Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-jr42d Total loading time: 0 Render date: 2024-04-20T10:18:10.060Z Has data issue: false hasContentIssue false

Chapter 9 - Bioactive and Inflammatory Markers in Emerging Psychotic Disorders

from Section 2 - Progress with Clinical Staging

Published online by Cambridge University Press:  08 August 2019

Patrick D. McGorry
Affiliation:
University of Melbourne
Ian B. Hickie
Affiliation:
University of Sydney
Get access

Summary

Despite over a century of intensive research, no single biological marker has successfully translated into daily clinical practice. A key challenge in psychiatric research is that traditional diagnostic categories represent phenomenological constructs that do not necessarily circumscribe a biological homogenous entity, but encompass a whole range of disorders presenting with similar phenotypes. The clinical staging model shifts our focus to search for markers relevant to particular stages of mental disorders and provides a useful framework to differentiate overlapping and heterogeneous syndromes. The identification of such “stage” dependant markers may be more meaningful and of greater prognostic and therapeutic value than our quest for categorical disease markers. In this chapter, bioactive and inflammatory markers in emerging psychotic disorders are discussed. Their specific role in brain development, psychiatric disorder onset and management are reviewed. Implications for future research are also provided.

Type
Chapter
Information
Clinical Staging in Psychiatry
Making Diagnosis Work for Research and Treatment
, pp. 191 - 203
Publisher: Cambridge University Press
Print publication year: 2019

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Amminger, G. P., Mechelli, A., Rice, S., Kim, S. W., Klier, C. M., McNamara, R. K., … Schafer, M. R. (2015a). Predictors of treatment response in young people at ultra-high risk for psychosis who received long-chain omega-3 fatty acids. Translational Psychiatry, 5, e495.CrossRefGoogle ScholarPubMed
Amminger, G. P., Schafer, M. R., Papageorgiou, K., Klier, C. M., Cotton, S. M., Harrigan, S. M., … Berger, G. E. (2010). Long-chain omega-3 fatty acids for indicated prevention of psychotic disorders: a randomized, placebo-controlled trial. Archives of General Psychiatry, 67(2), 146154.CrossRefGoogle ScholarPubMed
Amminger, G. P., Schafer, M. R., Schlogelhofer, M., Klier, C. M., & McGorry, P. D. (2015b). Longer-term outcome in the prevention of psychotic disorders by the Vienna omega-3 study. Nature Communications, 6, 7934.Google Scholar
Bechdolf, A., Veith, V., Schwarzer, D., Schormann, M., Stamm, E., Janssen, B., … Klosterkötter, J. (2005). Cognitive-behavioral therapy in the pre-psychotic phase: an exploratory study. Psychiatry Research, 136(2), 251255.Google Scholar
Berger, G. (2016). Comments on Bozzatello et al. Supplementation with omega-3 fatty acids in psychiatric disorders: a review of literature data. J. Clin. Med. 2016, 5, 67. Journal of Clinical Medicine, 5(8), 69.Google Scholar
Berger, G. E., Smesny, S., & Amminger, G. P. (2006). Bioactive lipids in schizophrenia. International Review of Psychiatry, 18(2), 8598.CrossRefGoogle ScholarPubMed
Berger, G. E., Smesny, S., Schafer, M. R., Milleit, B., Langbein, K., Hipler, U. C., … Amminger, G. P. (2016). Niacin skin sensitivity is increased in adolescents at ultra-high risk for psychosis. PLoS One, 11(2), e0148429.Google Scholar
Berger, G. E., Wood, S., & McGorry, P. D. (2003). Incipient neurovulnerability and neuroprotection in early psychosis. Psychopharmacology Bulletin, 37(2), 79101.Google ScholarPubMed
Berger, G. E., Wood, S. J., Pantelis, C., Velakoulis, D., Wellard, R. M., & McGorry, P. D. (2002). Implications of lipid biology for the pathogenesis of schizophrenia. Australian and New Zealand Journal of Psychiatry, 36(3), 355366.CrossRefGoogle ScholarPubMed
