Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-qsmjn Total loading time: 0 Render date: 2024-04-24T14:56:32.225Z Has data issue: false hasContentIssue false

7 - Foraging and spatial learning in hummingbirds

Published online by Cambridge University Press:  13 August 2009

Lars Chittka
Affiliation:
Queen Mary University of London
James D. Thomson
Affiliation:
University of Toronto
Get access

Summary

Enthusiasm for optimal foraging theory in the 1970s and 1980s stimulated much work on foraging by bees and, to a lesser extent, hummingbirds. These animals were assumed to be energetically stressed because they were nectarivorous, small, and dependent on costly forms of flight. Researchers sought to explain foraging in terms of movement patterns that saved energy. For example, Pyke (1981) derived movement rules both within and between inflorescences. He compared observed directions and distances of movements following departure from a flower to optimal predictions, under the assumption that the animals should maximize their net rate of energy intake. Pyke (and many others) also assumed that animals would have imperfect knowledge about their environments, particularly with regard to predictions as to what and where to find food in the future. In addition to using statistical rules (Pyke 1984), such animals should always sample in order to track an ever-changing world. Despite the power and appeal of this viewpoint, we now see growing evidence that simple rules and patterns alone cannot explain foraging in hummingbirds. Here, we review how learning and memory influence hummingbird foraging and how memory might affect the ways in which hummingbirds pollinate plants.

Much of a hummingbird's diet is derived from the nectar of flowers that, in turn, rely on hummingbirds for pollination. These flowers frequently provide only a few mg of sugar daily (Kodric-Brown & Brown 1978). Hummingbirds therefore must visit many flowers on each feeding bout, transferring pollen among flowers in the process.

Type
Chapter
Information
Cognitive Ecology of Pollination
Animal Behaviour and Floral Evolution
, pp. 127 - 147
Publisher: Cambridge University Press
Print publication year: 2001

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×