Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-wq2xx Total loading time: 0 Render date: 2024-04-24T20:36:35.402Z Has data issue: false hasContentIssue false

10 - The impacts of climate change on marine turtle reproductive success

Published online by Cambridge University Press:  05 June 2014

Lucy A. Hawkes
Affiliation:
University of Exeter
Annette C. Broderick
Affiliation:
University of Exeter
Matthew H. Godfrey
Affiliation:
Duke University Marine Lab
Brendan J. Godley
Affiliation:
University of Exeter
Matthew J. Witt
Affiliation:
University of Exeter
Brooke Maslo
Affiliation:
Rutgers University, New Jersey
Julie L. Lockwood
Affiliation:
Rutgers University, New Jersey
Get access

Summary

Why marine turtles?

Ectothermic species are fundamentally affected by environmental temperatures, which largely dictate their metabolic rate. In marine turtles, foraging behavior, migratory patterns, and ultimately breeding success may be modulated by the environment and influenced by climate change. This has the potential to have both positive and negative effects. The seven species of marine turtles broadly occupy three foraging niches (planktivory, herbivory, and omnivory) and occur in almost every non-polar ocean basin in the world, from shallow coastal seas to open ocean habitats. The effects of climate change to marine turtles likely will be wide ranging and of direct relevance to other marine animals in these varied habitats. Marine turtles are a fascinating “canary in the coal mine” with which to study the effects of climate change in marine habitats, and there has been an exponential increase in interest in the effects of climate change on them in the last decade (Poloczanska et al., 2009; Hamann et al., 2010; Hawkes et al., 2010). Marine turtles are also generally considered charismatic, making them ideal subjects with which to raise awareness of climate change effects to biodiversity and to increase support for effective management and conservation of marine environments.

Type
Chapter
Information
Coastal Conservation , pp. 287 - 310
Publisher: Cambridge University Press
Print publication year: 2014

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Airoldi, L., Abbiati, M., Beck, M. W., et al. (2005). An ecological perspective on the deployment and design of low-crested and other hard coastal defence structures. Coastal Engineering, 52, 1073–1087.CrossRefGoogle Scholar
Allen, Z. C., Shah, N. J., Grant, A., Derand, G. D. & Bell, D. (2010). Hawksbill turtle monitoring in Cousin Island, Seychelles: An eight-fold increase in annual nesting numbers. Endangered Species Research, 11, 195–200.CrossRefGoogle Scholar
Baez, J. C., Bellido, J. J., Ferri-Yanez, F., et al. (2011). The North Atlantic Oscillation and sea surface temperature affect loggerhead abundance around the Strait of Gibraltar. Scientia Marina, 75, 571–575.CrossRefGoogle Scholar
Baker, J., Littnan, C. & Johnston, D. (2006). Potential effects of sea level rise on the terrestrial habitats of endangered and endemic megafauna in the Northwestern Hawaiian Islands. Endangered Species Research, 2, 21–30.CrossRefGoogle Scholar
Baptistotte, C., Scalfoni, J. T. & Mrosovsky, N. (1999). Male-producing thermal ecology of a southern loggerhead turtle nesting beach in Brazil: Implications for conservation. Animal Conservation, 2, 9–13.CrossRefGoogle Scholar
Beggs, J., Horrocks, J. & Krueger, B. (2007). Increase in hawksbill sea turtle Eretmochelys imbricata nesting in Barbados, West Indies. Endangered Species Research, 3, 159–168.CrossRefGoogle Scholar
Bell, C. D. L., Parsons, J., Austin, T. J., et al. (2005). Some of them came home: The Cayman Turtle Farm headstarting project for the green turtle Chelonia mydas. Oryx, 39, 137–148.CrossRefGoogle Scholar
Bell, C. D., Solomon, J. L., Blumenthal, J. M., et al. (2007). Monitoring and conservation of critically reduced marine turtle nesting populations: Lessons from the Cayman Islands. Animal Conservation, 10, 39–47.CrossRefGoogle Scholar
Bell, C. D., Blumenthal, J. M., Broderick, A. C. & Godley, B. J. (2009). Investigating potential for depensation in marine turtles: How low can you go?Conservation Biology, 24, 226–235.CrossRefGoogle Scholar
Bengtsson, L. (2001). Weather – Hurricane threats. Science, 293, 440–441.CrossRefGoogle ScholarPubMed
Bentivegna, F., Rasotto, M. B., de Lucia, G. A., et al. (2010). Loggerhead turtle (Caretta caretta) nests at high latitudes in Italy: A call for vigilance in the western Mediterranean. Chelonian Conservation and Biology, 9, 283–289.CrossRefGoogle Scholar
Bollmer, J. L., Irwin, M. E., Rieder, J. P. & Parker, P. G. (1999). Multiple paternity in loggerhead turtle clutches. Copeia, 1999, 475–478.CrossRefGoogle Scholar
Booth, D. T. & Evans, A. (2011). Warm water and cool nests are best: How global warming might influence hatchling green turtle swimming performance. PLos ONE, 6, e23162.CrossRefGoogle ScholarPubMed
Bouchard, S., Moran, K., Tiwari, M., et al. (1998). Effects of exposed pilings on sea turtle nesting activity at Melbourne Beach, Florida. Journal of Coastal Research, 14, 1343–1347.Google Scholar