Berger, G. E., Wood, S. J., Ross, M., Hamer, C. A., Wellard, R. M., Pell, G., … McGorry, P. D. (2012). Neuroprotective effects of low-dose lithium in individuals at ultra-high risk for psychosis: a longitudinal MRI/MRS study. Current Pharmaceutical Design, 18(4), 570575.Google Scholar
Bergink, V., Gibney, S. M., & Drexhage, H. A. (2014). Autoimmunity, inflammation, and psychosis: a search for peripheral markers. Biological Psychiatry, 75(4), 324331.Google Scholar
Beumer, W., Drexhage, R. C., De Wit, H., Versnel, M. A., Drexhage, H. A., & Cohen, D. (2012a). Increased level of serum cytokines, chemokines and adipokines in patients with schizophrenia is associated with disease and metabolic syndrome. Psychoneuroendocrinology, 37(12), 19011911.CrossRefGoogle ScholarPubMed
Beumer, W., Gibney, S. M., Drexhage, R. C., Pont-Lezica, L., Doorduin, J., Klein, H. C., … Drexhage, H. A. (2012b). The immune theory of psychiatric diseases: a key role for activated microglia and circulating monocytes. Journal of Leukocyte Biology, 92(5), 959975.CrossRefGoogle ScholarPubMed
Bleuler, E. (1950). Dementia praecox or the group of schizophrenias (German edition published in 1911). New York: International Universities Press.Google Scholar
Cabrera, B., Bioque, M., Penades, R., Gonzalez-Pinto, A., Parellada, M., Bobes, J., … Bernardo, M. (2016). Cognition and psychopathology in first-episode psychosis: are they related to inflammation? Psychological Medicine, 46(10), 21332144.Google Scholar
Carcone, D., & Ruocco, A. C. (2017). Six years of research on the National Institute of Mental Health’s Research Domain Criteria (RDoC) Initiative: a systematic review. Frontiers in Cellular Neuroscience, 11, 46.Google Scholar
Deverman, B. E., & Patterson, P. H. (2009). Cytokines and CNS development. Neuron, 64(1), 6178.CrossRefGoogle ScholarPubMed
Domenici, E., Willé, D. R., Tozzi, F., Prokopenko, I., Miller, S., McKeown, A., … Turck, C. W. (2010). Plasma protein biomarkers for depression and schizophrenia by multi analyte profiling of case-control collections. PLoS One, 5(2), e9166.Google Scholar
Drexhage, R. C., Knijff, E. M., Padmos, R. C., Heul-Nieuwenhuijzen, L., Beumer, W., Versnel, M. A., & Drexhage, H. A. (2010). The mononuclear phagocyte system and its cytokine inflammatory networks in schizophrenia and bipolar disorder. Expert Review of Neurotherapeutics, 10(1), 5976.CrossRefGoogle ScholarPubMed
Feinberg, I. (1982). Schizophrenia: caused by a fault in programmed synaptic elimination during adolescence? Journal of Psychiatric Research, 17(4), 319334.Google Scholar
Fusar-Poli, P., Frascarelli, M., Valmaggia, L., Byrne, M., Stahl, D., Rocchetti, M., … McGuire, P. (2015). Antidepressant, antipsychotic and psychological interventions in subjects at high clinical risk for psychosis: OASIS 6-year naturalistic study. Psychological Medicine, 45(6), 13271339.CrossRefGoogle ScholarPubMed
García-Bueno, B., Bioque, M., Mac-Dowell, K. S., Barcones, M. F., Martínez-Cengotitabengoa, M., Pina-Camacho, L., … Lafuente, A. (2013). Pro-/anti-inflammatory dysregulation in patients with first episode of psychosis: toward an integrative inflammatory hypothesis of schizophrenia. Schizophrenia Bulletin, 40(2), 376387.Google Scholar
García-Bueno, B., Bioque, M., MacDowell, K. S., Santabárbara, J., Martínez-Cengotitabengoa, M., Moreno, C., … Barcones, M. F. (2015). Pro-/anti-inflammatory dysregulation in early psychosis: results from a longitudinal, case-control study. International Journal of Neuropsychopharmacology, 18(2), pyu037.CrossRefGoogle Scholar
Gattaz, W. F., Kollisch, M., Thuren, T., Virtanen, J. A., & Kinnunen, P. K. (1987). Increased plasma phospholipase-A2 activity in schizophrenic patients: reduction after neuroleptic therapy. Biological Psychiatry, 22(4), 421426.Google Scholar
