Skip to main content Accessibility help
×
Hostname: page-component-76fb5796d-vfjqv Total loading time: 0 Render date: 2024-04-25T10:58:01.224Z Has data issue: false hasContentIssue false

Chapter 29 - Diffusion and perfusion MR imaging of intracranial infection

from Section 4 - Infection, inflammation and demyelination

Published online by Cambridge University Press:  05 March 2013

Jonathan H. Gillard
Affiliation:
University of Cambridge
Adam D. Waldman
Affiliation:
Imperial College London
Peter B. Barker
Affiliation:
The Johns Hopkins University School of Medicine
Get access

Summary

Introduction

Diffusion-weighted imaging (DWI) is now part of the routine brain MRI protocol at many institutions. The principles and techniques for DWI are covered in detail in Chs. 4–6. Diffusion-weighted sequences are sensitive to the microscopic motion of water molecules and use the incoherent motion of water molecules as tissue contrast. Alterations in the degree of diffusion reflect alterations in the microscopic environment of these water molecules. It is reasonable to infer that the changes in diffusion reflect changes at the scale of cellular and extracellular structures of the brain.[2]

The high sensitivity and specificity of echo planar DWI in the diagnosis of acute cerebral infarction is widely known.[3–6] Reduced diffusion observed during an acute infarct is thought to represent cytotoxic edema and contraction of the extracellular space.[3–6]

The translational motion of water in brain tissue is the basis of clinical diffusion-weighted MRI DWI.[7,8] Diffusing molecules within brain tissue will be impeded or influenced by the interaction with cell membranes and other intracellular and extracellular structures.[7]

Type
Chapter
Information
Clinical MR Neuroimaging
Physiological and Functional Techniques
, pp. 456 - 474
Publisher: Cambridge University Press
Print publication year: 2009