Bowen, B., Avise, J. C., Richardson, J. I., et al. (1993). Population structure of loggerhead turtles (Caretta caretta) in the northwestern Atlantic Ocean and Mediterranean Sea. Conservation Biology, 7, 834–844.CrossRefGoogle Scholar
Bowen, B. W. & Karl, S. A. (2007). Population genetics and phylogeography of sea turtles. Molecular Ecology, 16, 4886–4907.CrossRefGoogle ScholarPubMed
Brock, K. A., Reece, J. S. & Ehrhart, L. M. (2009). The effects of artificial beach nourishment on marine turtles: Differences between loggerhead and green turtles. Restoration Ecology, 17, 297–307.CrossRefGoogle Scholar
Broderick, A. C., Godley, B. J. & Hays, G. C. (2001). Metabolic heating and the prediction of sex ratios for green turtles (Chelonia mydas). Physiological and Biochemical Zoology, 74, 161–170.CrossRefGoogle Scholar
Burke, L. & Maidens, J. (2004). Reefs at Risk in the Caribbean. Washington, DC: World Resources Institute.Google Scholar
Caut, S., Guirlet, E. & Girondot, M. (2010). Effect of tidal overwash on the embryonic development of leatherback turtles in French Guiana. Marine Environmental Research, 69, 254–261.CrossRefGoogle ScholarPubMed
Chaieb, O., El Ouaer, A.Mafucci, F., et al. (2011). Genetic survey of loggerhead turtle Caretta caretta nesting population in Tunisia. Marine Biodiversity Records, 3, e20.CrossRefGoogle Scholar
Chaloupka, M., Kamezaki, N. & Limpus, C. (2008). Is climate change affecting the population dynamics of the endangered Pacific loggerhead sea turtle?Journal of Experimental Marine Biology and Ecology, 356, 136–143.CrossRefGoogle Scholar
Chan, E. H. & Liew, H. C. (1995). Incubation temperatures and sex-ratios in the Malaysian leatherback turtle (Dermochelys coriacea). Biological Conservation, 74, 169–174.CrossRefGoogle Scholar
Cowell, P. J., Thom, B. G., Jones, R. A., Everts, C. H. & Simanovic, D. (2006). Management of uncertainty in predicting climate-change impacts on beaches. Journal of Coastal Research, 22, 232–245.CrossRefGoogle Scholar
Crain, D. A., Bolten, A. B. & Bjorndal, K. A. (1995). Effects of beach nourishment on sea turtles: Review and research initiatives. Restoration Ecology, 3, 95–104.Google Scholar
Crim, J. L., Spotila, L. D., Spotila, J. R., et al. (2002). The leatherback turtle, Dermochelys coriacea, exhibits both polyandry and polygyny. Molecular Ecology, 11, 2097–2106.CrossRefGoogle ScholarPubMed
Cuevas, E., de los Angeles, M., Liceaga, C. & Marino-Tapia, I. (2010). Influence of beach slope and width on hawksbill (Eretmochelys imbricata) and green turtle (Chelonia mydas) nesting activity in El Cuyo, Yucatan, Mexico. Chelonian Conservation and Biology, 9, 262–267.CrossRefGoogle Scholar
Ditmer, M. A. & Stapleton, S. P. (2012). Factors affecting hatch success of hawksbill sea turtles on Long Island, Antigua, West Indies. PLoS ONE, 7, e38472.CrossRefGoogle ScholarPubMed
Doody, J. S., Guarino, E., Georges, A. , et al. (2006). Nest site choice compensates for climate effects on sex ratios in a lizard with environmental sex determination. Evolutionary Ecology, 20, 307–330.CrossRefGoogle Scholar
Dugan, J. E., Hubbard, D. M., Rodil, I. F., Revell, D. L. & Schroeter, S. (2008). Ecological effects of coastal armoring on sandy beaches. Marine Ecology – An Evolutionary Perspective, 29, 160–170.CrossRefGoogle Scholar
Dutton, P. H., Bowen, B. W., Owens, D. W., Barragan, A. & Davis, S. K. (1999). Global phylogeography of the leatherback turtle (Dermochelys coriacea). Journal of Zoology, 248, 397–409.CrossRefGoogle Scholar
Ekanayake, E. M. L., Kapurusinghe, T., Sama, M. M., et al. (2013). Paternity of green turtles (Chelonia mydas) clutches laid at Kosgoda, Sri Lanka. Herpetological Conservation and Biology, 8, 27–36.Google Scholar
Encalada, S. E., Bjorndal, K. A., Bolten, A. B., et al. (1998). Population structure of loggerhead turtle (Caretta caretta) nesting colonies in the Atlantic and Mediterranean as inferred from mitochondrial DNA control region sequences. Marine Biology, 130, 567–575.CrossRefGoogle Scholar
Ewert, M. A., Etchberger, C. R. & Nelson, C. E. (2004). Turtle sex determining modes and TSD patterns, and some TSD pattern correlates. In Valenzuela, N. & Lance, V. (eds.), Temperature-dependent Sex Determination in Vertebrates. Washington, DC: Smithsonian Institution Press, pp. 21–32.Google Scholar
Ewert, M. A., Lang, J. W. & Nelson, C. E. (2005). Geographic variation in the pattern of temperature-dependent sex determination in the American snapping turtle (Chelydra serpentina). Journal of Zoology, 265, 81–95.CrossRefGoogle Scholar
Fish, M. R., Cote, I. M., Gill, J. A., et al. (2005). Predicting the impact of sea-level rise on Caribbean sea turtle nesting habitat. Conservation Biology, 19, 482–491.CrossRefGoogle Scholar
Fish, M. R., Cote, I. M., Horrocks, J. A., et al. (2008). Construction setback regulations and sea-level rise: Mitigating sea turtle nesting beach loss. Ocean and Coastal Management, 51, 330–341.CrossRefGoogle Scholar
