Skip to main content Accessibility help
×
Hostname: page-component-7c8c6479df-5xszh Total loading time: 0 Render date: 2024-03-28T23:41:24.827Z Has data issue: false hasContentIssue false

Part III - Computed Tomography

Published online by Cambridge University Press:  10 June 2017

J. Christian Fox
Affiliation:
University of California, Irvine
Get access
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Crownover, BK, Bepko, JL: Appropriate and safe use of diagnostic imaging. Am Fam Physician 2013;87(7):494501.Google Scholar
Tublin, ME, Murphy, ME, Tessler, FN: Current concepts in contrast media-induced nephropathy. AJR Am J Roentgenol 1998;171(4):933–9.Google Scholar
Pannu, N, Wiebe, N, Tonelli, M: Alberta Kidney Disease Network. Prophylaxis strategies for contrast-induced nephropathy. JAMA 2006;295(23):2765–79.CrossRefGoogle ScholarPubMed
Gruberg, L, Mehran, R, Dangas, G, et al.: Acute renal failure requiring dialysis after percutaneous coronary interventions. Catheter Cardiovasc Interv Off J Soc Card Angiogr Interv 2001;52(4):409–16.Google ScholarPubMed
McCullough, PA, Wolyn, R, Rocher, LL, et al.: Acute renal failure after coronary intervention: incidence, risk factors, and relationship to mortality. Am J Med 1997;103(5):368–75.Google Scholar
Hoste, EAJ, Doom, S, De Waele, J, et al.: Epidemiology of contrast-associated acute kidney injury in ICU patients: a retrospective cohort analysis. Intensive Care Med 2011;37(12):1921–31.CrossRefGoogle ScholarPubMed
Morcos, SK, Thomsen, HS, Webb, JA: Contrast-media-induced nephrotoxicity: a consensus report. Contrast Media Safety Committee, European Society of Urogenital Radiology (ESUR). Eur Radiol 1999;9(8):1602–13.Google Scholar
Jakobsen, JA, Lundby, B, Kristoffersen, DT, et al.: Evaluation of renal function with delayed CT after injection of nonionic monomeric and dimeric contrast media in healthy volunteers. Radiology 1992;182(2):419–24.CrossRefGoogle ScholarPubMed
Cochran, ST, Wong, WS, Roe, DJ: Predicting angiography-induced acute renal function impairment: clinical risk model. AJR Am J Roentgenol 1983;141(5):1027–33.Google Scholar
De Freitas do Carmo, LP, Macedo, E: Contrast-induced nephropathy: attributable incidence and potential harm. Crit Care Lond Engl 2012;16(3):127.Google Scholar
Gleeson, TG, Bulugahapitiya, S: Contrast-induced nephropathy. AJR Am J Roentgenol 2004;183(6):1673–89.CrossRefGoogle ScholarPubMed
Mitchell, AM, Jones, AE, Tumlin, JA, Kline, JA: Incidence of contrast-induced nephropathy after contrast-enhanced computed tomography in the outpatient setting. Clin J Am Soc Nephrol 2010;5(1):49.CrossRefGoogle ScholarPubMed
Parfrey, PS, Griffiths, SM, Barrett, BJ, et al.: Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. A prospective controlled study. N Engl J Med 1989;320(3):143–9.Google Scholar
Rudnick, MR, Goldfarb, S, Wexler, L, et al.: Nephrotoxicity of ionic and nonionic contrast media in 1196 patients: a randomized trial. The Iohexol Cooperative Study. Kidney Int 1995;47(1):254–61.Google Scholar
Traub, SJ, Kellum, JA, Tang, A, et al.: Risk factors for radiocontrast nephropathy after emergency department contrast-enhanced computerized tomography. Acad Emerg Med 2013;20(1):40–5.Google Scholar
Atwell, TD, Lteif, AN, Brown, DL, et al.: Neonatal thyroid function after administration of IV iodinated contrast agent to 21 pregnant patients. AJR Am J Roentgenol 2008;191(1):268–71.Google Scholar