Gore, F. M., Bloem, P. J., Patton, G. C., Ferguson, J., Joseph, V., Coffey, C., … Mathers, C. D. (2011). Global burden of disease in young people aged 10–24 years: a systematic analysis. Lancet, 377(9783), 20932102.Google Scholar
Grosso, G., Galvano, F., Marventano, S., Malaguarnera, M., Bucolo, C., Drago, F., & Caraci, F. (2014). Omega-3 fatty acids and depression: scientific evidence and biological mechanisms. Oxidative Medicine and Cellular Longevity, 2014, 313570.Google Scholar
Haggerty, R. J., & Mrazek, P. J. (1994). Can we prevent mental illness? Bulletin of the New York Academy of Medicine, 71(2), 300306.Google Scholar
Hamdy, F. C., Donovan, J. L., Lane, J. A., Mason, M., Metcalfe, C., Holding, P., … Neal, D. E. (2016). 10-year outcomes after monitoring, surgery, or radiotherapy for localized prostate cancer. New England Journal of Medicine, 375(15), 14151424.Google Scholar
Hong, H., Kim, B. S., & Im, H. I. (2016). Pathophysiological role of neuroinflammation in neurodegenerative diseases and psychiatric disorders. International Neurourology Journal, 20(Suppl. 1), S2S7.Google Scholar
Horrobin, D. F. (1977). Schizophrenia as a prostaglandin deficiency disease. Lancet, 1(8018), 936937.CrossRefGoogle ScholarPubMed
Jeon, S. W., & Kim, Y. K. (2016). Neuroinflammation and cytokine abnormality in major depression: cause or consequence in that illness? World Journal of Psychiatry, 6(3), 283293.CrossRefGoogle ScholarPubMed
Keshavan, M. S., Berger, G., Zipursky, R. B., Wood, S. J., & Pantelis, C. (2005). Neurobiology of early psychosis. British Journal of Psychiatry Supplement, 48, s8s18.CrossRefGoogle ScholarPubMed
Kim, D. J., Kim, W., Yoon, S. J., Go, H. J., Choi, B. M., Jun, T. Y., & Kim, Y. K. (2001). Effect of risperidone on serum cytokines. International Journal of Neuroscience, 111(1–2), 1119.Google Scholar
Kim, Y. K., Myint, A. M., Verkerk, R., Scharpe, S., Steinbusch, H., & Leonard, B. (2009). Cytokine changes and tryptophan metabolites in medication-naive and medication-free schizophrenic patients. Neuropsychobiology, 59(2), 123129.Google Scholar
Kirkpatrick, B., & Miller, B. J. (2013). Inflammation and schizophrenia. Schizophrenia Bulletin, 39(6), 11741179.Google Scholar
Knorr, C., Marks, D., Gerstberger, R., Muhlradt, P. F., Roth, J., & Rummel, C. (2010). Peripheral and central cyclooxygenase (COX) products may contribute to the manifestation of brain-controlled sickness responses during localized inflammation induced by macrophage-activating lipopeptide-2 (MALP-2). Neuroscience Letters, 479(2), 107111.Google Scholar
Kruger, K., Bredehoft, J., Mooren, F. C., & Rummel, C. (2016). Different effects of strength and endurance exercise training on COX-2 and mPGES expression in mouse brain are independent of peripheral inflammation. Journal of Applied Physiology, 121(1), 248254.Google Scholar
Lasic, D., Bevanda, M., Bosnjak, N., Uglesic, B., Glavina, T., & Franic, T. (2014). Metabolic syndrome and inflammation markers in patients with schizophrenia and recurrent depressive disorder. Psychiatria Danubina, 26(3), 214219.Google Scholar
Law, M. H., Cotton, R. G., & Berger, G. E. (2006). The role of phospholipases A2 in schizophrenia. Molecular Psychiatry, 11(6), 547556.Google Scholar
Lehnardt, S. (2010). Innate immunity and neuroinflammation in the CNS: the role of microglia in Toll‐like receptor‐mediated neuronal injury. Glia, 58(3), 253263.Google Scholar
Leza, J. C., García-Bueno, B., Bioque, M., Arango, C., Parellada, M., Do, K., … Bernardo, M. (2015). Inflammation in schizophrenia: a question of balance. Neuroscience and Biobehavioral Reviews, 55, 612626.CrossRefGoogle ScholarPubMed
Martinez-Gras, I., Garcia-Sanchez, F., Guaza, C., Rodriguez-Jimenez, R., Andres-Esteban, E., Palomo, T., … Borrell, J. (2012). Altered immune function in unaffected first-degree biological relatives of schizophrenia patients. Psychiatry Research, 200(2–3), 10221025.Google Scholar