Fitzsimmons, N. N. (1998). Single paternity of clutches and sperm storage in the promiscuous green turtle (Chelonia mydas). Molecular Ecology, 7, 575–584.CrossRefGoogle Scholar
Fitzsimmons, N. N., Limpus, C. J., Norman, J. A., et al. (1997). Philopatry of male marine turtles inferred from mitochondrial DNA markers. Proceedings of the National Academy of Sciences of the United States of America, 94, 8912–8917.CrossRefGoogle ScholarPubMed
Freedberg, S. & Wade, M. J. (2001). Cultural inheritance as a mechanism for population sex-ratio bias in reptiles. Evolution, 55, 1049–1055.CrossRefGoogle ScholarPubMed
Fuentes, M. M. P. B. & Abbs, D. (2010). Effects of projected changes in tropical cyclone frequency on sea turtles. Marine Ecology Progress Series, 412, 283–292.CrossRefGoogle Scholar
Fuentes, M. M. P. B. & Porter, W. P. (2013). Using a microclimate model to evaluate impacts of climate change on sea turtles. Ecological Modelling, 251, 150–157.CrossRefGoogle Scholar
Fuentes, M. M. P. B., Maynard, J. A., Guinea, M., et al. (2009). Proxy indicators of sand temperature help project impacts of global warming on sea turtles in northen Australia. Endangered Species Research, 9, 33–40.CrossRefGoogle Scholar
Fuentes, M. M. P. B., Limpus, C. J., Hamann, M. & Dawson, J. (2010). Potential impacts of projected sea-level rise on sea turtle rookeries. Aquatic Conservation-Marine and Freshwater Ecosystems, 20, 132–139.CrossRefGoogle Scholar
Fuentes, M. M. P. B., Limpus, C. J. & Hamann, M. (2011). Vulnerability of sea turtle nesting grounds to climate change. Global Change Biology, 17, 140–153.CrossRefGoogle Scholar
Fuentes, M. M. P. B., Fish, M. R. & Maynard, J. (2012). Management strategies to mitigate the impacts of climate change on sea turtle’s terrestrial reproductive phase. Mitigation and Adaptation Strategies for Global Change, 17, 51–63.CrossRefGoogle Scholar
Garcon, J. S., Grech, A., Moloney, J. & Hamann, M. (2010). Relative Exposure Index: An important factor in sea turtle nesting distribution. Aquatic Conservation-Marine and Freshwater Ecosystems, 20, 140–149.CrossRefGoogle Scholar
Girondot, M. & Fretey, J. (1996). Leatherback turtles, Dermochelys coriacea, nesting in French Guiana, 1978–1995. Chelonian Conservation and Biology, 2, 204–208.Google Scholar
Godfrey, M. H., Barreto, R. & Mrosovsky, N. (1996). Estimating past and present sex ratios of sea turtles in Suriname. Canadian Journal of Zoology – Revue Canadienne De Zoologie, 74, 267–277.CrossRefGoogle Scholar
Godfrey, M. H., Barreto, R. & Mrosovsky, N. (1997). Metabolically-generated heat of developing eggs and its potential effect on sw ratio of sea turtle hatchlings. Journal of Herpetology, 31, 616–619.CrossRefGoogle Scholar
Goldenberg, S. B., Landsea, C. W., Mestas-Nunez, A. M. & Gray, W. M. (2001). The recent increase in Atlantic hurricane activity: Causes and implications. Science, 293, 474–479.CrossRefGoogle ScholarPubMed
Gyuris, E. (1994). The rate of predation by fishes on hatchlings of the green turtle (Chelonia mydas). Coral Reefs, 13, 137–144.CrossRefGoogle Scholar
Hamann, M., Limus, C. J. & Read, M. A. (2007). Vulnerability of marine reptiles in the Great Barrier Reef to climate change. In Johnson, J. E. & Marshall, P. A. (eds.), Climate Change and the Great Barrier Reef: A Vulnerability Assessment. Hobart: Great Barrier Reef Marine Park Authority and Australia Greenhouse Office.Google Scholar
Hamann, M., Godfrey, M., Seminoff, J., et al. (2010). Global research priorities for sea turtles: Informing management and conservation in the 21st century. Endangered Species Research, 11, 245–269.CrossRefGoogle Scholar
Hansen, L., Hoffman, J., Drews, C. & Mielbrecht, E. (2010). Designing climate-smart conservation: Guidance and case studies. Conservation Biology, 24, 63–69.CrossRefGoogle ScholarPubMed
Harry, J. L. & Briscoe, D. A. (1988). Multiple paternity in the loggerhead turtle (Caretta caretta). Journal of Heredity, 79, 96–99.CrossRefGoogle Scholar
Hawkes, L. A., Broderick, A. C., Godfrey, M. H. & Godley, B. J. (2007). Investigating the potential impacts of climate change on a marine turtle population. Global Change Biology, 13, 923–932.CrossRefGoogle Scholar
Hawkes, L. A., Broderick, A. C., Godfrey, M. H. & Godley, B. J. (2010). Climate change and marine turtles. Endangered Species Research, 7, 137–154.CrossRefGoogle Scholar
Hays, G. C., Mackay, A., Adams, C. R., et al. (1995). Nest-site selection by sea-turtles. Journal of the Marine Biological Association of the United Kingdom, 75, 667–674.CrossRefGoogle Scholar
Hays, G. C., Fossette, S., Katseledis, K. A., Schofield, G. & Gravenor, M. B. (2010). Breeding periodicity for male sea turtles, operational sex ratios, and implications in the face of climate change. Conservation Biology, 24, 1636–1643.CrossRefGoogle ScholarPubMed
Hoekert, W. E. J., Neufeglise, H., Schouten, A. D. & Menken, S. B. J. (2002). Multiple paternity and female-biased mutation at a microsatellite locus in the olive ridley sea turtle (Lepidochelys olivacea). Heredity, 89, 107–113.CrossRefGoogle Scholar