Webb, JAW, Thomsen, HS, Morcos, SK: Members of Contrast Media Safety Committee of European Society of Urogenital Radiology (ESUR). The use of iodinated and gadolinium contrast media during pregnancy and lactation. Eur Radiol 2005;15(6):1234–40.Google Scholar
American College of Radiology: Manual on contrast media, version 10. 2015. Available at: www.acr.org/~/media/37D84428BF1D4E1B9A3A2918DA9E27A3.pdfGoogle Scholar
ACOG Committee on Obstetric Practice: ACOG Committee Opinion. Number 299, September 2004 (replaces No. 158, September 1995). Guidelines for diagnostic imaging during pregnancy. Obstet Gynecol 2004;104(3):647–51.Google Scholar
Bettmann, MA: Frequently asked questions: iodinated contrast agents. Radiogr Rev Publ Radiol Soc N Am Inc 2004;24 Suppl 1:S310.Google ScholarPubMed
McCarthy, CS, Becker, JA: Multiple myeloma and contrast media. Radiology 1992;183(2):519–21.Google Scholar
Pahade, JK, LeBedis, CA, Raptopoulos, VD, et al.: Incidence of contrast-induced nephropathy in patients with multiple myeloma undergoing contrast-enhanced CT. AJR Am J Roentgenol 2011;196(5):1094–101.Google Scholar
Bailey, CJ, Wilcock, C, Day, C: Effect of metformin on glucose metabolism in the splanchnic bed. Br J Pharmacol 1992;105(4):1009–13.Google Scholar
Sirtori, CR, Pasik, C: Re-evaluation of a biguanide, metformin: mechanism of action and tolerability. Pharmacol Res Off J Ital Pharmacol Soc 1994;30(3):187228.Google Scholar
Barrett, BJ, Carlisle, EJ: Metaanalysis of the relative nephrotoxicity of high- and low-osmolality iodinated contrast media. Radiology 1993;188(1):171–8.Google Scholar
Briguori, C, Airoldi, F, D’Andrea, D, et al.: Renal insufficiency following contrast media administration trial (REMEDIAL): a randomized comparison of 3 preventive strategies. Circulation 2007;115(10):1211–7.CrossRefGoogle ScholarPubMed
Ludwig, U, Riedel, MK, Backes, M, et al.: MESNA (sodium 2-mercaptoethanesulfonate) for prevention of contrast medium-induced nephrotoxicity – controlled trial. Clin Nephrol 2011;75(4):302–8.CrossRefGoogle ScholarPubMed
Ellis, JH, Cohan, RH: Prevention of contrast-induced nephropathy: an overview. Radiol Clin North Am 2009;47(5):801–11.Google Scholar
Trivedi, HS, Moore, H, Nasr, S, et al.: A randomized prospective trial to assess the role of saline hydration on the development of contrast nephrotoxicity. Nephron Clin Pract 2003;93(1):C2934.Google Scholar
From, AM, Bartholmai, BJ, Williams, AW, et al.: Sodium bicarbonate is associated with an increased incidence of contrast nephropathy: a retrospective cohort study of 7977 patients at Mayo Clinic. Clin J Am Soc Nephrol 2008;3(1):10–8.Google Scholar
Gomes, VO, Lasevitch, R, Lima, VC, et al.: Hydration with sodium bicarbonate does not prevent contrast nephropathy: a multicenter clinical trial. Arq Bras Cardiol 2012;99(6):1129–34.Google Scholar
Merten, GJ, Burgess, WP, Gray, LV, et al.: Prevention of contrast-induced nephropathy with sodium bicarbonate: a randomized controlled trial. JAMA 2004;291(19):2328–34.Google Scholar
Adolph, E, Holdt-Lehmann, B, Chatterjee, T, et al.: Renal insufficiency following radiocontrast exposure trial (REINFORCE): a randomized comparison of sodium bicarbonate versus sodium chloride hydration for the prevention of contrast-induced nephropathy. Coron Artery Dis 2008;19(6):413–9.Google Scholar
