Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-wq484 Total loading time: 0 Render date: 2024-04-25T12:46:47.272Z Has data issue: false hasContentIssue false

1 - Introduction to MR spectroscopy in vivo

Published online by Cambridge University Press:  04 August 2010

Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Alberto Bizzi
Affiliation:
Istituto Neurologico Carlo Besta, Milan
Nicola De Stefano
Affiliation:
Università degli Studi, Siena
Rao Gullapalli
Affiliation:
University of Maryland, Baltimore
Doris D. M. Lin
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Clinical MR Spectroscopy
Techniques and Applications
, pp. 1 - 18
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Bloch, F. Nuclear induction. Phys Rev 1946; 70: 460–74.CrossRefGoogle Scholar
Purcell, EM, Torrey, HC, Pound, RV. Resonance absorption by nuclear magnetic moments in a solid. Phys Rev 1946; 69: 37–8.CrossRefGoogle Scholar
Proctor, WG, Yu, FC. The dependence of a nuclear magnetic resonance frequency. Phys Rev 1950; 77: 717.CrossRefGoogle Scholar
Gutowsky, HS, McCall, DW. Nuclear magnetic resonance fine structure in liquids. Phys Rev 1951; 82: 748–9.CrossRefGoogle Scholar
Hahn, EL. Spin echoes. Phys Rev 1950; 80: 580–94.CrossRefGoogle Scholar
Carr, HY, Purcell, EM. Effects of diffusion on free precession in nuclear magnetic resonance experiments.Phys Rev 1954; 94: 630–8.CrossRefGoogle Scholar
Proctor, WG, Yu, FC. The dependence of a nuclear magnetic resonance frequency upon chemical compound. Phys Rev 1950; 77: 717.CrossRef
Ernst, RR, Anderson, WA. Application of Fourier transform spectroscopy to magnetic resonance. Rev Sci Instr 1966; 37: 93–102.CrossRefGoogle Scholar
Ernst, RR, Bodenhausen, G, Wokaun, A. Principles of Nuclear Magnetic Resonance in One and Two Dimensions. New York, NY: Oxford University Press, 1990.Google Scholar
Chance, B, Nakase, Y, Bond, M, Leigh, JS, Jr., McDonald, G. Detection of 31P nuclear magnetic resonance signals in brain by in vivo and freeze-trapped assays. Proc Natl Acad Sci USA 1978; 75: 4925–9.CrossRefGoogle ScholarPubMed
Moon, RB, Richards, JH. Determination of intracellular pH by 31P magnetic resonance. J Biol Chem 1973; 248: 7276–8.Google ScholarPubMed
Petroff, OA, Prichard, JW. Cerebral pH by NMR. Lancet 1983; 2: 105–06.CrossRefGoogle Scholar
Petroff, OA, Prichard, JW, Behar, KL, Alger, JR, Hollander, JA, Shulman, RG. Cerebral intracellular pH by 31P nuclear magnetic resonance spectroscopy. Neurology 1985; 35: 781–8.CrossRefGoogle ScholarPubMed
Ackerman, JJ, Grove, TH, Wong, GG, Gadian, DG, Radda, GK. Mapping of metabolites in whole animals by 31P NMR using surface coils. Nature 1980; 283: 167–70.CrossRefGoogle ScholarPubMed
Ross, BD, Radda, GK, Gadian, DG, Rocker, G, Esiri, M, Falconer-Smith, J. Examination of a case of suspected McArdle's syndrome by 31P nuclear magnetic resonance. N Engl J Med 1981; 304: 1338–42.CrossRefGoogle ScholarPubMed