Hoggard, W. (1991). First recorded turtle nesting on Mississippi’s man-made beach. Marine Turtle Newsletter, 52, 11–12.Google Scholar
Houghton, J. D. R., Myers, A. E., Lloyd, C., et al. (2007). Protracted rainfall decreases temperature within leatherback turtle (Dermochelys coriacea) clutches in Grenada, West Indies: Ecological implications for a species displaying temperature dependent sex determination. Journal of Experimental Marine Biology and Ecology, 345, 71–77.CrossRefGoogle Scholar
Hulin, V., Delmas, V., Girondot, M., Godfrey, M. H. & Guillon, J. M. (2009). Temperature-dependent sex determination and global change: Are some species at greater risk?Oecologia, 160, 493–506.CrossRefGoogle ScholarPubMed
IPCC. (2007). Climate Change 2007: Synthesis Report. Contribution of Working Groups I, II and III to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. Geneva, Switzerland: IPCC.Google Scholar
Ireland, J. S., Broderick, A. C., Glen, F., et al. (2003). Multiple paternity assessed using microsatellite markers, in green turtles Chelonia mydas (Linnaeus, 1758) of Ascension Island, South Atlantic. Journal of Experimental Marine Biology and Ecology, 291, 149–160.CrossRefGoogle Scholar
Iverson, J. B. (1991). Patterns of survivorship in turtles (Order Testudines). Canadian Journal of Zoology – Revue Canadienne De Zoologie, 69, 385–391.CrossRefGoogle Scholar
James, M. C., Eckert, S. A. & Myers, R. A. (2005a). Migratory and reproductive movements of male leatherback turtles (Dermochelys coriacea). Marine Biology, 147, 845–853.CrossRefGoogle Scholar
James, M. C., Myers, R. A. & Ottensmeyer, C. A. (2005b). Behaviour of leatherback sea turtles, Dermochelys coriacea, during the migratory cycle. Proceedings of the Royal Society of London, Series B, Biological Sciences, 272, 1547–1555.CrossRefGoogle ScholarPubMed
Jensen, M. P., Abreu-Grobois, F. A., Frydenburg, J. & Loeschcke, V. (2006). Microsatellites provide insight into contrasting mating patterns in arribada vs. non-arribada olive ridley sea turtle rookeries. Molecular Ecology, 15, 2567–2575.CrossRefGoogle ScholarPubMed
Jones, T. T., Reina, R. D., Darveau, C. A. & Lutz, P. L. (2007). Ontogeny of energetics in leatherback (Dermochelys coriacea) and olive ridley (Lepidochelys olivacea) sea turtle batchlings. Comparative Biochemistry and Physiology Part A: Molecular and Integrative Physiology, 147, 313–322.CrossRefGoogle Scholar
Joseph, J. & Shaw, P. W. (2011). Multiple paternity in egg clutches of hawksbill turtles (Eretmochelys imbricata). Conservation Genetics, 12, 601–605.CrossRefGoogle Scholar
Kallimanis, A. S. (2010). Temperature dependent sex determination and climate change. Oikos, 119, 197–200.CrossRefGoogle Scholar
Kamel, S. J. & Mrosovsky, N. (2004). Nest site selection in leatherbacks, Dermochelys coriacea: Individual patterns and their consequences. Animal Behaviour, 68, 357–366.CrossRefGoogle Scholar
Kamel, S. J. & Mrosovsky, N. (2005). Repeatability of nesting preferences in the hawksbill sea turtle, Eretmochelys imbricata, and their fitness consequences. Animal Behaviour, 70, 819–828.CrossRefGoogle Scholar
Kaska, Y., Downie, R., Tippett, R. & Furness, R. W. (1998). Natural temperature regimes for loggerhead and green turtle nests in the eastern Mediterranean. Canadian Journal of Zoology – Revue Canadienne De Zoologie, 76, 723–729.CrossRefGoogle Scholar
Kelle, L., Gratiot, N., Nolibos, I., et al. (2007). Monitoring of nesting leatherback turtles (Dermochelys coriacea): Contribution of remote sensing for real-time assessment of beach coverage in French Guiana. Chelonian Conservation and Biology, 6, 142–147.CrossRefGoogle Scholar
Kichler, K., Holder, M. T., Davis, S. K., Marquez, R. & Owens, D. W. (1999). Detection of multiple paternity in the Kemp’s ridley sea turtle with limited sampling. Molecular Ecology, 8, 819–830.CrossRefGoogle Scholar
Koike, K. (1996). The countermeasures against coastal hazards in Japan. GeoJournal, 38, 301–312.CrossRefGoogle Scholar
Kraus, N. C. & McDougal, W. G. (1996). The effects of seawalls on the beach: Part I, An updated literature review. Journal of Coastal Research, 12, 691–701.Google Scholar
Kwan, D. 1994. Fat reserves and reproduction in the green turtle (Chelonia mydas). Wildlife Research, 21, 257–266.CrossRefGoogle Scholar
Lamont, M. & Fujisaki, I. (2013). Effects of ocean temperature on nesting phenology and fecundity of loggerhead sea turtle (Caretta caretta). Journal of Herpetology, .Google Scholar
Lara-De La Cruz, L. I., Nakagawa, K. O., Cono-Camodio, H., et al. (2010). Detecting patterns of fertilization and frequency of multiple paternity in Chelonia mydas of Colola (Michoacán, Mexico). Hidrobiologica, 20, 85–89.Google Scholar
Lasala, J. A., Harrison, J. S., Williams, K. L. & Rostal, D. C. (in press). Strong male-biased operational sex ratio in a breeding population of loggerhead turtles (Caretta caretta) inferred by paternal genotype reconstruction analysis. Ecology and Evolution, .