Mueller, C, Buerkle, G, Buettner, HJ, et al.: Prevention of contrast media-associated nephropathy: randomized comparison of 2 hydration regimens in 1620 patients undergoing coronary angioplasty. Arch Intern Med 2002;162(3):329–36.CrossRefGoogle ScholarPubMed
Weisbord, SD, Palevsky, PM: Prevention of contrast-induced nephropathy with volume expansion. Clin J Am Soc Nephrol 2008;3(1):273–80.Google Scholar
Stacul, F, van der Molen, AJ, Reimer, P, et al.: Contrast induced nephropathy: updated ESUR Contrast Media Safety Committee guidelines. Eur Radiol 2011;21(12):2527–41.Google Scholar
Tepel, M, van der Giet, M, Schwarzfeld, C, et al.: Prevention of radiographic-contrast-agent-induced reductions in renal function by acetylcysteine. N Engl J Med 2000;343(3):180–4.Google Scholar
Bagshaw, SM, Ghali, WA: Acetylcysteine for prevention of contrast-induced nephropathy after intravascular angiography: a systematic review and meta-analysis. BMC Med 2004;2:38.Google Scholar
Traub, SJ, Mitchell, AM, Jones, AE, et al.: N-acetylcysteine plus intravenous fluids versus intravenous fluids alone to prevent contrast-induced nephropathy in emergency computed tomography. Ann Emerg Med 2013;62(5):511520.e25.Google Scholar
Cruz, DN, Perazella, MA, Ronco, C: The role of extracorporeal blood purification therapies in the prevention of radiocontrast-induced nephropathy. Int J Artif Organs 2008;31(6):515–24.Google Scholar
Cruz, DN, Goh, CY, Marenzi, G, et al.: Renal replacement therapies for prevention of radiocontrast-induced nephropathy: a systematic review. Am J Med 2012;125(1):6678.e3.Google Scholar
Morcos, SK, Thomsen, HS, Webb, JA: Contrast Media Safety Committee of the European Society of Urogenital Radiology. Prevention of generalized reactions to contrast media: a consensus report and guidelines. Eur Radiol 2001;11(9):1720–8.Google Scholar
Dewachter, P, Laroche, D, Mouton-Faivre, C, et al.: Immediate reactions following iodinated contrast media injection: a study of 38 cases. Eur J Radiol 2011;77(3):495501.Google Scholar
Brockow, K: Immediate and delayed reactions to radiocontrast media: is there an allergic mechanism? Immunol Allergy Clin North Am 2009;29(3):453–68.Google Scholar
Caro, JJ, Trindade, E, McGregor, M: The risks of death and of severe nonfatal reactions with high- vs low-osmolality contrast media: a meta-analysis. AJR Am J Roentgenol 1991;156(4):825–32.Google Scholar
Katayama, H, Yamaguchi, K, Kozuka, T, et al.: Adverse reactions to ionic and nonionic contrast media. A report from the Japanese Committee on the Safety of Contrast Media. Radiology 1990;175(3):621–8.Google Scholar
Nguyen, CP, Goodman, LH: Fetal risk in diagnostic radiology. Semin Ultrasound CT MR 2012;33(1):410.Google Scholar
Goldberg-Stein, SA, Liu, B, Hahn, PF, Lee, SI: Radiation dose management: part 2, estimating fetal radiation risk from CT during pregnancy. AJR Am J Roentgenol 2012;198(4):W352–6.Google Scholar
Masselli, G, Derchi, L, McHugo, J, et al.: Acute abdominal and pelvic pain in pregnancy: ESUR recommendations. Eur Radiol 2013;23(12):3485–500.Google Scholar
Sadro, C, Bernstein, MP, Kanal, KM: Imaging of trauma: part 2, abdominal trauma and pregnancy–a radiologist’s guide to doing what is best for the mother and baby. AJR Am J Roentgenol 2012;199(6):1207–19.Google Scholar