Cady, EB, Costello, AM, Dawson, MJ, Delpy, DT, Hope, PL, Reynolds, EO, et al. Non-invasive investigation of cerebral metabolism in newborn infants by phosphorus nuclear magnetic resonance spectroscopy. Lancet 1983; 1: 1059–62.CrossRefGoogle ScholarPubMed
Alger, JR, Sillerud, LO, Behar, KL, Gillies, RJ, Shulman, RG, Gordon, RE, et al. In vivo carbon-13 nuclear magnetic resonance studies of mammals. Science 1981; 214: 660–2.CrossRefGoogle ScholarPubMed
Behar, KL, Hollander, JA, Stromski, ME, Ogino, T, Shulman, RG, Petroff, OA, et al. High-resolution 1H nuclear magnetic resonance study of cerebral hypoxia in vivo. Proc Natl Acad Sci USA 1983; 80: 4945–8.CrossRefGoogle ScholarPubMed
Behar, KL, Rothman, DL, Shulman, RG, Petroff, OA, Prichard, JW. Detection of cerebral lactate in vivo during hypoxemia by 1H NMR at relatively low field strengths (1.9 T). Proc Natl Acad Sci USA 1984; 81: 2517–9.CrossRefGoogle Scholar
Bottomley, PA, Edelstein, WA, Foster, TH, Adams, WA. In vivo solvent-suppressed localized hydrogen nuclear magnetic resonance spectroscopy: a window to metabolism?Proc Natl Acad Sci USA 1985; 82: 2148–52.CrossRefGoogle ScholarPubMed
Luyten, PR, Hollander, JA. Observation of metabolites in the human brain by MR spectroscopy. Radiology 1986; 161: 795–8.CrossRefGoogle ScholarPubMed
Hanstock, CC, Rothman, DL, Prichard, JW, Jue, T, Shulman, RG. Spatially localized 1H NMR spectra of metabolites in the human brain. Proc Natl Acad Sci USA 1988; 85: 1821–5.CrossRefGoogle ScholarPubMed
Bax, A, Freeman, R. Enhanced NMR resolution by restricting the effective sample volume. J Magn Reson 1980; 37: 177–81.Google Scholar
Aue, WP. Localization methods for in vivo NMR spectroscopy. Rev Magn Reson Med 1986; 1: 21–72.Google Scholar
Frahm, J. Localized proton spectroscopy using stimulated echoes. J Magn Reson 1987; 72: 502–08.Google Scholar
Granot, J. Selected Volume Excitation Using Stimulated Echoes (VEST). Applications to spatially localized spectroscopy and imaging. J Magn Reson 1986; 70: 488–92.Google Scholar
Kimmich, R, Hoepfel, D. Volume-selective multipulse spin-echo spectroscopy. J Magn Reson 1987; 72: 379–84.Google Scholar
Frahm, J, Bruhn, H, Gyngell, ML, Merboldt, KD, Hanicke, W, Sauter, R. Localized high-resolution proton NMR spectroscopy using stimulated echoes: initial applications to human brain in vivo. Magn Reson Med 1989; 9: 79–93.CrossRefGoogle ScholarPubMed
Bottomley, PA, inventor General Electric Company, assignee. Selective volume method for performing localized NMR spectroscopy. USA patent 4480228. October 30th 1984.
Ordidge, RJ, Gordon, RE, inventors; Oxford Research Systems Limited, assignee. Methods and apparatus of obtaining NMR spectra. United States patent 4531094. 1983.