Lee, P. L. M. & Hays, G. C. (2004). Polyandry in a marine turtle: Females make the best of a bad job. Proceedings of the National Academy of Sciences of the United States of America, 101, 6530–6535.CrossRefGoogle Scholar
Lee, P. L. M., Luschi, P. & Hays, G. C. (2007). Detecting female precise natal philopatry in green turtles using assignment methods. Molecular Ecology, 16, 61–74.CrossRefGoogle ScholarPubMed
Leslie, L. M., Karoly, D. J., Leplastrier, M. & Buckley, B. W. (2007). Variability of tropical cyclones over the southwest Pacific Ocean using a high-resolution climate model. Meteorology and Atmospheric Physics, 97, 171–180.CrossRefGoogle Scholar
Limpus, C. J. (1993). The green turtle, Chelonia mydas, in Queensland: Breeding males in the Southern Great Barrier Reef. Wildlife Research, 20, 513–523.CrossRefGoogle Scholar
Lutcavage, M. E., Plotkin, P., Witherington, B. E. & Lutz, P. L. (1997). Human impacts on sea turtle survival. In Lutz, P. L. & Musick, J. A. (eds.), The Biology of Sea Turtles, vol. 1. Boca Raton, FL: CRC Press, pp. 387–410.Google Scholar
Makowski, C., Rusenko, K. & Kruempel, C. J. (2008). Abiotic suitability of recycled glass cullet as an alternative sea turtle nesting substrate. Journal of Coastal Research, 24, 771–779.CrossRefGoogle Scholar
Manzella, S. A., Caillouet, C. W. & Fontaine, C. T. (1988). Kemps ridley, Lepidochelys kempi, sea turtle head-start tag recoveries – Distribution, habitat and method of recovery. Marine Fisheries Review, 50, 24–32.Google Scholar
Martins, R. E. (1996). Storm impacts on loggerhead turtle reproductive success. Marine Turtle Newsletter, 73, 10–12.Google Scholar
Matsuzawa, Y., Sato, K., Sakamoto, W. & Bjorndal, K. A. (2002). Seasonal fluctuations in sand temperature: Effects on the incubation period and mortality of loggerhead sea turtle (Caretta caretta) pre-emergent hatchlings in Minabe, Japan. Marine Biology, 140, 639–646.Google Scholar
Mazaris, A. D., Kramer-Schast, S., Tzanopoulos, J. et al. (2009). Assessing the relative importance of conservation measures applied on sea turtles: Comparison of measures focusing on nesting success and hatching recruitment success. Amphibia–Reptilia, 30, 221–231.CrossRefGoogle Scholar
Mazaris, A. D., Kallimanis, A. S., Pantis, J. D. & Hays, G. C. (2013). Phenological response of sea turtles to environmental variation across a species’ northern range. Proceedings of the Royal Society of London, Series B, Biological Sciences, 280, 2012–2397.Google ScholarPubMed
McClenachan, L., Jackson, J. B. C. & Newman, M. J. H. (2006). Conservation implications of historic sea turtle nesting beach loss. Frontiers in Ecology and the Environment, 4, 290–296.CrossRefGoogle Scholar
Micheli-Campbell, M. A., Campbell, H. A., Cramp, R. L., Booth, D. T. & Franklin, C. E. (2011). Staying cool, keeping strong: Incubation temperature affects performance in a freshwater turtle. Journal of Zoology, 285, 266–273.CrossRefGoogle Scholar
Mickelson, L. E. & Downie, J. R. (2010). Influence of incubation temperature on morphology and locomotion performance of leatherback (Dermochelys coriacea) hatchlings. Canadian Journal of Zoology, 88, 359–368.CrossRefGoogle Scholar
Miller, J. D. (1997). Reproduction in sea turtles. In Lutz, P. L. & Musick, J. A. (eds.), The Biology of Sea Turtles, vol. 1. Boca Raton, FL: CRC Press, pp. 51–82.Google Scholar
Milton, S. L., Leonekabler, S., Schulman, A. A. & Lutz, P. L. (1994). Effects of hurricane Andrew on the sea-turtle nesting beaches of South Florida. Bulletin of Marine Science, 54, 974–981.Google Scholar
Milton, S. L., Schulman, A. A. & Lutz, P. L. (1997). The effect of beach nourishment with aragonite versus silicate sand on beach temperature and loggerhead sea turtle nesting success. Journal of Coastal Research, 13, 904–915.Google Scholar
Mitchell, N. J. & Janzen, F. J. (2010). Temperature-dependent sex determination and contemporary climate change. Sexual Development, 4, 129–140.CrossRefGoogle ScholarPubMed
Montague, C. L. (2008). Recovering the sand deficit from a century of dredging and jetties along Florida’s Atlantic coast: A reevaluation of beach nourishment as an essential tool for ecological conservation. Journal of Coastal Research, 24, 899–916.CrossRefGoogle Scholar
Moore, M. K. & Ball, R. M. (2002). Multiple paternity in loggerhead turtle (Caretta caretta) nests on Melbourne Beach, Florida: A microsatellite analysis. Molecular Ecology, 11, 281–288.CrossRefGoogle ScholarPubMed
