Bouhuys, A. L., Geerts, E., & Gordijn, M. C. M. (1999). Depressed patients’ perceptions of facial emotions in depressed and remitted states are associated with relapse: A longitudinal study. Journal of Nervous and Mental Disease, 187(10): 595602.Google Scholar
Bricen∼o, E. M., Weisenbach, S. L., Rapport, L. J., Hazlett, K. E., Bieliauskas, L. A., Haase, B. D., … Langenecker, S. A. (2013). Shifted inferior frontal laterality in women with major depressive disorder is related to emotion processing deficits. Psychological Medicine, 43(7): 14331445.CrossRefGoogle ScholarPubMed
Browning, M., Holmes, E. A., & Harmer, C. J. (2010). The modification of attentional bias to emotional information: A review of the techniques, mechanisms, and relevance to emotional disorders.Cognitive, Affective & Behavioral Neuroscience, 10(1): 820.CrossRefGoogle ScholarPubMed
Brunoni, A. R. & Vanderhasselt, M. A. (2014). Working memory improvement with non-invasive brain stimulation of the dorsolateral prefrontal cortex: A systematic review and meta-analysis. Brain and Cognition, 86: 19.CrossRefGoogle ScholarPubMed
Channon, S. & Green, P. S. S. (1999). Executive function in depression: The role of performance strategies in aiding depressed and non-depressed participants. Journal of Neurology, Neurosurgery, and Psychiatry, 66(2): 162171.CrossRefGoogle ScholarPubMed
Chen, A. C., Oathes, D. J., Chang, C., Bradley, T., Zhou, Z. W., Williams, L. M., … Etkin, A. (2013). Causal interactions between fronto-parietal central executive and default-mode networks in humans. Proceedings of the National Academy of Sciences of the United States of America, 110(49): 1994419949.CrossRefGoogle ScholarPubMed
Clark, D. A. & Beck, A. T. (2010). Cognitive theory and therapy of anxiety and depression: Convergence with neurobiological findings. Trends in Cognitive Sciences, 14(9): 418424.CrossRefGoogle ScholarPubMed
Clark, L., Chamberlain, S. R., & Sahakian, B. J. (2009). Neurocognitive mechanisms in depression: Implications for treatment. Annual Review of Neuroscience, 32: 5774.Google Scholar
Connolly, C. G., Wu, J., Ho, T. C., Hoeft, F., Wolkowitz, O., Eisendrath, S., … Yang, T. T. (2013). Resting-state functional connectivity of subgenual anterior cingulate cortex in depressed adolescents. Biological Psychiatry, 74(12): 898907.Google Scholar
Connolly, S. L., Wagner, C. A., Shapero, B. G., Pendergast, L. L., Abramson, L. Y., & Alloy, L. B. (2014). Rumination prospectively predicts executive functioning impairments in adolescents. Journal of Behavior Therapy and Experimental Psychiatry, 45(1): 4656.Google Scholar
Cooney, R. E., Joormann, J., Eugene, F., Dennis, E. L., & Gotlib, I. H. (2010). Neural correlates of rumination in depression.Cognitive, Affective, & Behavioral Neuroscience, 10(4): 470478.CrossRefGoogle ScholarPubMed
Disner, S. G., Beevers, C. G., Haigh, E. A. P., & Beck, A. T. (2011). Neural mechanisms of the cognitive model of depression. Nature Reviews Neuroscience, 12(8): 467477.Google Scholar
Ehring, T., Fischer, S., Schnulle, J., Bosterling, A., & Tuschen-Caffier, B. (2008). Characteristics of emotion regulation in recovered depressed versus never depressed individuals. Personality and Individual Differences, 44(7): 15741584.CrossRefGoogle Scholar
Elliott, R., Zahn, R., Deakin, J. F. W., & Anderson, I. M. (2011). Affective cognition and its disruption in mood disorders. Neuropsychopharmacology, 36(1): 153182.Google Scholar
Farb, N. A. S., Anderson, A. K., Bloch, R. T., & Segal, Z. V. (2011). Mood-linked responses in medial prefrontal cortex predict relapse in patients with recurrent unipolar depression. Biological Psychiatry, 70(4): 366372.CrossRefGoogle ScholarPubMed
Fitzgerald, P. B., Laird, A. R., Maller, J., & Daskalakis, Z. J. (2008). A meta-analytic study of changes in brain activation in depression. Human Brain Mapping, 29(6): 683695.Google Scholar
Flynn, M., Kecmanovic, J., & Alloy, L. B. (2010). An examination of integrated cognitive-interpersonal vulnerability to depression: The role of rumination, perceived social support, and interpersonal stress generation. Cognitive Therapy and Research, 34(5): 456466.CrossRefGoogle ScholarPubMed
Fu, C. H. Y., Steiner, H., & Costafreda, S. G. (2013). Predictive neural biomarkers of clinical response in depression: A meta-analysis of functional and structural neuroimaging studies of pharmacological and psychological therapies. Neurobiology of Disease, 52: 7583.Google Scholar
George, M. S., Ketter, T. A., Parekh, P. I., Rosinsky, N., Ring, H. A., Pazzaglia, P. J., … Post, R. M. (1997). Blunted left cingulate activation in mood disorder subjects during a response interference task (the Stroop). Journal of Neuropsychiatry and Clinical Neurosciences, 9(1): 5563.Google Scholar
Godard, J., Grondin, S., Baruch, P., & Lafleur, M. F. (2011). Psychosocial and neurocognitive profiles in depressed patients with major depressive disorder and bipolar disorder. Psychiatry Research, 190(2–3): 244252.CrossRefGoogle ScholarPubMed
Gorlyn, M., Keilp, J. G., Grunebaum, M. F., Taylor, B. P., Oquendo, M. A., Bruder, G. E., … Mann, J. J. (2008). Neuropsychological characteristics as predictors of SSRI treatment response in depressed subjects. Journal of Neural Transmission, 115(8): 12131219.CrossRefGoogle ScholarPubMed
Gotlib, I. H. & Joormann, J. (2010). Cognition and depression: Current status and future directions. In Nolen-Hoeksema, S., Cannon, T. D., & Widiger, T. (eds.), Annual Review of Clinical Psychology, Vol. 6 (pp. 285312). Palo Alto, CA: Annual Reviews.Google Scholar
Greicius, M. D., Flores, B. H., Menon, V., Glover, G. H., Solvason, H. B., Kenna, H., … Schatzberg, A. F. (2007). Resting-state functional connectivity in major depression: Abnormally increased contributions from subgenual cingulate cortex and thalamus. Biological Psychiatry, 62(5): 429437.Google Scholar
Gross, J. J. & John, O. P. (2003). Individual differences in two emotion regulation processes: Implications for affect, relationships, and well-being. Journal of Personality and Social Psychology, 85(2): 348362.Google Scholar
Grubert, C., Hurlemann, R., Bewernick, B. H., Kayser, S., Hadrysiewicz, B., Axmacher, N., … Schlaepfer, T. E. (2011). Neuropsychological safety of nucleus accumbens deep brain stimulation for major depression: Effects of 12-month stimulation. World Journal of Biological Psychiatry, 12(7): 516527.Google Scholar
Gudayol-Ferré, E., Guadia-Olmos, J., Pero-Cebollero, M., Herrera-Guzman, I., Camarena, B., Cortes-Penagos, C., … Martinez-Medina, P. (2013). Prediction of the time-course pattern of remission in depression by using clinical, neuropsychological, and genetic variables. Journal of Affective Disorders, 150(3): 10821090.Google Scholar
Hamilton, J. P., Etkin, A., Furman, D. J., Lemus, M. G., Johnson, R. F., & Gotlib, I. H. (2012). Functional neuroimaging of major depressive disorder: A meta-analysis and new integration of baseline activation and neural response data. American Journal of Psychiatry, 169(7): 693703.Google Scholar
Hammar, A., Lund, A., & Hugdahl, K. (2003). Selective impairment in effortful information processing in major depression. Journal of the International Neuropsychological Society, 9(6): 954959.CrossRefGoogle ScholarPubMed
Harmer, C. J., Cowen, P. J., & Goodwin, G. M. (2011). Efficacy markers in depression. Journal of Psychopharmacology, 25(9): 11481158.Google Scholar