Webb, PG, Sailasuta, N, Kohler, SJ, Raidy, T, Moats, RA, Hurd, RE. Automated single-voxel proton MRS: technical development and multisite verification. Magn Reson Med 1994; 31: 365–73.CrossRefGoogle ScholarPubMed
Radda, GK. The use of NMR spectroscopy for the understanding of disease. Science 1986; 233: 640–5.CrossRefGoogle Scholar
Kurhanewicz, J, Vigneron, DB, Males, RG, Swanson, MG, Yu, KK, Hricak, H. The prostate: MR imaging and spectroscopy. Present and future. Radiol Clin North Am 2000; 38: 115–38, viii–ix.CrossRefGoogle ScholarPubMed
Bolan, PJ, Nelson, MT, Yee, D, Garwood, M. Imaging in breast cancer: magnetic resonance spectroscopy. Breast Cancer Res 2005; 7: 149–52.CrossRefGoogle ScholarPubMed
Behar, KL, Ogino, T. Characterization of macromolecule resonances in the 1H NMR spectrum of rat brain. Magn Reson Med 1993; 30: 38–44.CrossRefGoogle ScholarPubMed
Barker, PB, Gillard, JH, Zijl, PC, Soher, BJ, Hanley, DF, Agildere, AM, et al. Acute stroke: evaluation with serial proton MR spectroscopic imaging. Radiology 1994; 192: 723–32.CrossRefGoogle ScholarPubMed
Remy, C, Grand, S, Lai, ES, Belle, V, Hoffmann, D, Berger, F, et al. 1H MRS of human brain abscesses in vivo and in vitro. Magn Reson Med 1995; 34: 508–14.CrossRefGoogle ScholarPubMed
Lin, DD, Crawford, TO, Barker, PB. Proton MR spectroscopy in the diagnostic evaluation of suspected mitochondrial disease. Am J Neuroradiol 2003; 24: 33–41.Google ScholarPubMed
Tkac, I, Andersen, P, Adriany, G, Merkle, H, Ugurbil, K, Gruetter, R. In vivo 1H NMR spectroscopy of the human brain at 7 T. Magn Reson Med 2001; 46: 451–6.CrossRefGoogle Scholar
Govindaraju, V, Young, K, Maudsley, AA. Proton NMR chemical shifts and coupling constants for brain metabolites. NMR Biomed 2000; 13: 129–53.3.0.CO;2-V>CrossRefGoogle ScholarPubMed
Frahm, J, Michaelis, T, Merboldt, KD, Hanicke, W, Gyngell, ML, Bruhn, H. On the N-acetyl methyl resonance in localized 1H NMR spectra of human brain in vivo. NMR Biomed 1991; 4: 201–04.CrossRefGoogle ScholarPubMed
Pouwels, PJ, Frahm, J. Differential distribution of NAA and NAAG in human brain as determined by quantitative localized proton MRS. NMR Biomed 1997; 10: 73–8.3.0.CO;2-4>CrossRefGoogle ScholarPubMed
Moffett, JR, Ross, B, Arun, P, Madhavarao, CN, Namboodiri, AM. N-Acetylaspartate in the CNS: from neurodiagnostics to neurobiology. Prog Neurobiol 2007; 81: 89–131.CrossRefGoogle ScholarPubMed
Barker, PB. N-acetyl aspartate – a neuronal marker?Ann Neurol 2001; 49: 423–4.CrossRefGoogle ScholarPubMed
Simmons, ML, Frondoza, CG, Coyle, JT. Immunocytochemical localization of N-acetyl-aspartate with monoclonal antibodies. Neuroscience 1991; 45: 37–45.CrossRefGoogle ScholarPubMed
Stefano, N, Narayanan, S, Francis, GS, Arnaoutelis, R, Tartaglia, MC, Antel, JP, et al. Evidence of axonal damage in the early stages of multiple sclerosis and its relevance to disability. Arch Neurol 2001; 58: 65–70.CrossRefGoogle ScholarPubMed
Guimaraes, A, Schwartz, P, Prakash, MR, Carr, CA, Berger, UV, Jenkins, BG, et al. Quantitative in vivo 1H nuclear magnetic resonance spectroscopic imaging of neuronal loss in rat brain. Neuroscience 1995; 69: 1095.CrossRefGoogle ScholarPubMed