Morreale, S. J., Ruiz, G. J., Spotila, J. R. & Standora, E. A. (1982). Temperature-dependent sex determination: Current practices threaten conservation of sea turtles. Science, 216, 1245–1247.CrossRefGoogle ScholarPubMed
Mortimer, J. A. (1990). The influence of beach and sand characteristics on the nesting-behaviour and clutch survival of green turtles (Chelonia mydas). Copeia, 1990, 802–817.CrossRefGoogle Scholar
Mrosovsky, N. (1983). Conserving Sea Turtles. London: British Herpetological Society.Google Scholar
Mrosovsky, N. (1988). Pivotal temperatures for loggerhead turtles (Caretta caretta) from northern and southern nesting beaches. Canadian Journal of Zoology, 66, 661–669.CrossRefGoogle Scholar
Mrosovsky, N. (2006). Distorting gene pools by conservation: Assessing the case of doomed turtle eggs. Environmental Management, 38, 523–531.CrossRefGoogle ScholarPubMed
Naro-Maciel, E., Mrosovsky, N. & Marcovaldi, M. A. (1999). Thermal profiles of sea turtle hatcheries and nesting areas at Praia do Forte, Brazil. Chelonian Conservation and Biology, 3, 407–413.Google Scholar
Neuwald, J. L. & Valenzuela, N. (2011). The lesser known challenge of climate change: Thermal variance and sex-reversal in vertebrates with temperature-dependent sex determination. PLos ONE, 6, e18117.CrossRefGoogle ScholarPubMed
Nicholls, R. J. (1998). Coastal Vulnerability Assessment for Sea-level Rise: Evaluation and Selection of Methodologies for Implementation. Technical report R098002. Caribbean Planning for Adaptation to Global Climate Change (CPACC) project.
O’Steen, S. (1998). Embryonic temperature influences juvenile temperature choice and growth rate in snapping turtles Chelydra serpentina. Journal of Experimental Biology, 201, 439–449.Google ScholarPubMed
Patino-Martinez, J., Marco, A., Quinones, L. & Hawkes, L. A. (2012). A potential tool to mitigate the impacts of climate change to the Caribbean leatherback sea turtle. Global Change Biology, 18, 401–411.CrossRefGoogle Scholar
Pearse, D. E. & Avise, J. C. (2001). Turtle mating systems: Behavior, sperm storage, and genetic paternity. Journal of Heredity, 92, 206–211.CrossRefGoogle ScholarPubMed
Peterson, C. H. & Bishop, M. J. (2005). Assessing the environmental impacts of beach nourishment. Bioscience, 55, 887–896.CrossRefGoogle Scholar
Phillips, K. P., Jorgensen, T. H., Jolliffe, K. G., et al. (2013). Reconstructing paternal genotypes to infer patterns of sperm storage and sexual selection in the hawksbill turtle. Molecular Ecology, 22, 2301–2312.CrossRefGoogle ScholarPubMed
Pike, D. A. & Stiner, J. C. (2007). Sea turtle species vary in their susceptibility to tropical cyclones. Oecologia, 153, 471–478.CrossRefGoogle ScholarPubMed
Pike, D. A., Antworth, R. L. & Stiner, J. C. (2006). Earlier nesting contributes to shorter nesting seasons for the loggerhead seaturtle, Caretta caretta. Journal of Herpetology, 40, 91–94.CrossRefGoogle Scholar
Pilkey, O. H. & Wright, H. L. (1988). Seawalls versus beaches. Journal of Coastal Research, SI4, 41–64.Google Scholar
Pintus, K., Godley, B. J., McGowan, A. & Broderick, A. C. (2009). Impact of clutch relocation on green turtle offspring. Journal of Wildlife Management, 73, 1151–1157.CrossRefGoogle Scholar
Plotkin, P. T. (2007). Biology and Conservation of Ridley Sea Turtles. Washington, DC: John Hopkins University Press.Google Scholar
Poloczanska, E. S., Limpus, C. J. & Hays, G. C. (2009). Vulnerability of marine turtles to climate change. Advances in Marine Biology, 56, 151–211.CrossRefGoogle ScholarPubMed
Prusty, G., Dash, S. & Singh, M. P. (2007). Spatio-temporal analysis of multi-date IRS imageries for turtle habitat dynamics characterization at Gahirmatha coast, India. International Journal of Remote Sensing, 28, 871–883.CrossRefGoogle Scholar
Rabon, D., Johnson, S. B., Dodd, M., et al. (2004). Confirmed leatherback turtle (Dermochelys coriacea) nests from North Carolina, with a summary of nesting activities north of Florida. Marine Turtle Newsletter, 101, 4–8.Google Scholar
Reece, S. E., Broderick, A. C., Godley, B. J. & West, S. A. (2002). The effects of incubation environment, sex and pedigree on the hatchling phenotype in a natural population of loggerhead turtles. Evolutionary Ecology Research, 4, 737–748.Google Scholar
Reich, K. J., Bjorndal, K. A. & Bolten, A. B. (2007). The ‘lost years’ of green turtles: Using stable isotopes to study cryptic lifestages. Biology Letters, 3, 712–714.CrossRefGoogle ScholarPubMed