Hasselbalch, B. J., Knorr, U., & Kessing, L. V. (2011). Cognitive impairment in the remitted state of unipolar depressive disorder: A systematic review. Journal of Affective Disorders, 134(1–3): 2031.Google Scholar
Joormann, J. & D’Avanzato, C. (2010). Emotion regulation in depression: Examining the role of cognitive processes. Cognition & Emotion, 24(6): 913939.CrossRefGoogle Scholar
Joormann, J. & Gotlib, I. H. (2007). Selective attention to emotional faces following recovery from depression. Journal of Abnormal Psychology, 116(1): 8085.CrossRefGoogle ScholarPubMed
Kampf-Sherf, O., Zlotogorski, Z., Gilboa, A., Speedie, L., Lereya, J., Rosca, P., & Shavit, Y. (2004). Neuropsychological functioning in major depression and responsiveness to selective serotonin reuptake inhibitors antidepressants. Journal of Affective Disorders, 82(3): 453459.Google Scholar
Kohler, C. G., Hoffman, L. J., Eastman, L. B., Healey, K., & Moberg, P. J. (2011). Facial emotion perception in depression and bipolar disorder: A quantitative review. Psychiatry Research, 188(3): 303309.Google Scholar
Krishnan, V. & Nestler, E. J. (2008). The molecular neurobiology of depression. Nature, 455(7215): 894902.CrossRefGoogle ScholarPubMed
Langenecker, S. A., Kennedy, S. E., Guidotti, L. M., Briceno, E. M., Own, L. S., Hooven, T., … Zubieta, J. K. (2007). Frontal and limbic activation during inhibitory control predicts treatment response in major depressive disorder. Biological Psychiatry, 62(11): 12721280.Google Scholar
Lazarus, R. S. & Folkman, S. (1984). Stress, Appraisal and Coping. New York: Springer.Google Scholar
Lyubomirsky, S. & Nolen-Hoeksema, S. (1993). Self-perpetuating properties of dysphoric rumination. Journal of Personality and Social Psychology, 65(2): 339349.Google Scholar
Majer, M., Ising, M., Kunzel, H., Binder, E. B., Holsboer, F., Modell, S., & Zihl, J. (2004). Impaired divided attention predicts delayed response and risk to relapse in subjects with depressive disorders. Psychological Medicine, 34(8): 14531463.CrossRefGoogle ScholarPubMed
Malone, D. A., Dougherty, D. D., Rezai, A. R., Carpenter, L. L., Friehs, G. M., Eskandar, E. N., … Greenberg, B. D. (2009). Deep brain stimulation of the ventral capsule/ventral striatum for treatment-resistant depression. Biological Psychiatry, 65(4): 267275.Google Scholar
Marchetti, I., Koster, E. H. W., Sonuga-Barke, E. J., & De Raedt, R. (2012). The default mode network and recurrent depression: A neurobiological model of cognitive risk factors. Neuropsychology Review, 22(3): 229251.Google Scholar
Mathews, A. & MacLeod, C. (2005). Cognitive vulnerability to emotional disorders. Annual Review of Clinical Psychology, 1: 167195.CrossRefGoogle ScholarPubMed
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depression disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6): 515527.Google Scholar
Miranda, R. & Nolen-Hoeksema, S. (2007). Brooding and reflection: Rumination predicts suicidal ideation at 1-year follow-up in a community sample. Behaviour Research and Therapy, 45(12): 30883095.Google Scholar
Moberly, N. J. & Watkins, E. R. (2008). Ruminative self-focus, negative life events, and negative affect. Behaviour Research and Therapy, 46(9): 10341039.Google Scholar
Nolen-Hoeksema, S. & Watkins, E. R. (2011). A heuristic for developing transdiagnostic models of psychopathology: Explaining multifinality and divergent trajectories. Perspectives on Psychological Science, 6(6): 589609.Google Scholar
Nolen-Hoeksema, S., Wisco, B. E., & Lyubomirsky, S. (2008). Rethinking rumination. Perspectives on Psychological Science, 3(5): 400424.Google Scholar
Ochsner, K. N. & Gross, J. J. (2005). The cognitive control of emotion. Trends in Cognitive Sciences, 9(5): 242249.Google Scholar
Okada, G., Okamoto, Y., Morinobu, S., Yamawaki, S., & Yokota, N. (2003). Attenuated left prefrontal activation during a verbal fluency task in patients with depression. Neuropsychobiology, 47(1): 2126.CrossRefGoogle ScholarPubMed
Osby, U., Brandt, L., Correia, N., Ekbom, A., & Sparen, P. (2001). Excess mortality in bipolar and unipolar disorder in Sweden. Archives of General Psychiatry, 58(9): 844850.CrossRefGoogle ScholarPubMed
Pelosi, L., Slade, T., Blumhardt, L. D., & Sharma, V. K. (2000). Working memory dysfunction in major depression: An event-related potential study. Clinical Neurophysiology, 111(9): 15311543.Google Scholar
Pizzagalli, D. A. (2011). Frontocingulate dysfunction in depression: Toward biomarkers of treatment response. Neuropsychopharmacology, 36(1): 183206.Google Scholar
Purcell, R., Maruff, P., Kyrios, M., & Pantelis, C. (1997). Neuropsychological function in young patients with unipolar major depression. Psychological Medicine, 27(6): 12771285.Google Scholar
Querstret, D. & Cropley, M. (2012). Exploring the relationship between work-related rumination, sleep quality, and work-related fatigue. Journal of Occupational Health Psychology, 17(3): 341353.Google Scholar
Ridout, N., O’Carroll, R. E., Dritschel, B., Christmas, D., Eljamel, M., & Matthews, K. (2007). Emotion recognition from dynamic emotional displays following anterior cingulotomy and anterior capsulotomy for chronic depression. Neuropsychologia, 45(8): 17351743.Google Scholar
Rogers, M. A., Kasai, K., Koji, M., Fukuda, R., Iwanami, A., Nakagome, K., … Kato, N. (2004).Executive and prefrontal dysfunction in unipolar depression: A review of neuropsychological and imaging evidence. Neuroscience Research, 50(1): 111.Google Scholar
Roiser, J. P., Elliott, R., & Sahakian, B. J. (2012). Cognitive mechanisms of treatment in depression. Neuropsychopharmacology, 37(1): 117136.Google Scholar
Ryan, K. A., Vederman, A. C., Kamali, M., Marshall, D., Weldon, A. L., McInnis, M. G., & Langenecker, S. A. (2013). Emotion perception and executive functioning predict work status in euthymic bipolar disorder. Psychiatry Research, 210(2): 472478.Google Scholar
Sarapas, C., Shankman, S. A., Harrow, M., & Faull, R. N.(2013). Attention/processing speed prospectively predicts social impairment 18 years later in mood disorders. Journal of Nervous and Mental Disease, 201(9): 824827.CrossRefGoogle ScholarPubMed
Schlaepfer, T. E., Bewernick, B. H., Kayser, S., Hurlemann, R., & Coenen, V. A. (2014). Deep brain stimulation of the human reward system for major depression: Rationale, outcomes and outlook. Neuropsychopharmacology, 39(6): 13031314.Google Scholar
Snyder, H. R. (2013). Major depressive disorder is associated with broad impairments on neuropsychological measures of executive function: A meta-analysis and review. Psychological Bulletin, 139(1): 81132.Google Scholar
Solomon, D. A., Keller, M. B., Leon, A. C., Mueller, T. I., Lavori, P. W., Shea, T., … Endicott, J. (2000). Multiple recurrences of major depressive disorder. American Journal of Psychiatry, 157(2): 229233.Google Scholar
Spielberg, J. M., Miller, G. A., Warren, S. L., Sutton, B. P., Banich, M., & Heller, W. (2014). Transdiagnostic dimensions of anxiety and depression moderate motivation-related brain networks during goal maintenance. Depression and Anxiety, 31(10): 805813.Google Scholar
Wagner, G., Sinsel, E., Sobanski, T., Kohler, S., Marinou, V., Mentzel, H. J., … Schlosser, R. G. M. (2006). Cortical inefficiency in patients with unipolar depression: An event-related MRI study with the Stroop task. Biological Psychiatry, 59(10): 958965.Google Scholar
Watkins, E. & Moulds, M. (2005). Distinct modes of ruminative self-focus: Impact of abstract versus concrete rumination on problem solving in depression. Emotion, 5(3): 319328.Google Scholar