Bhakoo, KK, Pearce, D. In vitro expression of N-acetyl aspartate by oligodendrocytes: implications for proton magnetic resonance spectroscopy signal in vivo. J Neurochem 2000; 74: 254–62.CrossRefGoogle ScholarPubMed
Burlina, AP, Ferrari, V, Facci, L, Skaper, SD, Burlina, AB. Mast cells contain large quantities of secretagogue-sensitive N-acetylaspartate. J Neurochem 1997; 69: 1314–7.CrossRefGoogle ScholarPubMed
Urenjak, J, Williams, SR, Gadian, DG, Noble, M. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocyte progenitors, and immature oligodendrocytes in vitro. J Neurochem 1992; 59: 55–61.CrossRefGoogle ScholarPubMed
Barker, PB, Bryan, RN, Kumar, AJ, Naidu, S. Proton NMR spectroscopy of Canavan's Disease. Neuropediatrics 1992; 23: 263–7.CrossRefGoogle ScholarPubMed
Martin, E, Capone, A, Schneider, J, Hennig, J, Thiel, T. Absence of N-acetylaspartate in the human brain: impact on neurospectroscopy?Ann Neurol 2001; 49: 518–21.CrossRefGoogle ScholarPubMed
Stefano, N, Matthews, PM, Arnold, DL. Reversible decreases in N-acetylaspartate after acute brain injury. Magn Reson Med 1995; 34: 721–7.CrossRefGoogle ScholarPubMed
Bizzi, A, Ulug, AM, Crawford, TO, Passe, T, Bugiani, M, Bryan, RN, et al. Quantitative proton MR spectroscopic imaging in acute disseminated encephalomyelitis. Am J Neuroradiol 2001; 22: 1125–30.Google ScholarPubMed
Barker, P, Breiter, S, Soher, B, Chatham, J, Forder, J, Samphilipo, M, et al. Quantitative proton spectroscopy of canine brain: in vivo and in vitro correlations. Magn Reson Med 1994; 32: 157–63.CrossRefGoogle ScholarPubMed
Gill, SS, Small, RK, Thomas, DG, Patel, P, Porteous, R, Bruggen, N, et al. Brain metabolites as 1H NMR markers of neuronal and glial disorders. NMR Biomed 1989; 2: 196–200.CrossRefGoogle ScholarPubMed
Gill, SS, Thomas, DG, Van, BN, Gadian, DG, Peden, CJ, Bell, JD, et al. Proton MR spectroscopy of intracranial tumours: in vivo and in vitro studies. J Comput Assist Tomogr 1990; 14: 497–504.CrossRefGoogle ScholarPubMed
Davie, CA, Hawkins, CP, Barker, GJ, Brennan, A, Tofts, PS, Miller, DH, et al. Detection of myelin breakdown products by proton magnetic resonance spectroscopy. Lancet 1993; 341: 630–1.CrossRefGoogle ScholarPubMed
Brenner, RE, Munro, PM, Williams, SC, Bell, JD, Barker, GJ, Hawkins, CP, et al. The proton NMR spectrum in acute EAE: the significance of the change in the Cho:Cr ratio. Magn Reson Med 1993; 29: 737–45.CrossRefGoogle ScholarPubMed
Aboagye, EO, Bhujwalla, ZM. Malignant transformation alters membrane choline phospholipid metabolism of human mammary epithelial cells. Cancer Res 1999; 59: 80–4.Google ScholarPubMed
Kreis, R, Ross, BD, Farrow, NA, Ackerman, Z. Metabolic disorders of the brain in chronic hepatic encephalopathy detected with H-1 MR spectroscopy. Radiology 1992; 182: 19–27.CrossRefGoogle ScholarPubMed
Stoll, AL, Renshaw, PF, Micheli, E, Wurtman, R, Pillay, SS, Cohen, BM. Choline ingestion increases the resonance of choline-containing compounds in human brain: an in vivo proton magnetic resonance study. Biol Psychiatry 1995; 37: 170–4.CrossRefGoogle Scholar