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Ulug, AM, Moore, DF, Bojko, AS, Zimmerman, RD.Clinical use of diffusion tensor imaging for diseases causing neuronal and axonal damage. AJNR Am J Neuroradiol 1999; 20: 1044–1048.Google ScholarPubMed
Chun, T, Filippi, CG, Zimmerman, RD, Ulug, AM.Diffusion changes in the aging brain. AJNR Am J Neuroradiol 2000; 21: 1078–1083.Google Scholar
Stadnick, TW, Chaskis, C, Michotte, A, et al. Diffusion-weighted MR imaging of intracerebral masses: comparison with conventional MR imaging and histologic findings. AJNR Am J Neuroradiol 2001; 22: 969–976.Google Scholar
Lovblad, KO, Laubach, HJ, Baird, AE, et al. Clinical experience with diffusion-weighted MR in patients with acute stroke. AJNR Am J Neuroradiol 1998; 19: 1061–1066.Google ScholarPubMed
Hossman, KA, Fischer, M, Bockhorst, K, Heohn-Berlage, M.NMR imaging of the apparent diffusion coefficient (ADC) for the evaluation of metabolic suppression and recovery after prolonged cerebral ischemia. J Cereb Blood Flow Metab 1994; 14: 723–731.CrossRefGoogle Scholar
Benveniste, H, Hedlund, LW, Johnson, GA.Mechanism of detection of acute cerebral ischemia in rats by diffusion-weighted magnetic resonance microscopy. Stroke 1992; 23: 746–754.CrossRefGoogle ScholarPubMed
Horsfield, MA, Jones, DK.Applications of diffusion-weighted and diffusion tensor MRI to white matter diseases: a review. NMR Biomed 2002; 15: 570–577.CrossRefGoogle ScholarPubMed
LeBihan, D.Molecular diffusion nuclear magnetic resonance imaging. Magn Reson 1991; 7: 1–30.Google Scholar
Filippi, CG, Ulug, AM, Ryan, E, Ferrando, SJ, vanGorp, WG.Diffusion tensor imaging of patients with HIV and normal-appearing white matter on MR images of the brain. AJNR Am J Neuroradiol 2001; 22: 277–283.Google Scholar
Tsuruda, JS, Chew, WM, Moseley, ME, Norman, D.Diffusion-weighted MR imaging of the brain: value of differentiating between extraaxial cysts and epidermoid tumors. AJNR Am J Neuroradiol 1990; 11: 925–934.Google ScholarPubMed
Maeda, M, Kawamura, Tamagawa Y, et al. Intra voxel incoherent motion (IVIM) MRI in intracranial, extracranial tumors and cysts. J Comput Assist Tomogr 1992; 16: 514–518.CrossRefGoogle Scholar
Kim, YJ, Chang, K, Song, IC, et al. Brain abscess and necrotic or cystic brain tumor: discrimination with signal intensity on diffusion-weighted MR imaging. Am J Roentgenol 1998; 171: 1487–1490.CrossRefGoogle ScholarPubMed
Wispelwey, B, Decay, RG, Scheld, WM.Brain abscess. In Infection of the Central Nervous System, eds. Scheld, WM, Whitley, RJ, Durack, DT. New York: Raven Press, 1991, pp. 457–458.Google Scholar
Chun, CH, Johnson, JD, Hofstetter, M, Raff, MJ.Brain abscess: a study of 45 consecutive cases. Medicine 1986; 65: 415–431.CrossRefGoogle ScholarPubMed
Desprechins, B, Stadnik, T, Koerts, G, et al. Use of diffusion-weighted MR imaging in differential diagnosis between intracerebral necrotic tumors and cerebral abscesses. AJNR Am J Neuroradiol 1999; 20: 1251–1257.Google ScholarPubMed
Osborn, AG.Pyogenic parenchymal infections. In Diagnostic Neuroradiology, ed. Osborn, AG. St. Louis, MO: Mosby Yearbook, 1994, pp. 688–692.Google Scholar
Haimes, AB, Zimmerman, RD, Morgello, S, et al. MR imaging of brain abscess. Am J Roentgenol 1989; 152: 1073–1085.CrossRefGoogle Scholar
Mishra, AM, Gupta, RK, Jaggi, RS et al. Role of diffusion-weighted imaging and in vivo proton magnetic resonance spectroscopy in the differential diagnosis of ring-enhancing intracranial cystic mass lesions. J Comput Assist Tomogr 2004; 28: 540–547.CrossRefGoogle ScholarPubMed
Winn, WC, Kissane, JM.Bacterial disease. In Anderson’s Pathology, 10th edn, eds. Damjanov, I, Linder, J.St. Louis, MO: Mosby, 1996, pp. 747–842.Google Scholar
Castillo, M, Mukherji, SK.Diffusion-weighted imaging in the evaluation of intracranial lesions. Sem Ultrasound CT MRI 2000; 21: 405–416.CrossRefGoogle ScholarPubMed