McGorry, P. D., Goldstone, S., Berger, G. E., Chen, E., de Haan, L., Hickie, I., … Amminger, G. P. (2016). The neurapro-e study: a multicentre RCT of omega-3 fatty acids and cognitive-behavioral case management for patients at ultra-high risk of psychosis. Paper presented at the 5th Biennial Schizophrenia International Research Society Conference, Florence, Italy.Google Scholar
McGorry, P., Keshavan, M., Goldstone, S., Amminger, P., Allott, K., Berk, M., … Hickie, I. (2014). Biomarkers and clinical staging in psychiatry. World Psychiatry, 13(3), 211223.CrossRefGoogle ScholarPubMed
McGorry, P. D., Nelson, B., Markulev, C., Yuen, H. P., Schafer, M. R., Mossaheb, N., … Amminger, G. P. (2017). Effect of omega-3 polyunsaturated fatty acids in young people at ultrahigh risk for psychotic disorders: the NEURAPRO randomized clinical trial. JAMA Psychiatry, 74(1), 1927.Google Scholar
McGorry, P. D., Yung, A. R., Phillips, L. J., Yuen, H. P., Francey, S., Cosgrave, E. M., … Blair, A. (2002). Randomized controlled trial of interventions designed to reduce the risk of progression to first-episode psychosis in a clinical sample with subthreshold symptoms. Archives of General Psychiatry, 59(10), 921928.Google Scholar
Meyer, U., & Feldon, J. (2009). Neural basis of psychosis-related behaviour in the infection model of schizophrenia. Behavioural Brain Research, 204(2), 322334.Google Scholar
Michel, C., Ruhrmann, S., Schimmelmann, B. G., Klosterkötter, J., & Schultze-Lutter, F. (2018). Course of clinical high-risk states for psychosis beyond conversion. European Archives of Psychiatry and Clinical Neuroscience, 268(1), 3948.Google Scholar
Miller, B. J., Buckley, P., Seabolt, W., Mellor, A., & Kirkpatrick, B. (2011). Meta-analysis of cytokine alterations in schizophrenia: clinical status and antipsychotic effects. Biological Psychiatry, 70(7), 663671.Google Scholar
More, S. V., Kumar, H., Kim, I. S., Song, S. Y., & Choi, D. K. (2013). Cellular and molecular mediators of neuroinflammation in the pathogenesis of Parkinson’s disease. Mediators of Inflammation, 2013, 952375.Google Scholar
Muller, N., Myint, A. M., Krause, D., Weidinger, E., & Schwarz, M. J. (2013). Anti-inflammatory treatment in schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 42, 146153.Google Scholar
Muller, N., Weidinger, E., Leitner, B., & Schwarz, M. J. (2015). The role of inflammation in schizophrenia. Frontiers in Neuroscience, 9, 372.Google Scholar
Na, K. S., Jung, H. Y., & Kim, Y. K. (2014). The role of pro-inflammatory cytokines in the neuroinflammation and neurogenesis of schizophrenia. Progress in Neuro-Psychopharmacology and Biological Psychiatry, 48, 277286.Google Scholar
Nadalin, S., Buretic-Tomljanovic, A., Rubesa, G., Tomljanovic, D., & Gudelj, L. (2010). Niacin skin flush test: a research tool for studying schizophrenia. Psychiatria Danubina, 22(1), 1427.Google Scholar
Nelson, B., Amminger, G. P., Yuen, H. P., Wallis, N. J. Kerr, M., Dixon, L., … Shumway, M. (2018). Staged treatment in early psychosis: a sequential multiple assignment randomised trial of interventions for ultra high risk of psychosis patients. Early Intervention in Psychiatry, 12(3), 292306.Google Scholar
Nelson, B., McGorry, P. D., Wichers, M., Wigman, J. T., & Hartmann, J. A. (2017). Moving from static to dynamic models of the onset of mental disorder: a review. JAMA Psychiatry, 74(5), 528534.Google Scholar
Parletta, N., Zarnowiecki, D., Cho, J., Wilson, A., Procter, N., Gordon, A., … Meyer, B. J. (2016). People with schizophrenia and depression have a low omega-3 index. Prostaglandins, Leukotrienes and Essential Fatty Acids, 110, 4247.Google Scholar