Urenjak, J, Williams, SR, Gadian, DG, Noble, M. Proton nuclear magnetic resonance spectroscopy unambiguously identifies different neural cell types. J Neuroscience 1993; 13: 981.CrossRefGoogle ScholarPubMed
Jacobs, MA, Horska, A, Zijl, PC, Barker, PB. Quantitative proton MR spectroscopic imaging of normal human cerebellum and brain stem. Magn Reson Med 2001; 46: 699–705.CrossRefGoogle ScholarPubMed
Ross, BD, Michaelis, T. Clinical applications of magnetic resonance spectroscopy. Magn Reson Q 1994; 10: 191–247.Google ScholarPubMed
Bizzi, A, Bugiani, M, Salomons, GS, Hunneman, DH, Moroni, I, Estienne, M, et al. X-linked creatine deficiency syndrome: a novel mutation in creatine transporter gene SLC6A8. Ann Neurol 2002; 52: 227–31.CrossRefGoogle ScholarPubMed
Cecil, KM, Salomons, GS, Ball, WS, Jr., Wong, B, Chuck, G, Verhoeven, NM, et al. Irreversible brain creatine deficiency with elevated serum and urine creatine: a creatine transporter defect? Ann Neurol 2001; 49: 401–04.CrossRefGoogle ScholarPubMed
Stockler, S, Holzbach, U, Hanefeld, F, Marquardt, I, Helms, G, Requart, M, et al. Creatine deficiency in the brain: a new, treatable inborn error of metabolism. Pediatr Res 1994; 36: 409–13.CrossRefGoogle ScholarPubMed
Nagae-Poetscher, LM, McMahon, M, Braverman, N, Lawrie, WT, Jr., Fatemi, A, Degaonkar, M, et al. Metabolites in ventricular cerebrospinal fluid detected by proton magnetic resonance spectroscopic imaging. J Magn Reson Imaging 2004; 20: 496–500.CrossRefGoogle ScholarPubMed
Veech, RL. The metabolism of lactate. NMR Biomed 1991; 4: 53–8.CrossRefGoogle Scholar
Petroff, OA, Graham, GD, Blamire, AM, al-Rayess, M, Rothman, DL, Fayad, PB, et al. Spectroscopic imaging of stroke in humans: histopathology correlates of spectral changes. Neurology 1992; 42: 1349–54.CrossRefGoogle ScholarPubMed
Penrice, J, Cady, EB, Lorek, A, Wylezinska, M, Amess, PN, Aldridge, RF, et al. Proton magnetic resonance spectroscopy of the brain in normal preterm and term infants, and early changes after perinatal hypoxia–ischemia. Pediatr Res 1996; 40: 6–14.CrossRefGoogle ScholarPubMed
Alger, JR, Frank, JA, Bizzi, A, Fulham, MJ, DeSouza, BX, Duhaney, MO, et al. Metabolism of human gliomas: assessment with H-1 MR spectroscopy and F-18 fluorodeoxyglucose PET. Radiology 1990; 177: 633–41.CrossRefGoogle ScholarPubMed
Mathews, PM, Andermann, F, Silver, K, Karpati, G, Arnold, DL. Proton MR spectroscopic characterization of differences in regional brain metabolic abnormalities in mitochondrial encephalomyopathies. Neurology 1993; 43: 2484–90.CrossRefGoogle ScholarPubMed
Sutton, LN, Wang, Z, Duhaime, AC, Costarino, D, Sauter, R, Zimmerman, R. Tissue lactate in pediatric head trauma: a clinical study using 1H NMR spectroscopy. Pediatr Neurosurg 1995; 22: 81–7.CrossRefGoogle ScholarPubMed
Prichard, J, Rothman, D, Novotny, E, Petroff, O, Kuwabara, T, Avison, M, et al. Lactate rise detected by 1H NMR in human visual cortex during physiologic stimulation. Proc Natl Acad Sci USA 1991; 88: 5829–31.CrossRefGoogle ScholarPubMed