Ebisu, T, Tanaka, C, Umeda, M, et al. Discrimination of brain abscess from necrotic or cystic tumors by diffusion-weighted echo-planar imaging. Magn Reson Imaging 1996; 14: 1113–1116.CrossRefGoogle ScholarPubMed
Mishra, AM, Gupta, RK, Saksena, S, et al. Biological correlates of diffusivity in brain abscess. Mag Reson Med 2005; 54: 878–885.CrossRefGoogle ScholarPubMed
Lee, EJ, Ahn, KJ, Ha, YS, et al. Unusual findings in cerebral abscess: report of two cases. Br J Radiol 2006; 79: e151–e161.CrossRefGoogle ScholarPubMed
Hartmann, M, Jansen, O, Heiland, S, et al. Restricted diffusion within ring enhancement is not pathognomonic for brain abscess. AJNR Am J Neuroradiol 2001; 22: 1738–1742.Google Scholar
Reddy, JS, Mishra, AM, Behari, S, et al. The role of diffusion-weighted imaging in the differential diagnosis of intracranial cystic mass lesions: a report of 147 lesions. Surg Neurol 2006; 66: 246–250.CrossRefGoogle ScholarPubMed
Tien, RD, Felsberg, GJ, Friedman, H, Brown, M, MacFall, J.MR imaging of high-grade cerebral gliomas: value of diffusion-weighted echoplanar pulse sequences. Am J Roentgenol 1994; 162: 671–677.CrossRefGoogle ScholarPubMed
Tung, GA, Evangelista, P, Rogg, JM, Duncan, JA.Diffusion-weighted MR imaging of rim-enhancing brain masses: is markedly decreased water diffusion specific for brain abscess? Am J Roentgenol 2001; 177: 709–712.CrossRefGoogle ScholarPubMed
Krabbe, K, Gideon, P, Waga, P, et al. MR diffusion imaging of human intracranial tumors. Neuroradiology 1997; 39: 483–489.CrossRefGoogle Scholar
Tsui, EYK, Chan, JH, Cheung, YK, et al. Evaluation of cerebral abscesses by diffusion-weighted MR imaging and MR spectroscopy. Comput Med Imaging Graph 2002; 26: 347–351.CrossRefGoogle ScholarPubMed
Farrell, CJ, Hohl, BL, Pisculli, ML, et al. Limitations of diffusion-weighted imaging in the diagnosis of postoperative infections. Neurosurgery 2008; 62: 577–583.CrossRefGoogle Scholar
Wong, AM, Zimmerman, RA, Simon, EM, et al. Diffusion-weighted MR imaging of subdural empyemas in children. AJNR Am J Neuroradiol 2004; 25: 1016–1021.Google ScholarPubMed
Tsuchiya, K, Yamakami, N, Hachiya, J, Saito, I, Kobayashi, H.Multiple brain abscesses: differentiation from cerebral metastases by diffusion-weighted magnetic resonance imaging. Int J Neuroradiol 1998; 4: 258–262.Google Scholar
Noguchi, K, Watanabe, N, Nagayoshi, T, et al. Role of diffusion-weighted echo-planar MRI in distinguishing between brain abscess and tumor: a preliminary report. Neuroradiology 1999; 41: 171–174.CrossRefGoogle ScholarPubMed
Monbati, A, Kumar, P, Kamkarpour, A.Intraoperative cytodiagnosis of metastatic brain tumors confused clinically with brain abscess: a report of three cases. Acta Cytol 2000; 44: 437–441.CrossRefGoogle Scholar
Guzman, R, Barth, A, Lovblad, KO, et al. Use of diffusion-weighted magnetic resonance imaging in differentiating prurulent brain processes from cystic brain tumors. J Neurosurg 2002; 97: 1101–1107.CrossRefGoogle Scholar
Hakyemez, B, Erdogan, C, Bolca, N, et al. Evaluation of different cerebral mass lesions by perfusion-weighted MR imaging. J Mag Reson Imaging 2006; 24: 817–824.CrossRefGoogle ScholarPubMed
Erdogan, C, Hakyemez, B, Yildirim, N, et al. Brain abscess and cystic brain tumor: discrimination with dynamic susceptibility contrast perfusion-weighted MRI. Comput Assist Tomogr; 2005; 29: 663–667.CrossRefGoogle ScholarPubMed
Chan, JHM, Tsui, EYK, Chau, LF, et al. Discrimination of an infected brain tumor from a cerebral abscess by combined MR perfusion and diffusion imaging. Comput Med Imag Graph 2002; 26: 19–23.CrossRefGoogle ScholarPubMed
Caramia, F, Aronen, HJ, Sorensen, G, et al. Perfusion MR imaging with exogenous contrast agents. In Diffusion and Perfusion Magnetic Resonance Imaging: Applications to Functional MRI, ed. LeBihan, D. New York: Raven Press, 1995, pp. 255–265.Google Scholar