Reina, R. D., Spotila, J. R., Paladino, F. V. & Dunham, A. E. (2009). Changed reproductive schedule of eastern Pacific leatherback turtles Dermochelys coriacea following the 1997–1998 El Nino to La Nina transition. Endangered Species Research, 7, 155–161.CrossRefGoogle Scholar
Rivalan, P., Dutton, P. H., Baudry, E., Roden, S. E. & Girondot, M. (2006). Demographic scenario inferred from genetic data in leatherback turtles nesting in French Guiana and Suriname. Biological Conservation, 130, 1–9.CrossRefGoogle Scholar
Rizkalla, C. E. & Savage, A. (2011). Impact of seawalls on loggerhead sea turtle (Caretta caretta) nesting and hatching success. Journal of Coastal Research, 27, 166–173.CrossRefGoogle Scholar
Ross, J. P. (2005). Hurricane effects on nesting Caretta caretta. Marine Turtle Newsletter, 108, 13–14.Google Scholar
Rumbold, D. G., Davis, P. W. & Perretta, C. (2001). Estimating the effect of beach nourishment on Caretta caretta (loggerhead sea turtle) nesting. Restoration Ecology, 9, 304–310.CrossRefGoogle Scholar
Saba, V. S., Santidrian-Tomillo, P., Reina, R. D., et al. (2007). The effect of the El Nino Southern Oscillation on the reproductive frequency of eastern Pacific leatherback turtles. Journal of Applied Ecology, 44, 395–404.CrossRefGoogle Scholar
Saba, V. S., Spotila, J. R., Chavez, F. P. & Musick, J. A. (2008). Bottom-up and climatic forcing on the worldwide population of leatherback turtles. Ecology, 89, 1414–1427.CrossRefGoogle ScholarPubMed
Sakaoka, K., Yoshii, M., Okamoto, H., Sakai, F. & Nagasawa, K. (2011). Sperm utilization patterns and reproductive success in captive loggerhead turtles (Caretta caretta). Chelonian Conservation and Biology, 10, 62–72.CrossRefGoogle Scholar
Sakaoka, K., Yoshii, M., Okamoto, H., Sakai, F. & Nagasawa, K. (2012). Mate selection based on genetic relatedness of loggerhead turtles in captivity. Chelonian Conservation and Biology, 11, 214–222.CrossRefGoogle Scholar
Sandoval, S., Gomez-Munoz, V., Gutierrez, J. & Angel Porta-Gandara, M. (2011). Metabolic heat estimation of the sea turtle Lepidochelys olivacea embryos. Journal of Thermal Biology, 36, 138–141.CrossRefGoogle Scholar
Schlacher, T. A., Schoeman, D. S., Dugan, J., et al. (2008). Sandy beach ecosystems: Key features, sampling issues, management challenges and climate change impacts. Marine Ecology – An Evolutionary Perspective, 29, 70–90.CrossRefGoogle Scholar
Schulz, J. P. (1975). Sea Turtles Nesting in Surinam. Zoologische Verhandelingen (Leiden) No. 143. Leiden: Brill, pp. 3–143.Google Scholar
Schwanz, L. E., Spencer, R. J., Bowden, R. M. & Janzen, F. J. (2010). Climate and predation dominate juvenile and adult recruitment in a turtle with temperature-dependent sex determination. Ecology, 91, 3016–3026.CrossRefGoogle Scholar
Sénégas, J. B., Hochscheid, S., Groul, J. M., Lagarrigue, B. & Bentivegna, F. (2008). Discovery of the northernmost loggerhead sea turtle (Caretta caretta) nest. Marine Biodiversity Records (Online), 2.Google Scholar
Shaver, D. J. & Caillouet, C. W. (1998). More Kemp’s ridley turtles return to South Texas to nest. Marine Turtle Newsletter, 82, 1–5.Google Scholar
Slott, J. M., Murray, A. B., Ashton, A. D. & Crowley, T. J. (2006). Coastline responses to changing storm patterns. Geophysical Research Letters, 33, L18404.CrossRefGoogle Scholar
Solow, A. R., Bjorndal, K. A. & Bolten, A. B. (2002). Annual variation in nesting numbers of marine turtles: The effect of sea surface temperature on re-migration intervals. Ecology Letters, 5, 742–746.CrossRefGoogle Scholar
Standora, E. A. & Spotila, J. R. (1985). Temperature-dependent sex determination in sea turtles. Copeia, 1985, 711–722.CrossRefGoogle Scholar
Steckenreuter, A., Pilcher, N., Krueger, B. & Ben, J. (2010). Male-biased primary sex ratio of leatherback turtles (Dermochelys coriacea) at the Huon Coast, Papua New Guinea. Chelonian Conservation and Biology, 9, 123–128.CrossRefGoogle Scholar
Stewart, K. R. & Dutton, P. H. (2011). Paternal genotype reconstruction reveals multiple paternity and sex ratios in a breeding population of leatherback turtles (Dermochelys coriacea). Conservation Genetics, 12, 1101–1113.CrossRefGoogle Scholar
Telemeco, R. S., Elphick, M. J. & Shine, R. (2009). Nesting lizards (Bassiana duperreyi) compensate partly, but not completely, for climate change. Ecology, 90, 17–22.CrossRefGoogle Scholar
Theissinger, K., Fitzsimmons, N. N., Limpus, C. J. & Phillott, A. D. (2009). Mating system, multiple paternity and effective population size in the endemic flatback turtle (Natador depressus) in Australia. Conservation Genetics, 10, 329–346.CrossRefGoogle Scholar