Merboldt, K-D, Bruhn, H, Hanicke, W, Michaelis, T, Frahm, J. Decrease of glucose in the human visual cortex during photic stimulation. Magn Reson Med 1992; 25: 187–94.CrossRefGoogle ScholarPubMed
Hurd, RE, Freeman, D. Proton editing and imaging of lactate. NMR Biomed 1991; 4: 73–80.CrossRefGoogle ScholarPubMed
Kelley, DA, Wald, LL, Star-Lack, JM. Lactate detection at 3 T: compensating J coupling effects with BASING. J Magn Reson Imaging 1999; 9: 732–7.3.0.CO;2-Q>CrossRefGoogle Scholar
Shonk, TK, Moats, RA, Gifford, P, Michaelis, T, Mandigo, JC, Izumi, J, et al. Probable Alzheimer disease: diagnosis with proton MR spectroscopy. Radiology 1995; 195: 65–72.CrossRefGoogle ScholarPubMed
Kruse, B, Hanefeld, F, Christen, HJ, Bruhn, H, Michaelis, T, Hanicke, W, et al. Alterations of brain metabolites in metachromatic leukodystrophy as detected by localized proton magnetic resonance spectroscopy in vivo. J Neurol 1993; 241: 68–74.CrossRefGoogle ScholarPubMed
Brand, A, Richter-Landsberg, C, Leibfritz, D. Multinuclear NMR studies on the energy metabolism of glial and neuronal cells. Dev Neurosci 1993; 15: 289–98.CrossRefGoogle ScholarPubMed
Flogel, U, Willker, W, Leibfritz, D. Regulation of intracellular pH in neuronal and glial tumour cells, studied by multinuclear NMR spectroscopy. NMR Biomed 1994; 7: 157–66.CrossRefGoogle ScholarPubMed
Strange, K, Emma, F, Paredes, A, Morrison, R. Osmoregulatory changes in myo-inositol content and Na+/myo-inositol cotransport in rat cortical astrocytes. Glia 1994; 12: 35–43.CrossRefGoogle ScholarPubMed
Heindel, W, Kugel, H, Roth, B. Noninvasive detection of increased glycine content by proton MR spectroscopy in the brains of two infants with nonketotic hyperglycinemia. Am J Neuroradiol 1993; 14: 629–35.Google ScholarPubMed
Magistretti, PJ, Pellerin, L, Rothman, DL, Shulman, RG. Energy on demand. Science 1999; 283: 496–7.CrossRefGoogle ScholarPubMed
Sibson, NR, Dhankhar, A, Mason, GF, Rothman, DL, Behar, KL, Shulman, RG. Stoichiometric coupling of brain glucose metabolism and glutamatergic neuronal activity. Proc Natl Acad Sci USA 1998; 95: 316–21.CrossRefGoogle ScholarPubMed
Hurd, R, Sailasuta, N, Srinivasan, R, Vigneron, DB, Pelletier, D, Nelson, SJ. Measurement of brain glutamate using TE-averaged PRESS at 3 T. Magn Reson Med 2004; 51: 435–40.CrossRefGoogle Scholar
Provencher, SW. Estimation of metabolite concentrations from localized in vivo proton NMR spectra. Magn Reson Med 1993; 30: 672–9.CrossRefGoogle ScholarPubMed
Srinivasan, R, Sailasuta, N, Hurd, R, Nelson, S, Pelletier, D. Evidence of elevated glutamate in multiple sclerosis using magnetic resonance spectroscopy at 3 T. Brain 2005; 128: 1016–25.CrossRefGoogle ScholarPubMed
Kreis, R, Pfenninger, J, Herschkowitz, N, Boesch, C. In vivo proton magnetic resonance spectroscopy in a case of Reye's syndrome. Intensive Care Med 1995; 21: 266–9.CrossRefGoogle Scholar
Zijl, PCM, Barker, PB. Magnetic resonance spectroscopy and spectroscopic imaging for the study of brain metabolism. In Imaging Brain Structure and Function. New York, NY: Proceedings of the New York Academy of Sciences; 1997: 75–96.Google Scholar