Chenevert, TL, McKeever, PE, Ross, BD.Monitoring early response of experimental brain tumors to therapy using diffusion magnetic resonance imaging. Clin Cancer Res 1997; 3: 1457–1466.Google ScholarPubMed
Brem, S, Cotran, R, Folkman, J.Tumor angiogenesis: a quantitative method for histologic grading. J Natl Cancer Inst 1972; 48: 347–356.Google ScholarPubMed
Burger, P.Malignant astrocytic neoplasms: classification, pathology, anatomy, and response to therapy. Semin Oncol 1986; 13: 16–20.Google Scholar
Aronen, HJ, Gazit, IE, Loius, DN, et al. Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 1994; 191: 41–51.CrossRefGoogle ScholarPubMed
Knopp, EA, Cha, S, Johnson, G, et al. Glial neoplasms: dynamic contrast-enhanced T2*-weighted MR imaging. Radiology 1999; 211: 791–798.CrossRefGoogle ScholarPubMed
Wenz, F, Rempp, K, Hess, T, et al. Effect of radiation on blood volume in low-grade astrocytomas and normal brain tissue quantification with dynamic susceptibility contrast MR imaging. Am J Roentgenol 1996; 166: 187–193.CrossRefGoogle ScholarPubMed
Singer, MB, Atlas, SW, Drayer, BP.Subarachnoid space disease: diagnosis with fluid-attenuated inversion-recovery MR imaging and comparison with gadolinium-enhanced spin-echo MR imaging-blinded reader study. AJNR Am J Neuroradiol 1998; 208: 417–422.Google Scholar
Hajnal, JV, Bryant, DJ, Kasuboski, L, et al. Use of fluid attenuated inversion recovery (FLAIR) pulse sequences in MRI of the brain. J Comput Assist Tomogr 1992; 16: 841–844.CrossRefGoogle Scholar
Pezzullo, JA, Tung, GA, Mudigonda, S, Rogg, JM.Diffusion-weighted MR imaging of pyogenic ventriculitis. Am J Roentgenol 2003; 180: 71–75.CrossRefGoogle ScholarPubMed
Skoldenberg, B.Herpes simplex encephalitis. Scand J Infect Dis Suppl 1996; 100: 8–13.Google ScholarPubMed
Ashikaga, R, Araki, Y, Ishida, O.MR flair imaging of herpes simplex encephalitis. Radiat Med 1996; 14: 349–352.Google ScholarPubMed
Demaerel, P, Wilms, G, Robberecht, W, et al. MRI of herpes simplex encephalitis. Neuroradiology 1992; 34: 490–493.CrossRefGoogle ScholarPubMed
Tien, RD, Felsberg, GJ, Osumi, AK.Herpes virus infection of the CNS. Am J Roentgenol 1993; 161: 167–176.CrossRefGoogle ScholarPubMed
Sener, RN.Herpes simplex encephalitis: diffusion MR imaging findings. Comput Med Imaging Graph 2001; 25: 391–397.CrossRefGoogle ScholarPubMed
Heiner, L, Demaerel, P.Diffusion-weighted MR imaging findings in a patient with herpes simplex encephalitis. Eur J Radiol 2003; 45: 195–198.CrossRefGoogle Scholar
Camacho, DLA, Smith, JK, Castillo, M.Differentiation of toxoplasmosis and lymphoma in AIDS patients by using apparent diffusion coefficients. AJNR Am J Neuroradiol 2003; 24: 633–637.Google ScholarPubMed
Chang, L, Cornford, ME, Chiang, FL, Radiologic–pathologic correlation: cerebral toxoplasmosis and lymphoma in AIDS. AJNR Am J Neuroradiol 1995; 16: 1653–1663.Google Scholar
Dina, TS.Primary central nervous system lymphoma versus toxoplasmosis in AIDS. Radiology 1991; 179: 823–828.CrossRefGoogle Scholar
Smirniotopoulos, JG, Koeller, KK, Nelson, AM, Murphy, FM.Neuropathology–autopsy correlations in AIDS. Neuroimaging Clin N Am 1997; 7: 615–637.Google Scholar
Ramsey, RG, Gean, AD.Central nervous system toxoplasmosis. Neuroimaging Clin N Am 1997; 7: 171–186.Google ScholarPubMed
Mamidi, A, DeSimone, JA, Pomerantz, RJ.Central nervous system infections in individuals with HIV-1 infection. J Neurovirol 2002; 8: 158–167.CrossRefGoogle ScholarPubMed
Chong-Han, CH, Cortez, SC, Tung, GA.Diffusion-weighted MRI of cerebral toxoplasmosis abscess. Am J Roentgenol 2003; 181: 1711–1714.CrossRefGoogle Scholar
Ernst, TM, Chang, L, Witt, MD, et al. Cerebral toxoplasmosis and lymphoma in AIDS: perfusion MR imaging experience in 13 patients. Radiology 1998; 208: 663–669.CrossRefGoogle ScholarPubMed