Watkins, E. R., Mullan, E., Wingrove, J., Rimes, K., Steiner, H., Bathurst, N., … Scott, J. (2011). Rumination-focused cognitive-behavioural therapy for residual depression: Phase II randomised controlled trial. British Journal of Psychiatry, 199(4), 317322.Google Scholar
Weiland-Fiedler, P., Erickson, K., Waldeck, T., Luckenbaugh, D. A., Pike, D., Bonne, O., … Neumeister, A. (2004). Evidence for continuing neuropsychological impairments in depression. Journal of Affective Disorders, 82(2): 253258.Google Scholar
Williams, J. M. G., Barnhofer, T., Crane, C., Hermans, D., Raes, F., Watkins, E., & Dalgleish, T. (2007). Autobiographical memory specificity and emotional disorder. Psychological Bulletin, 133(1): 122148.CrossRefGoogle ScholarPubMed
World Health Organization (2008). The Global Burden of Disease: 2004 Update. Geneva: World Health Organization.Google Scholar

References

Abbasowa, L., Kessing, L. V., & Vinberg, M. (2013). Psychostimulants in moderate to severe affective disorder: A systematic review of randomized controlled trials. Nordic Journal of Psychiatry, 67(6): 369382.Google Scholar
Bergfeld, I. O., Mantione, M., Hoogendoorn, M. L., & Denys, D. (2013). Cognitive functioning in psychiatric disorders following deep brain stimulation. Brain Stimulation, 6(4): 532537.Google Scholar
Borkowska, A., Drozdz, W., Ziolkowska-Kochan, M., & Rybakowski, J. (2007). Enhancing effect of mirtazapine on cognitive functions associated with prefrontal cortex in patients with recurrent depression. Neuropsychopharmacologia Hungarica, 9(3): 131136.Google ScholarPubMed
Bowie, C. R., Gupta, M., Holshausen, K., Jokic, R., Best, M., & Milev, R. (2013). Cognitive remediation for treatment-resistant depression: Effects on cognition and functioning and the role of online homework. Journal of Nervous and Mental Disease, 201(8): 680685.Google Scholar
Bruder, G. E., Alvarenga, J. E., Alschuler, D., Abraham, K., Keilp, J. G., Hellerstein, D. J., … McGrath, P. J. (2014). Neurocognitive predictors of antidepressant clinical response. Journal of Affective Disorders, 166: 108114.Google Scholar
Chapman, C. D., Frey, W. H. II, Craft, S., Danielyan, L., Hallschmid, M., Schioth, H. B., & Benedict, C. (2013). Intranasal treatment of central nervous system dysfunction in humans. Pharmaceutical Research, 30(10): 24752484.Google Scholar
Constant, E. L., Adam, S., Gillain, B., Seron, X., Bruyer, R., & Seghers, A. (2005). Effects of sertraline on depressive symptoms and attentional and executive functions in major depression. Depression and Anxiety, 21(2): 7889.Google Scholar
Cooney, G. M., Dwan, K., Greig, C. A., Lawlor, D. A., Rimer, J., Waugh, F. R., … Mead, G. E. (2013). Exercise for depression. The Cochrane Database of Systematic Reviews, 9: CD004366.Google Scholar
Demirtas-Tatlidede, A., Vahabzadeh-Hagh, A. M., & Pascual-Leone, A. (2013). Can noninvasive brain stimulation enhance cognition in neuropsychiatric disorders? Neuropharmacology, 64: 566578.Google Scholar
Elgamal, S., McKinnon, M. C., Ramakrishnan, K., Joffe, R. T., & MacQueen, G. (2007). Successful computer-assisted cognitive remediation therapy in patients with unipolar depression: A proof of principle study. Psychological Medicine, 37(9): 12291238.Google Scholar
Ferguson, J. M., Wesnes, K. A., & Schwartz, G. E. (2003). Reboxetine versus paroxetine versus placebo: Effects on cognitive functioning in depressed patients. International Clinical Psychopharmacology, 18(1): 914.Google Scholar
Goss, A. J., Kaser, M., Costafreda, S. G., Sahakian, B. J., & Fu, C. H. (2013). Modafinil augmentation therapy in unipolar and bipolar depression: A systematic review and meta-analysis of randomized controlled trials. Journal of Clinical Psychiatry, 74(11): 11011107.Google Scholar
Herrera-Guzman, I., Gudayol-Ferre, E., Herrera-Abarca, J. E., Herrera-Guzman, D., Montelongo-Pedraza, P., Padros Blazquez, F., … Guardia-Olmos, J. (2010a). Major depressive disorder in recovery and neuropsychological functioning: Effects of selective serotonin reuptake inhibitor and dual inhibitor depression treatments on residual cognitive deficits in patients with major depressive disorder in recovery. Journal of Affective Disorders, 123(1–3): 341350.Google Scholar
Herrera-Guzman, I., Herrera-Abarca, J. E., Gudayol-Ferre, E., Herrera-Guzman, D., Gomez-Carbajal, L., Pena-Olvira, M., … Joan, G. O. (2010b). Effects of selective serotonin reuptake and dual serotonergic-noradrenergic reuptake treatments on attention and executive functions in patients with major depressive disorder. Psychiatry Research, 177(3): 323329.Google Scholar
Hollon, S. D., DeRubeis, R. J., Fawcett, J., Amsterdam, J. D., Shelton, R. C., Zajecka, J., … Gallop, R. (2014). Effect of cognitive therapy with antidepressant medications vs antidepressants alone on the rate of recovery in major depressive disorder: A randomized clinical trial. JAMA Psychiatry, 71(10): 11571164.Google Scholar
Katona, C., Hansen, T., & Olsen, C. K. (2012). A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. International Clinical Psychopharmacology, 27(4): 215223.Google Scholar
Legrand, F. D. (2014). Effects of exercise on physical self-concept, global self-esteem, and depression in women of low socioeconomic status with elevated depressive symptoms. Journal of Sport & Exercise Psychology, 36(4): 357365.Google Scholar
Madhoo, M., Keefe, R. S., Roth, R. M., Sambunaris, A., Wu, J., Trivedi, M. H., … Lasser, R. (2014). Lisdexamfetamine dimesylate augmentation in adults with persistent executive dysfunction after partial or full remission of major depressive disorder. Neuropsychopharmacology, 39(6): 13881398.Google Scholar
Mahableshwarkar, A., Zajecka, J., Jacobson, W., Chen, Y., & Keefe, R. S. (2014). Efficacy of vortioxetine on cognitive function in adult patients with major depressive disorder: Results of a randomized, double-blind, active-referenced, placebo-controlled trial. Poster presented at the 29th CINP World Congress of Neuropsychopharmacology, June 22–26, Vancouver, Canada.Google Scholar
Mammen, G. & Faulkner, G. (2013). Physical activity and the prevention of depression: A systematic review of prospective studies. American Journal of Preventive Medicine, 45(5): 649657.Google Scholar
McIntyre, R. S., Cha, D. S., Soczynska, J. K., Woldeyohannes, H. O., Gallaugher, L. A., Kudlow, P., … Baskaran, A. (2013). Cognitive deficits and functional outcomes in major depressive disorder: Determinants, substrates, and treatment interventions. Depression and Anxiety, 30(6): 515527.Google Scholar
McIntyre, R. S., Kennedy, S. H., Soczynska, J. K., Nguyen, H. T., Bilkey, T. S., Woldeyohannes, H. O., … Muzina, D. J. (2010). Attention-deficit/hyperactivity disorder in adults with bipolar disorder or major depressive disorder: Results from the international mood disorders collaborative project. Primary Care Companion to the Journal of Clinical Psychiatry, 12(3).Google Scholar
McIntyre, R. S., Lophaven, S., & Olsen, C. K. (2014). A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. International Journal of Neuropsychopharmacology, 17(10): 15571567.CrossRefGoogle ScholarPubMed
McIntyre, R. S., Soczynska, J. K., Woldeyohannes, H. O., Miranda, A., Vaccarino, A., MacQueen, G., … Kennedy, S. H. (2012). A randomized, double-blind, controlled trial evaluating the effect of intranasal insulin on neurocognitive function in euthymic patients with bipolar disorder. Bipolar Disorders, 14(7): 697706.Google Scholar