Rothman, DL, Petroff, OA, Behar, KL, Mattson, RH. Localized 1H NMR measurements of gamma-aminobutyric acid in human brain in vivo. Proc Natl Acad Sci USA 1993; 90: 5662–6.CrossRefGoogle ScholarPubMed
Terpstra, M, Henry, PG, Gruetter, R. Measurement of reduced glutathione (GSH) in human brain using LCModel analysis of difference-edited spectra. Magn Reson Med 2003; 50: 19–23.CrossRefGoogle ScholarPubMed
Pan, JW, Telang, FW, Lee, JH, Graaf, RA, Rothman, DL, Stein, DT, et al. Measurement of beta-hydroxybutyrate in acute hyperketonemia in human brain. J Neurochem 2001; 79: 539–44.CrossRefGoogle ScholarPubMed
Seymour, KJ, Bluml, S, Sutherling, J, Sutherling, W, Ross, BD. Identification of cerebral acetone by 1H-MRS in patients with epilepsy controlled by ketogenic diet. Magma 1999; 8: 33–42.Google ScholarPubMed
Kreis, R, Pietz, J, Penzien, J, Herschkowitz, N, Boesch, C. Identification and quantitation of phenylalanine in the brain of patients with phenylketonuria by means of localized in vivo 1H magnetic-resonance spectroscopy. J Magn Reson B 1995; 107: 242–51.CrossRefGoogle ScholarPubMed
Knaap, MS, Wevers, RA, Struys, EA, Verhoeven, NM, Pouwels, PJ, Engelke, UF, et al. Leukoencephalopathy associated with a disturbance in the metabolism of polyols. Ann Neurol 1999; 46: 925–8.3.0.CO;2-J>CrossRefGoogle Scholar
Cady, EB, Lorek, A, Penrice, J, Reynolds, EO, Iles, RA, Burns, SP, et al. Detection of propan-1,2-diol in neonatal brain by in vivo proton magnetic resonance spectroscopy. Magn Reson Med 1994; 32: 764–7.CrossRefGoogle ScholarPubMed
Maioriello, AV, Chaljub, G, Nauta, HJ, Lacroix, M. Chemical shift imaging of mannitol in acute cerebral ischemia. Case report. J Neurosurg 2002; 97: 687–91.CrossRefGoogle ScholarPubMed
Hanstock, CC, Rothman, DL, Shulman, RG, Novotny, EJ, Jr., Petroff, OA, Prichard, JW. Measurement of ethanol in the human brain using NMR spectroscopy. J Stud Alcohol 1990; 51: 104–07.CrossRefGoogle ScholarPubMed
Rose, SE, Chalk, JB, Galloway, GJ, Doddrell, DM. Detection of dimethyl sulfone in the human brain by in vivo proton magnetic resonance spectroscopy. Magn Reson Imaging 2000; 18: 95–8.CrossRefGoogle ScholarPubMed
Cady, EB, D'Souza, PC, Penrice, J, Lorek, A. The estimation of local brain temperature by in vivo 1H magnetic resonance spectroscopy. Magn Reson Med 1995; 33: 862–7.CrossRefGoogle ScholarPubMed
Vermathen, P, Capizzano, AA, Maudsley, AA. Administration and (1)H MRS detection of histidine in human brain: application to in vivo pH measurement. Magn Reson Med 2000; 43: 665–75.3.0.CO;2-3>CrossRefGoogle ScholarPubMed
Rothman, DL, Behar, KL, Prichard, JW, Petroff, OA. Homocarnosine and the measurement of neuronal pH in patients with epilepsy. Magn Reson Med 1997; 38: 924–9.CrossRefGoogle ScholarPubMed
Mori, S, Eleff, SM, Pilatus, U, Mori, N, Zijl, PC. Proton NMR spectroscopy of solvent-saturable resonances: a new approach to study pH effects in situ. Magn Reson Med 1998; 40: 36–42.CrossRefGoogle ScholarPubMed
Boesch, C. Musculoskeletal spectroscopy. J Magn Reson Imaging 2007; 25: 321–38.CrossRefGoogle ScholarPubMed

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×