Heaton, RK, Grant, I, Butters, N, et al. The HNRC 500: neuropsychology of HIV infection at different disease stages. J Int Neuropsychol Soc 1995; 3: 231–251.CrossRefGoogle Scholar
Simpson, DM, Berger, JR.Neurological manifestations of HIV infection. Med Clin North Am 1996; 80: 1363–1394.CrossRefGoogle ScholarPubMed
Filippi, CG, Sze, G, Farber, SG, Shamanesh, M, Selwyn, P.Regression of HIV encephalopathy and basal ganglia signal intensity abnormality at MR imaging in patients with AIDS after initiation of protease inhibitor therapy. Radiology 1998; 206: 491–499.CrossRefGoogle ScholarPubMed
Bencherif, B, Rottenberg, DA.Neuroimaging and AIDS dementia complex. AIDS 1998; 12: 233–244.Google ScholarPubMed
Brew, BJ, Pemberton, L, Cunningham, P, Law, M.Levels of human immunodeficiency virus type I RNA in cerebrospinal fluid correlate with AIDS dementia stage. J Infect Dis 1997; 175: 963–966.CrossRefGoogle ScholarPubMed
Kure, K, Llena, JF, Lyman, WD, et al. Human immunodeficiency virus-1 infection of the nervous system: an autopsy study of 268 adult, pediatric, and fetal brains. Hum Pathol 1991; 22: 700–710.CrossRefGoogle ScholarPubMed
van Gorp, WG, Baerwald, JP, Ferrando, SJ, McElhiney, MC, Rabkin, JG.The relationship between employment and neuropsychological impairment in HIV infection. J Int Neuropsychol Soc 1999; 5: 534–539.CrossRefGoogle ScholarPubMed
van Gorp, WG, Mandelkern, MA, Gee, M, et al. Cerebral metabolic dysfunction in AIDS: findings in a sample with dementia and without dementia. J Neuropsychiatry Clin Neurosci 1999; 4: 280–287.Google Scholar
Ellis, RJ, Hsia, K, Spector, SA, et al. Cerebrospinal fluid human immunodeficiency virus type 1 RNA levels are elevated in neurocognitively impaired individuals with acquired immunodeficiency syndrome. Ann Neurol 1997; 42: 679–688.CrossRefGoogle ScholarPubMed
McArthur, JC, McClernon, DR, Cronin, MF, et al. Relationship between human immunodeficiency virus-associated dementia and viral load in cerebrospinal fluid and brain. Ann Neurol 1997; 42: 689–698.CrossRefGoogle ScholarPubMed
DiStefano, M, Monno, L, Fiore, JR, et al. Neurological disorders during HIV-1 infection correlate with viral load in cerebrospinal fluid but not with virus phenotype. AIDS 1998; 12: 737–743.CrossRefGoogle Scholar
Price, RW, Strapans, S.Measuring the viral load in cerebrospinal fluid in human immunodeficiency virus infection: window into brain infection. Ann Neurol 1997; 42: 675–678.CrossRefGoogle ScholarPubMed
Gisslen, M, Hagberg, L, Svennerholm, B, Norkrans, G.HIV-1 RNA is not detectable in the cerebrospinal fluid during antiretroviral combination therapy. AIDS 1997; 11: 1194.CrossRefGoogle Scholar
Gisslen, M, Norkrans, G, Svennerholm, B, Hagberg, L.HIV-1 RNA detectable with ultrasensitive quantitative polymerase chain reaction in plasma but not in cerebrospinal fluid during combination treatment with zidovudine, lamivudine, and indinavir. AIDS 1998; 12: 114–116.Google Scholar
Ferrando, SJ, van Gorp, WG, McElhiney, M, et al. Highly active antiretroviral treatment (HAART) in HIV infection: benefits for neuropsychological function. AIDS 1998; 12: F65–F70.CrossRefGoogle ScholarPubMed
Pomara, N, Crandall, DT, Choi, SJ, Johnson, G, Lim, KO.White matter abnormalities in HIV-1 infection: a diffusion tensor imaging study. Psychiat Res Neuroimaging 2001; 106: 15–24.CrossRefGoogle ScholarPubMed
Johnson, RT, Gibbs, CJ.Creutzfeldt–Jakob disease and related transmissible spongiform encephalopathies. New Engl J Med 1998; 339: 1994–2004.CrossRefGoogle ScholarPubMed
Mao-Drayer, Y, Braff, SP, Nagle, KJ, et al. Emerging patterns of diffusion-weighted MR imaging in Creutzfeldt–Jakob disease: case report and review of the literature. AJNR Am J Neuroradiol 2002; 23: 550–556.Google Scholar
Brown, P, Cathala, F, Castaigne, P, Gajdusek, DC.Creutzfeldt–Jakob disease: clinical analysis of a consecutive series of 230 neuropathologically verified cases. Ann Neurol 1986; 20: 597–602.CrossRefGoogle ScholarPubMed