Rao, J. S., Kellom, M., Kim, H. W., Rapoport, S. I., & Reese, E. A. (2012). Neuroinflammation and synaptic loss. Neurochemical Research, 37(5), 903910.Google Scholar
Rapaport, M. H., Nierenberg, A. A., Schettler, P. J., Kinkead, B., Cardoos, A., Walker, R., & Mischoulon, D. (2016). Inflammation as a predictive biomarker for response to omega-3 fatty acids in major depressive disorder: a proof-of-concept study. Molecular Psychiatry, 21(1), 7179.Google Scholar
Schmitt, A., Maras, A., Petroianu, G., Braus, D. F., Scheuer, L., & Gattaz, W. F. (2001). Effects of antipsychotic treatment on membrane phospholipid metabolism in schizophrenia. Journal of Neural Transmission, 108(8–9), 10811091.Google Scholar
Schmitt, A., Martins-de-Souza, D., Akbarian, S., Cassoli, J. S., Ehrenreich, H., Fischer, A., … Gerlach, M. (2017). Consensus paper of the WFSBP Task Force on Biological Markers: criteria for biomarkers and endophenotypes of schizophrenia, part III – molecular mechanisms. World Journal of Biological Psychiatry, 18(5), 330356.Google Scholar
Sellgren, C. M., Kegel, M. E., Bergen, S. E., Ekman, C. J., Olsson, S., Larsson, M., … Landen, M. (2016). A genome-wide association study of kynurenic acid in cerebrospinal fluid: implications for psychosis and cognitive impairment in bipolar disorder. Molecular Psychiatry, 21(10), 13421350.CrossRefGoogle ScholarPubMed
Shaftel, S. S., Griffin, W. S., & O’Banion, M. K. (2008). The role of interleukin-1 in neuroinflammation and Alzheimer disease: an evolving perspective. Journal of Neuroinflammation, 5, 7.Google Scholar
Skvarc, D. R., Dean, O. M., Byrne, L. K., Gray, L., Lane, S., Lewis, M., … Marriott, A. (2017). The effect of N-acetylcysteine (NAC) on human cognition: a systematic review. Neuroscience and Biobehavioral Reviews, 78, 4456.Google Scholar
Smesny, S., Kinder, D., Willhardt, I., Rosburg, T., Lasch, J., Berger, G., & Sauer, H. (2005). Increased calcium-independent phospholipase A2 activity in first but not in multiepisode chronic schizophrenia. Biological Psychiatry, 57(4), 399405.CrossRefGoogle Scholar
Smesny, S., Klemm, S., Stockebrand, M., Grunwald, S., Gerhard, U.-J., Rosburg, T., … Blanz, B. (2007). Endophenotype properties of niacin sensitivity as marker of impaired prostaglandin signalling in schizophrenia. Prostaglandins, Leukotrienes and Essential Fatty Acids, 77(2), 7985.Google Scholar
Smesny, S., Milleit, B., Nenadic, I., Preul, C., Kinder, D., Lasch, J., … Gaser, C. (2010). Phospholipase A2 activity is associated with structural brain changes in schizophrenia. NeuroImage, 52(4), 13141327.Google Scholar
Stevens, B., Allen, N. J., Vazquez, L. E., Howell, G. R., Christopherson, K. S., Nouri, N., … Stafford, B. (2007). The classical complement cascade mediates CNS synapse elimination. Cell, 131(6), 11641178.Google Scholar
Stevens, J. R. (1982). Neuropathology of schizophrenia. Archives of General Psychiatry, 39(10), 11311139.CrossRefGoogle ScholarPubMed
Tadokoro, S., Kanahara, N., Kikuchi, S., Hashimoto, K., & Masaomi, I. (2011). Fluvoxamine may prevent onset of psychosis: a case report of a patient at ultra-high risk of psychotic disorder. Annals of General Psychiatry, 10, 26.Google Scholar
Tamargo, J., Rosano, G. M., Delpon, E., Ruilope, L., & Lopez-Sendon, J. (2017). Pharmacological reasons that may explain why randomized clinical trials have failed in acute heart failure syndromes. International Journal of Cardiology, 233, 111.CrossRefGoogle ScholarPubMed
Wilt, T. J., Jones, K. M., Barry, M. J., Andriole, G. L., Culkin, D., Wheeler, T., … Brawer, M. K. (2017). Follow-up of prostatectomy versus observation for early prostate cancer. New England Journal of Medicine, 377(2), 132142.Google Scholar
Yung, A. R. (2017). Treatment of people at ultra‐high risk for psychosis. World Psychiatry, 16(2), 207208.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×