Naismith, S. L., Redoblado-Hodge, M. A., Lewis, S. J., Scott, E. M., & Hickie, I. B. (2010). Cognitive training in affective disorders improves memory: A preliminary study using the NEAR approach. Journal of Affective Disorders, 121(3): 258262.Google Scholar
Olsson, A. K., Helldin, L., Hjarthag, F., & Norlander, T. (2012). Psychometric properties of a performance-based measurement of functional capacity, the UCSD performance-based skills assessment – brief version. Psychiatry Research, 197(3): 290294.Google Scholar
Patterson, T. L., Goldman, S., McKibbin, C. L., Hughs, T., & Jeste, D. V. (2001). UCSD performance-based skills assessment: Development of a new measure of everyday functioning for severely mentally ill adults. Schizophrenia Bulletin, 27(2): 235245.Google Scholar
Pei, Z., Meng, R., Zhuang, Z., Zhao, Y., Liu, F., Zhu, M. Z., & Li, R. (2013). Cardiac peroxisome proliferator-activated receptor-gamma expression is modulated by oxidative stress in acutely infrasound-exposed cardiomyocytes. Cardiovascular Toxicology, 13(4): 307315.Google Scholar
Raskin, J., Wiltse, C. G., Siegal, A., Sheikh, J., Xu, J., Dinkel, J. J., … Mohs, R. C. (2007). Efficacy of duloxetine on cognition, depression, and pain in elderly patients with major depressive disorder: An 8-week, double-blind, placebo-controlled trial. American Journal of Psychiatry, 164(6): 900909.Google Scholar
Rethorst, C. D., Sunderajan, P., Greer, T. L., Grannemann, B. D., Nakonezny, P. A., Carmody, T. J., & Trivedi, M. H. (2013a). Does exercise improve self-reported sleep quality in non-remitted major depressive disorder? Psychological Medicine, 43(4): 699709.Google Scholar
Rethorst, C. D., Toups, M. S., Greer, T. L., Nakonezny, P. A., Carmody, T. J., Grannemann, B. D., … Trivedi, M. H. (2013b). Pro-inflammatory cytokines as predictors of antidepressant effects of exercise in major depressive disorder. Molecular Psychiatry, 18(10): 11191124.Google Scholar
Sasada, K., Iwamoto, K., Kawano, N., Kohmura, K., Yamamoto, M., Aleksic, B., … Ozaki, N. (2013). Effects of repeated dosing with mirtazapine, trazodone, or placebo on driving performance and cognitive function in healthy volunteers. Human Psychopharmacology, 28(3): 281286.Google Scholar
Schrijvers, D., Maas, Y. J., Pier, M. P., Madani, Y., Hulstijn, W., & Sabbe, B. G. (2009). Psychomotor changes in major depressive disorder during sertraline treatment. Neuropsychobiology, 59(1): 3442.Google Scholar
Schulze-Rauschenbach, S. C., Harms, U., Schlaepfer, T. E., Maier, W., Falkai, P., & Wagner, M. (2005). Distinctive neurocognitive effects of repetitive transcranial magnetic stimulation and electroconvulsive therapy in major depression. British Journal of Psychiatry, 186: 410416.Google Scholar
Semkovska, M. & McLoughlin, D. M. (2010). Objective cognitive performance associated with electroconvulsive therapy for depression: A systematic review and meta-analysis. Biological Psychiatry, 68(6): 568577.Google Scholar
Soczynska, J. K., Ravindran, L. N., Styra, R., McIntyre, R. S., Cyriac, A., Manierka, M. S., & Kennedy, S. H. (2014). The effect of bupropion XL and escitalopram on memory and functional outcomes in adults with major depressive disorder: Results from a randomized controlled trial. Psychiatry Research, 220(1–2): 245250.Google Scholar
Theunissen, E. L., Street, D., Hojer, A. M., Vermeeren, A., Van Oers, A., & Ramaekers, J. G. (2013). A randomized trial on the acute and steady-state effects of a new antidepressant, vortioxetine (Lu AA21004), on actual driving and cognition. Clinical Pharmacology & Therapeutics, 93(6): 493501.Google Scholar
Thorsen, A. L., Johansson, K., & Loberg, E. M. (2014). Neurobiology of cognitive remediation therapy for schizophrenia: A systematic review. Frontiers in Psychiatry, 5: 103.Google Scholar
Trivedi, M. H., Greer, T. L., Church, T. S., Carmody, T. J., Grannemann, B. D., Galper, D. I., … Blair, S. N. (2011). Exercise as an augmentation treatment for nonremitted major depressive disorder: A randomized, parallel dose comparison. Journal of Clinical Psychiatry, 72(5): 677684.Google Scholar
Zimmerman, M., McGlinchey, J. B., Posternak, M. A., Friedman, M., Attiullah, N., & Boerescu, D. (2006). How should remission from depression be defined? The depressed patient’s perspective. American Journal of Psychiatry, 163(1): 148150.Google Scholar

References

Adamcio, B., Sargin, D., Stradomska, A., Medrihan, L., Gertler, C., Theis, F., … Ehrenreich, H. (2008). Erythropoietin enhances hippocampal long-term potentiation and memory. BMC Biology, 6: 37.Google Scholar
Banks, W. A., Jumbe, N. L., Farrell, C. L., Niehoff, M. L., & Heatherington, A. C. (2004). Passage of erythropoietic agents across the blood–brain barrier: A comparison of human and murine erythropoietin and the analog darbepoetin alfa. European Journal of Pharmacology, 505(1–3): 93101.Google Scholar
Bora, E., Harrison, B. J., Yucel, M., & Pantelis, C. (2013). Cognitive impairment in euthymic major depressive disorder: A meta-analysis. Psychological Medicine, 43(10): 20172026.CrossRefGoogle ScholarPubMed
Bourne, C., Aydemir, O., Balanza-Martinez, V., Bora, E., Brissos, S., Cavanagh, J. T., … Goodwin, G. M. (2013). Neuropsychological testing of cognitive impairment in euthymic bipolar disorder: An individual patient data meta-analysis. Acta Psychiatrica Scandinavica, 128(3): 149162.Google Scholar
Brines, M. L., Ghezzi, P., Keenan, S., Agnello, D., de Lanerolle, N. C., Cerami, C., … Cerami, A. (2000). Erythropoietin crosses the blood–brain barrier to protect against experimental brain injury. Proceedings of the National Academy of Sciences of the United States of America, 97(19): 1052610531.Google Scholar
Buemi, M., Cavallaro, E., Floccari, F., Sturiale, A., Aloisi, C., Trimarchi, M., … Frisina, N. (2003). The pleiotropic effects of erythropoietin in the central nervous system. Journal of Neuropathology and Experimental Neurology, 62(3): 228236.Google Scholar
Byts, N. & Siren, A. L. (2009). Erythropoietin: A multimodal neuroprotective agent. Experimental & Translational Stroke Medicine, 1: 4.Google Scholar
Digicaylioglu, M., Bichet, S., Marti, H. H., Wenger, R. H., Rivas, L. A., Bauer, C., & Gassmann, M. (1995). Localization of specific erythropoietin binding sites in defined areas of the mouse brain. Proceedings of the National Academy of Sciences of the United States of America, 92(9): 37173720.Google Scholar
Dirnagl, U., Simon, R. P., & Hallenbeck, J. M. (2003). Ischemic tolerance and endogenous neuroprotection. Trends in Neurosciences, 26(5): 248254.Google Scholar
Ehrenreich, H., Fischer, B., Norra, C., Schellenberger, F., Stender, N., Stiefel, M., … Bartels, C. (2007a). Exploring recombinant human erythropoietin in chronic progressive multiple sclerosis. Brain, 130(Pt. 10): 25772588.Google Scholar
Ehrenreich, H., Hinze-Selch, D., Stawicki, S., Aust, C., Knolle-Veentjer, S., Wilms, S., … Krampe, H. (2007b). Improvement of cognitive functions in chronic schizophrenic patients by recombinant human erythropoietin. Molecular Psychiatry, 12(2): 206220.Google Scholar
Eriksson, T. M., Delagrange, P., Spedding, M., Popoli, M., Mathe, A. A., Ogren, S. O., & Svenningsson, P. (2011). Emotional memory impairments in a genetic rat model of depression: Involvement of 5-HT/MEK/Arc signaling in restoration. Molecular Psychiatry, 17(2): 173184.Google Scholar
Ge, X. H., Zhu, G. J., Geng, D. Q., Zhang, Z. J., & Liu, C. F. (2012). Erythropoietin attenuates 6-hydroxydopamine-induced apoptosis via glycogen synthase kinase 3beta-mediated mitochondrial translocation of Bax in PC12 cells. Neurological Sciences, 33(6): 12491256.Google Scholar