Beaudry, P, Cohen, P, Brandel, JP, et al. 14-3-3 Protein, neurospecific enolase, and S-100 protein cerebrospinal fluid of patients with Creutzfeldt–Jakob disease. Dement Geriatr Cogn Disord 1999; 10: 40–46.CrossRefGoogle Scholar
Hsich, G, Kenney, K, Gibbs, CJ, Jr., Lee, KH, Harrington, MG.The 14-3-3 brain protein in cerebrospinal fluid as a marker for transmissible spongiform encephalopathies. New Engl J Med 1996; 335: 924–930.CrossRefGoogle ScholarPubMed
Zerr, I, Bodemer, M, Gefeller, O, et al. Detection of 14–3–3 protein in the cerebrospinal fluid supports the diagnosis of Creutzfeldt–Jakob disease. Ann Neurol 1998; 43: 32–40.CrossRefGoogle Scholar
Levy, SR, Chiappa, KH, Burke, CJ, Young, RR.Early evolution and incidence of electroencephalographic abnormalities in Creutzfeldt–Jakob disease. J Clin Neurophysiol 1986; 3: 1–21.CrossRefGoogle ScholarPubMed
Steinhoff, BJ, Racker, S, Herrendorf, G, et al. Accuracy and reliability of periodic sharp wave complexes in Creutzfeldt–Jakob disease. Arch Neurol 1996; 53: 162–166.CrossRefGoogle ScholarPubMed
Aguglia, U, Gambardella, A, LePiane, E, et al. Disappearance of periodic sharp wave complexes in Creutzfeldt–Jakob disease. Neurophysiol Clin 1997; 27: 277–282.CrossRefGoogle ScholarPubMed
Finkenstaedt, M, Szudra, A, Zerr, I, et al. MR imaging of Creutzfeldt–Jakob disease. Radiology 1996; 199: 793–798.CrossRefGoogle ScholarPubMed
Gertz, HJ, Henkes, H, Cervos-Navarro, J.Creutzfeldt–Jakob disease: correlation of MRI and neuropathologic findings. Neurology 1988; 38: 1481–1482.CrossRefGoogle ScholarPubMed
Yoon, SS, Chan, S, Chin, S, Lee, K, Goodman, RR.MRI of Creutzfeldt–Jakob disease: asymmetric high signal intensity of the basal ganglia. Neurology 1995; 45: 1932–1933.CrossRefGoogle ScholarPubMed
Murata, T, Shiga, Y, Higano, S, Takahashi, S, Mugikura, S.Conspicuity and evolution of lesions in Creutzfeldt–Jakob disease at diffusion-weighted imaging. AJNR Am J Neuroradiol 2002; 23: 1164–1172.Google ScholarPubMed
Bahn, MM, Kido, DK, Lin, W, Pearlman, AL.Brain magnetic resonance diffusion abnormalities in Creutzfeldt–Jakob disease. Arch Neurol 1997; 54: 1411–1415.CrossRefGoogle ScholarPubMed
Demaerel, P, Heiner, L, Robberecht, W, Sciot, R, Wilms, G.Diffusion-weighted MRI in sporadic Creutzfeldt–Jakob disease. Neurology 1999; 52: 205–208.CrossRefGoogle ScholarPubMed
Demaerel, P, Baert, AL, Vanopdenbosch, L, Robberecht, W, Dom, R.Diffusion-weighted magnetic resonance imaging in Creutzfeldt–Jakob disease. Lancet 1997; 349: 847–848.CrossRefGoogle ScholarPubMed
Na, DL, Suh, CK, Choi, SH, et al. Diffusion-weighted magnetic resonance imaging in probable Creutzfeldt–Jakob disease: a clinical-anatomic correlation. Arch Neurol 1999; 56: 951–957.CrossRefGoogle ScholarPubMed
Yee, AS, Simon, JH, Anderson, CA, Sze, CI, Filley, CM.Diffusion-weighted MRI of right-hemisphere dysfunction in Creutzfeldt–Jakob disease. Neurology 1999; 52: 1514–1515.CrossRefGoogle ScholarPubMed
Fraser, H, Dickinson, AG.Targeting of scrapie lesions and spread via the retino-tectal projection. Brain Res 1985; 346: 32–41.CrossRefGoogle ScholarPubMed
Heye, N, Cervos-Navarro, J.Focal involvement and lateralization in Creutzfeldt–Jakob disease: correlation of clinical, electroencephalographic, and neuropathological findings. Eur Neurol 1992; 32: 289–292.CrossRefGoogle ScholarPubMed
Taraboulos, A, Jendroska, K, Serban, D, et al. Regional mapping of prion proteins in brain. Proc Nat Acad Sci USA 1992; 89: 7620–7624.CrossRefGoogle ScholarPubMed
Bahn, NM, Parchi, P.Abnormal diffusion-weighted magnetic resonance images in Creutzfeldt–Jakob disease. Arch Neurol 1999; 56: 577–583.CrossRefGoogle ScholarPubMed
Mori, S, van Zijl, PCM.Fiber tracking: priniciples and strategies: a technical review. NMR Biomed 2002; 15: 468–480.CrossRefGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×