Miglioretti, DL, Johnson, E, Williams, A, et al.: The use of computed tomography in pediatrics and the associated radiation exposure and estimated cancer risk. JAMA Pediatr 2013;167(8):700–7.Google Scholar
Journy, N, Ancelet, S, Rehel, J-L, et al.: Predicted cancer risks induced by computed tomography examinations during childhood, by a quantitative risk assessment approach. Radiat Environ Biophys 2014;53(1):3954.Google Scholar
Winkler, NT: ALARA concept – now a requirement. Radiol Technol 1980;51(4):525.Google Scholar
Lyttle, MD, Crowe, L, Oakley, E, et al.: Comparing CATCH, CHALICE and PECARN clinical decision rules for paediatric head injuries. Emerg Med J 2012;29(10):785–94.Google Scholar
Kuppermann, N, Holmes, JF, Dayan, PS, et al.: Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet 2009;374(9696):1160–70.Google Scholar
Garcia, M, Taylor, G, Babcock, L, et al.: Computed tomography with intravenous contrast alone: the role of intra-abdominal fat on the ability to visualize the normal appendix in children. Acad Emerg Med 2013;20(8):795800.Google Scholar
Morton, RP, Reynolds, RM, Ramakrishna, R, et al.: Low-dose head computed tomography in children: a single institutional experience in pediatric radiation risk reduction: clinical article. J Neurosurg Pediatr 2013;12(4):406–10.Google Scholar

References

Antevil, JL, Sise, MJ, Sack, DI, et al.: Spiral computed tomography for the initial evaluation of spine trauma: a new standard of care? J Trauma-Injury Infect Crit Care 2006;61(2):382–7.Google Scholar
Hoffman, JR, Mower, WR, Wolfson, AB, et al.: Validity of a set of clinical criteria to rule out injury to the cervical spine in patients with blunt trauma. National Emergency X-Radiography Utilization Study Group. N Engl J Med 2000;343(2):94–9.Google Scholar
Stiell, IG, Wells, GA, Vandemheen, KL, et al.: The Canadian C-spine Rule for radiography in alert and stable trauma patients. JAMA 2001;286:1841–8.Google Scholar
Harris, JH Jr, Harris, WH: The radiology of emergency medicine, 4th ed. Philadelphia: Lippincott Williams & Wilkins, 2000:307–8.Google Scholar
Barrett, T, Mower, W, Zucker, M, Hoffman, J: Injuries missed by limited computed tomographic imaging of patients with cervical spine injuries. Ann Emerg Med 2006;47(2):129–33.Google Scholar
Griffen, MM, Frykberg, ER, Kerwin, AJ, et al.: Radiographic clearance of blunt cervical spine injury: plain radiograph or computed tomography scan? J Trauma 2003;55:222–7.CrossRefGoogle ScholarPubMed
Diaz, JJ, Gillman, C, Morris, JA Jr, et al.: Are five-view plain films of the cervical spine unreliable? A prospective evaluation in blunt trauma patients with altered mental status. J Trauma 2003;55:658–64.Google Scholar
Brown, CVR, Antevil, JL, Sise, MJ, Sack, DI: Spiral computed tomography for the diagnosis of cervical, thoracic, and lumbar spine fractures: its time has come. J Trauma-Injury Infect Crit Care 2005;58(5):890–6.CrossRefGoogle ScholarPubMed
Brohi, K, Healy, M, Fotheringham, T, et al.: Helical computed tomographic scanning for the evaluation of the cervical spine in the unconscious, intubated trauma patient. J Trauma-Injury Infect Crit Care 2005;58(5):897901.Google Scholar
Gale, SC, Gracias, VH, Reilly, PM, Schwab, CW: The inefficiency of plain radiography to evaluate the cervical spine after blunt trauma. J Trauma-Injury Infect Crit Care 2005;59(5):1121–5.Google Scholar