Girgenti, M. J., Hunsberger, J., Duman, C. H., Sathyanesan, M., Terwilliger, R., & Newton, S. S. (2009). Erythropoietin induction by electroconvulsive seizure, gene regulation, and antidepressant-like behavioral effects. Biological Psychiatry, 66(3): 267274.Google Scholar
Hamilton, J. P. & Gotlib, I. H. (2008). Neural substrates of increased memory sensitivity for negative stimuli in major depression. Biological Psychiatry, 63(12): 11551162.Google Scholar
Harmer, C. J. (2010). Antidepressant drug action: A neuropsychological perspective. Depression and Anxiety, 27(3): 231233.Google Scholar
Inkster, B., Nichols, T. E., Saemann, P. G., Auer, D. P., Holsboer, F., Muglia, P., & Matthews, P. M. (2009). Association of GSK3beta polymorphisms with brain structural changes in major depressive disorder. Archives of General Psychiatry, 66(7): 721728.Google Scholar
Jelkmann, W., Bohlius, J., Hallek, M., & Sytkowski, A. J. (2008). The erythropoietin receptor in normal and cancer tissues. Critical Reviews in Oncology/Hematology, 67(1): 3961.Google Scholar
Kastner, A., Grube, S., El-Kordi, A., Stepniak, B., Friedrichs, H., Sargin, D., … Ehrenreich, H. (2012). Common variants of the genes encoding erythropoietin and its receptor modulate cognitive performance in schizophrenia. Molecular Medicine, 18: 10291040.Google Scholar
Leconte, C., Bihel, E., Lepelletier, F. X., Bouet, V., Saulnier, R., Petit, E., … Schumann-Bard, P. (2011). Comparison of the effects of erythropoietin and its carbamylated derivative on behaviour and hippocampal neurogenesis in mice. Neuropharmacology, 60(2–3): 354364.Google Scholar
Marti, H. H., Wenger, R. H., Rivas, L. A., Straumann, U., Digicaylioglu, M., Henn, V., … Gassmann, M. (1996). Erythropoietin gene expression in human, monkey and murine brain. European Journal of Neuroscience, 8(4): 666676.Google Scholar
Miskowiak, K., Ehrenreich, H., Christensen, E. M., Kessing, L. V., & Vinberg, M. (2014a). Recombinant human erythropoietin to target cognitive dysfunction in bipolar disorder: A double-blind, randomized, placebo-controlled phase 2 trial. Journal of Clinical Psychiatry, 75(12): 13471355.Google Scholar
Miskowiak, K. W., Favaron, E., Hafizi, S., Inkster, B., Goodwin, G. M., Cowen, P. J., & Harmer, C. J. (2009). Effects of erythropoietin on emotional processing biases in patients with major depression: an exploratory fMRI study. Psychopharmacology (Berlin), 207(1): 133142.CrossRefGoogle ScholarPubMed
Miskowiak, K. W., Favaron, E., Hafizi, S., Inkster, B., Goodwin, G. M., Cowen, P. J., & Harmer, C. J. (2010a). Erythropoietin modulates neural and cognitive processing of emotional information in biomarker models of antidepressant drug action in depressed patients. Psychopharmacology (Berlin), 210(3) 419428.Google Scholar
Miskowiak, K., Inkster, B., O’Sullivan, U., Selvaraj, S., Goodwin, G. M., & Harmer, C. J. (2008a). Differential effects of erythropoietin on neural and cognitive measures of executive function 3 and 7 days post-administration. Experimental Brain Research, 184(3): 313321.Google Scholar
Miskowiak, K., Inkster, B., Selvaraj, S., Goodwin, G., & Harmer, C. (2007a). Erythropoietin has no effect on hippocampal response during memory retrieval 3 days post-administration. Psychopharmacology (Berlin), 195(3): 451453.Google Scholar
Miskowiak, K., Inkster, B., Selvaraj, S., Wise, R., Goodwin, G. M., & Harmer, C. J. (2008b). Erythropoietin improves mood and modulates the cognitive and neural processing of emotion 3 days post administration. Neuropsychopharmacology, 33(3): 611618.Google Scholar
Miskowiak, K., O’Sullivan, U., & Harmer, C. J. (2007b). Erythropoietin enhances hippocampal response during memory retrieval in humans. Journal of Neuroscience, 27(11): 27882792.Google Scholar
Miskowiak, K., O’Sullivan, U., & Harmer, C. J. (2007c). Erythropoietin reduces neural and cognitive processing of fear in human models of antidepressant drug action. Biological Psychiatry, 62(11): 12441250.Google Scholar
Miskowiak, K. W., Vinberg, M., Christensen, E. M., Bukh, J. D., Harmer, C. J., Ehrenreich, H., & Kessing, L. V. (2014b). Recombinant human erythropoietin for treating treatment-resistant depression: A double-blind, randomized, placebo-controlled phase 2 trial. Neuropsychopharmacology, 39(6): 13991408.Google Scholar
Miskowiak, K. W., Vinberg, M., Harmer, C. J., Ehrenreich, H., Knudsen, G. M., Macoveanu, J., … Kessing, L. V. (2010b). Effects of erythropoietin on depressive symptoms and neurocognitive deficits in depression and bipolar disorder. Trials, 11: 97.Google Scholar
Miskowiak, K. W., Vinberg, M., Macoveanu, J., Ehrenreich, H., Køster, N., Inkster, B., … Siebner, H. R. (2015). Effects of erythropoietin on hippocampal volume and memory in mood disorders. Biological Psychiatry, 78(4): 270277.Google Scholar
Mogensen, J., Miskowiak, K., Sørensen, T. A., Lind, C. T., Olsen, N. V., Springborg, J. B., & Mala, H. (2004). Erythropoietin improves place learning in fimbria-fornix-transected rats and modifies the search pattern of normal rats. Pharmacology, Biochemistry, and Behavior, 77(2): 381390.Google Scholar
Nakamura, T., Ebihara, I., Shimada, N., & Koide, H. (1998). Elevated levels of erythropoietin in cerebrospinal fluid of depressed patients. American Journal of Medical Sciences, 315(3): 199201.Google Scholar
Sargin, D., El-Kordi, A., Agarwal, A., Muller, M., Wojcik, S. M., Hassouna, I., … Ehrenreich, H. (2011). Expression of constitutively active erythropoietin receptor in pyramidal neurons of cortex and hippocampus boosts higher cognitive functions in mice. BMC Biology, 9: 27.Google Scholar
Sargin, D., Friedrichs, H., El-Kordi, A., & Ehrenreich, H. (2010). Erythropoietin as neuroprotective and neuroregenerative treatment strategy: Comprehensive overview of 12 years of preclinical and clinical research. Best Practice & Research. Clinical Anaesthesiology, 24(4): 573594.Google Scholar
Siren, A. L., Fasshauer, T., Bartels, C., & Ehrenreich, H. (2009). Therapeutic potential of erythropoietin and its structural or functional variants in the nervous system. Neurotherapeutics, 6(1): 108127.Google Scholar
Tsai, P. T., Ohab, J. J., Kertesz, N., Groszer, M., Matter, C., Gao, J., … Carmichael, S. T. (2006). A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. Journal of Neuroscience, 26(4): 12691274.Google Scholar
Tse, S., Chan, S., Ng, K. L., & Yatham, L. N. (2014). Meta-analysis of predictors of favorable employment outcomes among individuals with bipolar disorder. Bipolar Disorders, 16(3): 217229.Google Scholar
Wustenberg, T., Begemann, M., Bartels, C., Gefeller, O., Stawicki, S., Hinze-Selch, D., … Ehrenreich, H. (2011). Recombinant human erythropoietin delays loss of gray matter in chronic schizophrenia. Molecular Psychiatry, 16(1): 2636.Google Scholar

References

Alvarez, L. M., Sotres, J. F. C., Leon, S. O., Estrella, J., & Sosa, J. J. S. (2008). Computer program in the treatment for major depression and cognitive impairment in university students. Computers in Human Behavior, 24(3): 816826.Google Scholar
Bowie, C. R., Grossman, M., Holshausen, K. Gupta, M., Best, M., & Ayukawa, E. (In preparation). Action-based cognitive remediation: Effects on cognition, functional capacity, and work outcomes.Google Scholar
Bowie, C. R., Gupta, M., & Holshausen, K. (2013a). Cognitive remediation therapy for mood disorders: Rationale, early evidence, and future directions. Canadian Journal of Psychiatry, 58(6): 319325.Google Scholar