Thom, B. G. & Hall, W. (1991). Behavior of beach profiles during accretion and erosion dominated periods. Earth Surface Processes and Landforms, 16, 113–127.CrossRefGoogle Scholar
Tucker, J. K., Dolan, C. R., Lamer, J. T. & Dustman, E. A. (2008). Climatic warming, sex ratios, and red-eared sliders (Trachemys scripta elegans) in Illinois. Chelonian Conservation and Biology, 7, 60–69.CrossRefGoogle Scholar
Uller, T. & Olsson, M. (2008). Multiple paternity in reptiles: Patterns and processes. Molecular Ecology, 17, 2566–2580.CrossRefGoogle ScholarPubMed
Valverde, R. A., Wingard, S., Gomez, F., Tordoir, M. T. & Orrego, C. M. (2010). Field lethal incubation temperature of olive ridley sea turtle Lepidochelys olivacea embryos at a mass nesting rookery. Endangered Species Research, 12, 77–86.CrossRefGoogle Scholar
Van Houtan, K. S. & Bass, O. L. (2007). Stormy oceans are associated with declines in sea turtle hatching. Current Biology, 17, R590–R591.CrossRefGoogle ScholarPubMed
Wallace, B. P., Seminoff, J. A., Kilham, S. S., Spotila, J. R. & Dutton, P. H. (2006). Leatherback turtles as oceanographic indicators: Stable isotope analyses reveal a trophic dichotomy between ocean basins. Marine Biology, 149, 953–960.CrossRefGoogle Scholar
Weber, S. B., Broderick, A. C., Groothuis, T. G. G., et al. (2011). Fine-scale thermal adaptation in a green turtle nesting population. Proceedings of the Royal Society of London, Series B, Biological Sciences, 279, 1077–1084.CrossRefGoogle Scholar
Webster, P. J., Holland, G. J., Curry, J. A. & Chang, H. R. (2005). Changes in tropical cyclone number, duration, and intensity in a warming environment. Science, 309, 1844–1846.CrossRefGoogle Scholar
Weishampel, J. F., Bagley, D. A. & Ehrhart, L. M. (2004). Earlier nesting by loggerhead sea turtles following sea surface warming. Global Change Biology, 10, 1424–1427.CrossRefGoogle Scholar
Weishampel, J. F., Bagley, D. A., Ehrhart, L. M. & Weishampel, A. C. (2010). Nesting phenologies of two sympatric sea turtle species related to sea surface temperatures. Endangered Species Research, 12, 41–47.CrossRefGoogle Scholar
Wetterer, J. K., Wood, L. D., Johnson, C., Krahe, H. & Fitchett, S. (2009). Predaceous ants, beach replenishment, and nest placement by sea turtles. Environmental Entomology, 36, 1084–1091.CrossRefGoogle Scholar
Whitmore, C. P. & Dutton, P. H. (1985). Infertility, embryonic mortality and nest-site selection in leatherback and green sea turtles in Suriname. Biological Conservation, 34, 251–272.CrossRefGoogle Scholar
Witherington, B., Hirama, S. & Mosier, A. (2011a). Barriers to sea turtle nesting on Florida (United States) beaches: Linear extent and changes following storms. Journal of Coastal Research, 27, 450–458.CrossRefGoogle Scholar
Witherington, B., Hirama, S. & Mosier, A. (2011b). Sea turtle responses to barriers on their nesting beach. Journal of Experimental Marine Biology and Ecology, 401, 1–6.CrossRefGoogle Scholar
Witt, M. J., Hawkes, L. A., Godfrey, M. H., Godley, B. J. & Broderick, A. C. (2010). Predicting the impacts of climate change on a globally distributed species: The case of the loggerhead turtle. Journal of Experimental Biology, 213, 901–911.CrossRefGoogle ScholarPubMed
Wright, L., Fuller, W., Godley, B., et al. (2012). Reconstruction of paternal genotypes over multiple breeding seasons reveals male green turtles do not breed annually. Molecular Ecology, 21, 3625–3635.CrossRefGoogle Scholar
Yntema, C. L. & Mrosovsky, N. (1980). Sexual differentiation in hatchling loggerheads (Caretta caretta) incubated at different controlled temperatures. Herpetologica, 36, 33–36.Google Scholar
Yntema, C. L. & Mrosovsky, N. (1982). Critical periods and pivotal temperatures for sexual-differentiation in loggerhead sea turtles. Canadian Journal of Zoology – Revue Canadienne De Zoologie, 60, 1012–1016.CrossRefGoogle Scholar
Zbinden, J. A., Margaritoulis, D. & Arlettaz, R. (2006). Metabolic heating in Mediterranean loggerhead sea turtle clutches. Journal of Experimental Marine Biology and Ecology, 334, 151–157.CrossRefGoogle Scholar
Zbinden, J. A., Largiader, A. R., Leippert, F., Margaritoulis, D. & Arlettaz, R. (2007). High frequency of multiple paternity in the largest rookery of Mediterranean loggerhead sea turtles. Molecular Ecology, 16, 3703–3711.CrossRefGoogle ScholarPubMed
Zheng, J. H., Jeng, D. S. & Mase, H. (2007). Sandy beach profile response to sloping seawalls: An experimental study. Journal of Coastal Research, SI50, 334–337.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×