Bowie, C. R., Gupta, M., Holshausen, K., Jokic, R., Best, M., & Milev, R. (2013b). Cognitive remediation for treatment-resistant depression: Effects on cognition and functioning and the role of online homework. Journal of Nervous and Mental Disease, 201(8): 680685.Google Scholar
Bowie, C. R., McGurk, S. R., Mausbach, B., Patterson, T. L., & Harvey, P. D. (2012). Combined cognitive remediation and functional skills training for schizophrenia: Effects on cognition, functional competence, and real-world behavior. American Journal of Psychiatry, 169(7): 710718.Google Scholar
Choi, J., Lisanby, S. H., Medalia, A., & Prudic, J. (2011). A conceptual introduction to cognitive remediation for memory deficits associated with right unilateral electroconvulsive therapy. Journal of ECT, 27(4): 286291.Google Scholar
Eack, S. M., Hogarty, G. E., Cho, R. Y., Prasad, K. M., Greenwald, D. P., Hogarty, S. S., & Keshavan, M. S. (2010). Neuroprotective effects of cognitive enhancement therapy against gray matter loss in early schizophrenia. Archives of General Psychiatry, 67(7): 674682.Google Scholar
Elgamal, S., McKinnon, M. C., Ramakrishnan, K., Joffe, R. T., & MacQueen, G. (2007). Successful computer-assisted cognitive remediation therapy in patients with unipolar depression: A proof of principle study. Psychological Medicine, 37(9): 12291238.CrossRefGoogle ScholarPubMed
Herrera-Guzmán, I., Herrera-Abarca, J. E., Gudayol-Ferré, E., Herrera-Guzmán, D., Gómez-Carbajal, L., Peña-Olvira, M., … Joan, G. O. (2010). Effects of selective serotonin reuptake and dual serotonergic–noradrenergic reuptake treatments on attention and executive functions in patients with major depressive disorder. Psychiatry Research, 177(3): 323329.Google Scholar
Katona, C., Hansen, T., & Olsen, C. K. (2012). A randomized, double-blind, placebo-controlled, duloxetine-referenced, fixed-dose study comparing the efficacy and safety of Lu AA21004 in elderly patients with major depressive disorder. International Clinical Psychopharmacology, 27(4): 215223.Google Scholar
Ladegaard, N., Larsen, E. R., Videbech, P., & Lysaker, P. H. (2013). Higher-order social cognition in first episode major depression. Psychiatry Research, 216(1): 3743.Google Scholar
Lee, R. S. C., Redoblado-Hodge, M. A., Naismith, S. L., Hermens, D. F., Porter, M. A., & Hickie, I. B. (2013). Cognitive remediation improves memory and psychosocial functioning in first-episode psychiatric out-patients. Psychological Medicine, 43(6): 11611173.Google Scholar
Medalia, A., Revheim, N., & Herlands, T. (2009). Cognitive Remediation for Psychological Disorders: Therapist Guide. Oxford University Press.Google Scholar
Meusel, L. A., Hall, G. B., Fougere, P., McKinnon, M. C., & MacQueen, G. M. (2013). Neural correlates of cognitive remediation in patients with mood disorders. Psychiatry Research, 214(2): 142152.Google Scholar
McIntyre, R. S., Lophaven, S., & Olsen, C. K. (2014). A randomized, double-blind, placebo-controlled study of vortioxetine on cognitive function in depressed adults. International Journal of Neuropsychopharmacology, 17(10): 15571567.Google Scholar
Morimoto, S. S., Wexler, B. E., & Alexopoulos, G. S. (2012). Neuroplasticity‐based computerized cognitive remediation for geriatric depression. International Journal of Geriatric Psychiatry, 27(12): 12391247.Google Scholar
Naismith, S. L., Diamond, K., Carter, P. E., Norrie, L. M., Redoblado-Hodge, M. A., Lewis, S. J., & Hickie, I. B. (2011). Enhancing memory in late-life depression: The effects of a combined psychoeducation and cognitive training program. American Journal of Geriatric Psychiatry, 19(3): 240248.Google Scholar
Naismith, S. L., Redoblado-Hodge, M. A., Lewis, S. J., Scott, E. M., & Hickie, I. B. (2010). Cognitive training in affective disorders improves memory: A preliminary study using the NEAR approach. Journal of Affective Disorders, 121(3): 258262.Google Scholar
Reichenberg, A., Harvey, P. D., Bowie, C. R., Mojtabai, R., Rabinowitz, J., Heaton, R. K., & Bromet, E. (2009). Neuropsychological function and dysfunction in schizophrenia and psychotic affective disorders. Schizophrenia Bulletin, 35(5): 10221029.Google Scholar
Siegle, G. J., Ghinassi, F., & Thase, M. E. (2007). Neurobehavioral therapies in the 21st century: Summary of an emerging field and an extended example of cognitive control training for depression. Cognitive Therapy and Research, 31(2): 235262.Google Scholar
Soczynska, J. K., Ravindran, L. N., Styra, R., McIntyre, R. S., Cyriac, A., Manierka, M. S., & Kennedy, S. H. (2014). The effect of bupropion XL and escitalopram on memory and functional outcomes in adults with major depressive disorder: Results from a randomized controlled trial. Psychiatry Research, 220(1–2): 245250.Google Scholar
Wells, A. (2007). The attention training technique: Theory, effects, and a metacognitive hypothesis on auditory hallucinations. Cognitive and Behavioral Practice, 14(2): 134138.Google Scholar
Wykes, T., Brammer, M., Mellers, J., Bray, P., Reeder, C., Williams, C., & Corner, J. (2002). Effects on the brain of a psychological treatment: Cognitive remediation therapy – functional magnetic resonance imaging in schizophrenia. British Journal of Psychiatry, 181(2): 144152.Google Scholar

References

Angevaren, M., Aufdemkampe, G., Verhaar, H. J. J., Aleman, A., & Vanhees, L. (2008). Physical activity and enhanced fitness to improve cognitive function in older people without known cognitive impairment. Cochrane Database of Systematic Reviews, July, 16(3): CD005381.Google Scholar
Arnone, D., McIntosh, A. M., Ebmeier, K. P., Munafò, M. R., & Anderson, I. M. (2012). Magnetic resonance imaging studies in unipolar depression: Systematic review and meta-regression analyses. European Neuropsychopharmacology, 22(1): 116.Google Scholar
Babyak, M., Blumenthal, J. A., Herman, S., Khatri, P., Doraiswamy, M., Moore, K., … Krishnan, K. R. (2000). Exercise treatment for major depression: Maintenance of therapeutic benefit at 10 months. Psychosomatic Medicine, 62(5): 633638.Google Scholar
Bäckman, L., Nyberg, L., Lindenberger, U., Li, S.-C., & Farde, L. (2006). The correlative triad among aging, dopamine, and cognition: Current status and future prospects. Neuroscience & Biobehavioral Reviews, 30(6): 791807.Google Scholar
Berchtold, N. C. & Cotman, C. W. (2013). Exercise and cognitive function: Neurobiological mechanisms. In Ekkekakis, P. (ed.), Routledge Handbook of Physical Activity and Mental Health (pp. 287299). Abingdon: Routledge.Google Scholar
Blondell, S. J., Hammersley-Mather, R., & Veerman, J. L. (2014). Does physical activity prevent cognitive decline and dementia? A systematic review and meta-analysis of longitudinal studies. BMC Public Health, 14: 510.Google Scholar
Blumenthal, J. A., Babyak, M. A., Doraiswamy, P. M., Watkins, L., Hoffman, B. M., Barbour, K. A., … Sherwood, A. (2007). Exercise and pharmacotherapy in the treatment of major depressive disorder. Psychosomatic Medicine, 69(7): 587596.Google Scholar
Blumenthal, J. A., Babyak, M. A., Moore, K. A., Craighead, E., Herman, S., Khatri, P., … Krishnan, K. R. (1999). Effects of exercise training on older patients with major depression. Archives of Internal Medicine, 159(19): 23492356.Google Scholar
Blumenthal, J. A., Sherwood, A., Babyak, M. A., Watkins, L., Smith, P. J., Hoffman, B., … Jiang, W. (2012). Exercise and pharmacological treatment of depressive symptoms in patients with coronary heart disease. Journal of the American College of Cardiology, 60(12): 10531063.Google Scholar
Brenes, G. A., Williamson, J. D., Messier, S. P., Rejeski, W. J., Pahor, M., Ip, E., & Penninx, B. W. J. H. (2007). Treatment of minor depression in older adults: A pilot study comparing sertraline and exercise. Aging and Mental Health, 11(1): 6168.Google Scholar
Briones, T. L., Klintsova, A. Y., & Greenough, W. T. (2004). Stability of synaptic plasticity in the adult rat visual cortex induced by complex environment exposure. Brain Research, 1018(1): 130135.Google Scholar
Burdette, J. H., Laurienti, P. J., Espeland, M. A., Morgan, A., Telesford, Q., Vechlekar, C. D., … Rejeski, W. J. (2010). Using network science to evaluate exercise-associated brain changes in older adults. Frontiers in Aging Neuroscience, 2: 23.Google Scholar
Caspersen, C. J., Powell, K. E., & Christenson, G. M. (1985). Physical activity, exercise and physical fitness: Definitions and distinctions for health-related research. Public Health Reports, 100(2): 126131.Google ScholarPubMed
Chamberlain, S. R. & Robbins, T. W. (2013). Noradrenergic modulation of cognition: Therapeutic implications. Journal of Psychopharmacology, 27(8): 694718.Google Scholar
Chang, Y. K., Labban, J. D., Gapin, J. I., & Etnier, J. L. (2012). The effects of acute exercise on cognitive performance: A meta-analysis. Brain Research, 1453: 87101.Google Scholar
Chaouloff, F., Kennett, G. A., Serrurrier, B., Merino, D., & Curzon, G. (1986). Amino acid analysis demonstrates that increased plasma free tryptophan causes the increase of brain tryptophan during exercise in the rat. Journal of Neurochemistry, 46(5): 16471650.CrossRefGoogle ScholarPubMed
Chmura, J., Nazar, K., & Kaciuba-Uścilko, H. (1994). Choice reaction time during graded exercise in relation to blood lactate and plasma catecholamine thresholds. International Journal of Sports Medicine, 15(4): 172176.Google Scholar
Colcombe, S. & Kramer, A. F. (2003). Fitness effects on the cognitive function of older adults: A meta-analytic study. Psychological Science, 14(2): 125130.Google Scholar
Cooney, G. M., Dwan, K., Greig, C. A., Lawlor, D. A., Rimer, J., Waugh, F. R., … & Mead, G. E. (2013). Exercise for depression. Cochrane Database of Systematic Reviews, 12(9): CD004366.Google Scholar
Cooper, C. J. (1973). Anatomical and physiological mechanisms of arousal, with special reference to the effects of exercise. Ergonomics, 16(5): 601609.Google Scholar
Cotman, C. W., Berchtold, N. C., & Christie, L.-A. (2007). Exercise builds brain health: Key roles of growth factor cascades and inflammation. Trends in Neurosciences, 30(9): 464472.Google Scholar
Cowen, P. & Sherwood, A. C. (2013). The role of serotonin in cognitive function: Evidence from recent studies and implications for understanding depression. Journal of Psychopharmacology, 27(7): 575583.Google Scholar
Cowles, E. (1898). Gymnastics in the treatment of inebriety. American Physical Education Review, 3(2): 107110.Google Scholar
Ding, Y.-H., Li, J., Zhou, Y., Rafols, J. A., Clark, J. C., & Ding, Y. (2006). Cerebral angiogenesis and expression of angiogenic factors in aging rats after exercise. Current Neurovascular Research, 3(1): 1523.Google Scholar
Dotson, V. M., Beydoun, M. A., & Zonderman, A. B. (2010). Recurrent depressive symptoms and the incidence of dementia and mild cognitive impairment. Neurology, 75(1): 2734.Google Scholar
Erickson, K. I., Voss, M. W., Prakash, R. S., Basak, C., Szabo, A., Chaddock, L., … Kramer, A. F. (2011). Exercise training increases size of hippocampus and improves memory. Proceedings of the National Academy of Sciences of the United States of America, 108(7): 30173022.Google Scholar
Fan, Y., Liu, Z., Weinstein, P. R., Fike, J. R., & Liu, J. (2007). Environmental enrichment enhances neurogenesis and improves functional outcome after cranial irradiation. European Journal of Neuroscience, 25(1): 3846.Google Scholar
Faulkner, G., Hefferon, K., & Mutrie, N. (2015a). Putting positive psychology into motion through physical activity. In Linley, A. & Joseph, S. (eds.), Positive Psychology in Practice (2nd edition). Hoboken, NJ: John Wiley.Google Scholar
Faulkner, G., Trinh, L., & Arbour-Nicitopoulos, K. (2015b). Physical activity and mental health. In Crocker, P. (ed.), Sport and Exercise Psychology: A Canadian Perspective (3rd edition). Toronto: Pearson Education Canada.Google Scholar
Ferris, L. T., Williams, J. S., & Shen, C. L. (2007). The effect of acute exercise on serum brain-derived neurotrophic factor levels and cognitive function. Medicine and Science in Sports and Exercise, 39(4): 728734.Google Scholar
Foley, L. S., Prapavessis, H., Osuch, E. A., De Pace, J. A., Murphy, B. A., & Podolinsky, N. J. (2008). An examination of potential mechanisms for exercise as a treatment for depression: A pilot study. Mental Health and Physical Activity, 1(2): 6973.Google Scholar
Fox, K. R. (1999). The influence of physical exercise on mental well-being. Public Health Nutrition, 2(3A): 411418.Google Scholar
Gates, N., Fiatarone Singh, M. A., Sachdev, P. S., & Valenzuela, M. (2013). The effect of exercise training on cognitive function in older adults with mild cognitive impairment: a meta-analysis of randomized controlled trials. American Journal of Geriatric Psychiatry, 21(11): 10861097.Google Scholar
Gunstad, J., Strain, G., Devlin, M. J., Wing, R., Cohen, R. A., Paul, R. H., … Mitchell, J. E. (2011). Improved memory function 12 weeks after bariatric surgery. Surgery for Obesity and Related Diseases, 7(4): 465472.Google Scholar
Hattori, S., Naoi, M., & Nishino, H. (1994). Striatal dopamine turnover during treadmill running in the rat: Relation to the speed of running. Brain Research Bulletin, 35(1): 4149.Google Scholar
Heyn, P., Abreu, B. C., & Ottenbacher, K. J. (2004). The effects of exercise training on elderly persons with cognitive impairment and dementia: A meta-analysis. Archives of Physical Medicine and Rehabilitation, 85(10); 16941704.Google Scholar
Hoffman, B. M., Babyak, M. A., Craighead, W. E., Sherwood, A., Doraiswamy, P. M., Coons, M. J., & Blumental, J. H. (2011). Exercise and pharmacotherapy in patients with major depression: One-year follow-up of the SMILE study. Psychosomatic Medicine, 73(2): 127133.Google Scholar
Hoffman, B. M., Blumenthal, J. A., Babyak, M. A., Smith, P. J., Rogers, S. D., Doraiswamy, P. M., & Sherwood, A. (2008). Exercise fails to improve neurocognition in depressed middle-aged and older adults. Medicine and Science in Sports and Exercise, 40(7): 13441352.Google Scholar
Huang, T., Larsen, K. T., Ried-Larsen, M., Moller, N. C., & Andersen, L. B. (2014). The effects of physical activity and exercise on brain-derived neurotrophic factor in healthy humans: A review. Scandinavian Journal of Medicine and Science in Sports, 24(1): 110.Google Scholar
Hughson, R. L., Green, H. J., & Sharratt, M. T. (1995). Gas exchange, blood lactate, and plasma catecholamines during incremental exercise in hypoxia and normoxia. Journal of Applied Physiology, 79(4): 11341141.Google Scholar
Kelly, M. E., Loughrey, D., Lawlor, B. A., Robertson, I. H., Walsh, C., & Brennan, S. (2014). The impact of exercise on the cognitive functioning of healthy older adults: A systematic review and meta-analysis. Ageing Research Reviews, 16: 1231.Google Scholar
Kessing, L. V. & Andersen, P. K. (2004). Does the risk of developing dementia increase with the number of episodes in patients with depressive disorder and in patients with bipolar disorder? Journal of Neurology, Neurosurgery, and Psychiatry, 75(12):16621666.Google Scholar
Klempin, F., Beis, D., Mosienko, V., Kempermann, G., Bader, M., & Alenina, N. (2013). Serotonin is required for exercise-induced adult hippocampal neurogenesis. Journal of Neuroscience, 33(19): 82708275.Google Scholar
Krogh, J., Rostrup, E., Thomsen, C., Elfving, B., Videbech, P., & Nordentoft, M. (2014). The effect of exercise on hippocampal volume and neurotrophines in patients with major depression: A randomized clinical trial. Journal of Affective Disorders, 165: 2430.Google Scholar
Krogh, J., Saltin, B., Gluud, C., & Nordentoft, M. (2009). The DEMO trial: A randomized, parallel-group, observer-blinded clinical trial of strength versus aerobic versus relaxation training for patients with mild to moderate depression. Journal of Clinical Psychiatry, 70(6): 790800.Google Scholar
Kubesch, S., Bretschneider, V., Freudenmann, R., Weidenhammer, N., Lehmann, M., Spitzer, M., & Gron, G. (2003). Aerobic endurance exercise improves executive functions in depressed patients. Journal of Clinical Psychiatry, 64(9): 10051012.Google Scholar
Lambourne, K. & Tomporowski, P. (2010). The effect of exercise-induced arousal on cognitive task performance: A meta-regression analysis. Brain Research, 1341: 1224.Google Scholar
Lee, I. M., Shiroma, E. J., Lobelo, F., Puska, P., Blair, S. N., & Katzmarzyk, P. T. (2012). Effect of physical inactivity on major non-communicable diseases worldwide: An analysis of burden of disease and life expectancy. The Lancet, 380(9838): 219229.Google Scholar
Lopez-Lopez, C., LeRoith, D., & Torres-Aleman, I. (2004). Insulin-like growth factor I is required for vessel remodeling in the adult brain. Proceedings of the National Academy of Sciences of the United States of America, 101(26): 98339838.Google Scholar
Mammen, G. & Faulkner, G. E. (2013). Physical activity and the prevention of depression. American Journal of Preventive Medicine, 45(5): 649657.Google Scholar
Mathur, N. & Pedersen, B. K. (2008). Exercise as a mean to control low-grade systemic inflammation. Mediators of Inflammation, 2008: 109502.Google Scholar
McMorris, T. (2009). Exercise and cognitive function: A neuroendocrinological explanation. In McMorris, T., Tomporowski, P., & Audiffren, M. (eds.), Exercise and Cognitive Function (pp. 4168). Oxford: Wiley-Blackwell.Google Scholar
McMorris, T. & Hale, B. J. (2012). Differential effects of differing intensities of acute exercise on speed and accuracy of cognition: A meta-analytical investigation. Brain and Cognition, 80(3): 33851.Google Scholar
McMorris, T., Sproule, J., Turner, A., & Hale, B. J. (2011). Acute, intermediate intensity exercise, and speed and accuracy in working memory tasks: A meta-analytical comparison of effects. Physiology & Behavior, 102(3–4): 421428.Google Scholar
Meeusen, R. & De Meirleir, K. (1995). Exercise and brain neurotransmission. Sports Medicine, 20(3): 160188.Google Scholar
Meeusen, R., Piacentini, M. F., & De Meirleir, K. (2001). Brain microdialysis in exercise research. Sports Medicine, 31(14): 965983.Google Scholar
Meeusen, R., Thorre, K., Chaouloff, F., Sarre, S., De Meirleir, K., Ebinger, G., & Michotte, Y. (1996). Effects of tryptophan and/or acute running on extracellular 5-HT and 5-HIAA levels in the hippocampus of food-deprived rats. Brain Research, 740(1–2): 245252.Google Scholar
Melancon, M. O., Lorrain, D., & Dionne, I. J. (2012). Exercise increases tryptophan availability to the brain in older men age 57–70 years. Medicine and Science in Sports and Exercise, 44(5): 881887.Google Scholar
Morgan, G. S., Gallacher, J., Bayer, A., Fish, M., Ebrahim, S., & Ben-Shlomo, Y. (2012). Physical activity in middle-age and dementia in later life: Findings from a prospective cohort of men in Caerphilly, South Wales and a meta-analysis. Journal of Alzheimer's Disease, 31(3): 569580.Google Scholar
Neumeister, A., Carson, R., Henry, S., Planeta-Wilson, B., Binneman, B., Maguire, R. P., … Frost, J. J. (2006). Cerebral metabolic effects of intravenous glycine in healthy human subjects. Journal of Clinical Psychopharmacology, 26(6): 595599.Google Scholar
Nybo, L., Nielsen, B., Blomstrand, E., Møller, K., & Secher, N. (2003). Neurohumoral responses during prolonged exercise in humans. Journal of Applied Physiology, 95(3): 11251131.Google Scholar
Pajonk, F.-G., Wobrock, T., Gruber, O., Scherk, H., Berner, D., Kaizl, I., … Falkai, P. (2010). Hippocampal plasticity in response to exercise in schizophrenia. Archives of General Psychiatry, 67(2): 133143.Google Scholar
Roig, M., Nordbrandt, S., Geertsen, S. S., & Nielsen, J. B. (2013). The effects of cardiovascular exercise on human memory: A review with meta-analysis. Neuroscience and Biobehavioral Reviews, 37(8): 16451666.Google Scholar
Rowell, L. B. & Shepherd, J. T. (eds.) (1996). Handbook of Physiology, Section 12: Exercise: Regulation and Integration of Multiple Systems. New York: Oxford University Press.Google Scholar
Sellbom, K. S. & Gunstad, J. (2012). Cognitive function and decline in obesity. Journal of Alzheimer's Disease, 30(Suppl. 2): S89S95.Google Scholar
Smith, P. J., Blumenthal, J. A., Hoffman, B. M., Cooper, H., Strauman, T. A., Welsh-Bohmer, K., … & Sherwood, A. (2010). Aerobic exercise and neurocognitive performance: A meta-analytic review of randomized controlled trials. Psychosomatic Medicine, 72(3): 239252.Google Scholar
Sofi, F., Valecchi, D., Bacci, D., Abbate, R., Gensini, G. F., Casini, A., & Macchi, C. (2011). Physical activity and risk of cognitive decline: A meta-analysis of prospective studies. Journal of Internal Medicine, 269(1): 107117.Google Scholar
Stanton, R. & Reaburn, P. (2014). Exercise and the treatment of depression: A review of the exercise program variables. Journal of Science and Medicine in Sport, 17(2): 177182.Google Scholar
Teunissen, C. E., Van Boxtel, M., Bosma, H., Bosmans, E., Delanghe, J., De Bruijn, C., … de Vente, J. (2003). Inflammation markers in relation to cognition in a healthy aging population. Journal of Neuroimmunology, 134(1–2): 142150.Google Scholar
Tomporowski, P. D. (2003). Effects of acute bouts of exercise on cognition. Acta Psychologica, 112(3): 297324.Google Scholar
Van Praag, H., Kempermann, G., & Gage, F. H. (1999). Running increases cell proliferation and neurogenesis in the adult mouse dentate gyrus. Nature Neuroscience, 2: 266270.Google Scholar
Vasques, P. E., Moraes, H., Silveira, H., Deslandes, A. C., & Laks, J. (2011). Acute exercise improves cognition in the depressed elderly: The effect of dual-tasks. Clinics, 66(9): 15531557.Google Scholar
Veena, J., Srikumar, B. N., Mahati, K., Bhagya, V., Raju, T. R., & Shankaranarayana Rao, B. S. (2009). Enriched environment restores hippocampal cell proliferation and ameliorates cognitive deficits in chronically stressed rats. Journal of Neuroscience Research, 87(4): 831843.Google Scholar
Wilson, W. M. & Marsden, C. A. (1996). In vivo measurement of extracellular serotonin in the ventral hippocampus during treadmill running. Behavioural Pharmacology, 7(1): 101104.Google Scholar
World Health Organization (2010). Global Recommendations on Physical Activity for Health. Geneva: World Health Organization.Google Scholar
Yaffe, K., Kanaya, A., Lindquist, K., Simonsick, E. M., Harris, T., Shorr, R. I., … Newman, A. B. (2004). The metabolic syndrome, inflammation, and risk of cognitive decline. JAMA, 292(18): 22372242.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×