Holmes, JF, Akkinepalli, R: Computed tomography versus plain radiography to screen for cervical spine injury: a meta-analysis. J Trauma-Injury Infect Crit Care 2005;58(5):902–5.Google Scholar
Sheridan, R, Peralta, R, Rhea, J, et al.: Reformatted visceral protocol helical computed tomographic scanning allows conventional radiographs of the thoracic and lumbar spine to be eliminated in the evaluation of blunt trauma patients. J Trauma-Injury Infect Crit Care 2003;55(4):665–9.Google Scholar
Chou, R, Qaseem, A, Snow, V, et al.: Diagnosis and treatment of low back pain: a joint clinical practice guideline from the American College of Physicians and the American Pain Society. Ann Intern Med 2007 Oct;147(7):478–91.Google Scholar
Jarvik, JG, Deyo, RA: Diagnostic evaluation of low back pain with emphasis on imaging MPH. Ann Intern Med 2002;137:586–97.Google Scholar
Agency for Healthcare Research and Quality: American College of Radiology appropriateness criteria. 2016. Available at: https://www.guideline.gov/content.aspx?id=37931Google Scholar
Berne, JD, Velmahos, GC, El-Tawil, Q, et al.: Value of complete cervical helical computed tomographic scanning in identifying cervical spine injury in the unevaluable blunt trauma patient with multiple injuries: a prospective study. J Trauma-Injury Infect Crit Care 1999;47(5):896.CrossRefGoogle ScholarPubMed
Martin, BW, Dykes, E, Lecky, FE: Patterns and risks in spinal trauma. Arch Dis Child 2004;89:860–5.Google Scholar
Viccellio, P, Simon, H, Pressman, BD, et al.: NEXUS Group: A prospective multicenter study of cervical spine injury in children. Pediatrics 2001;108(2):e20.CrossRefGoogle Scholar
Veena, K, Sheffali, G, Mahesh, K, Ajay, G: SCIWORA – spinal cord injury without radiological abnormality. Ind J Pediatr 2006;73(9);829–31.Google Scholar

References

Stiell, IG, Wells, GA, Vandemheen, K, et al.: The Canadian CT Head Rule for patients with minor head injury. Lancet 2001;357(9266):1391–6.Google Scholar
Mower, WR, Hoffman, JR, Herbert, M, et al.: Developing a decision instrument to guide computed tomographic imaging of blunt head injury patients. J Trauma 2005;59(4):954–9.Google Scholar
Haydel, MJ, Preston, CA, Mills, TJ, et al.: Indications for computed tomography in patients with minor head injury. N Engl J Med 2000;343(2):100–5.Google Scholar
Brenner, DJ, Hall, EJ: Computed tomography—an increasing source of radiation exposure. N Engl J Med 2007 Nov;357(22):2277–84.Google Scholar
Maguire, JL, Boutis, K, Uleryk, EM, et al.: Should a head-injured child receive a head CT scan? A systematic review of clinical prediction rules. Pediatrics 2009 Jul;124(1):e145–54.Google Scholar
Kuppermann, N, Holmes, JF, Dayan, PS, et al.: Identification of children at very low risk of clinically-important brain injuries after head trauma: a prospective cohort study. Lancet 2009 Oct;374(9696):1160–70.Google Scholar
American College of Emergency Physicians: Clinical policy: critical issues in the evaluation and management of patients presenting to the emergency department with acute headache. Ann Emerg Med 2002;39:108–22.Google Scholar
Mohamed, M, Heasly, DC, Yagmurlu, B, Yousem, DM: Fluid-attenuated inversion recovery MR imaging and subarachnoid hemorrhage: not a panacea. Am J Neuroradiol 2004;25:545–50.Google Scholar
Go, JL, Zee, CS: Unique CT imaging advantages. Hemorrhage and calcification. Neuroimaging Clin N Am 1998;8:541–58.Google Scholar
Heasley, DC, Mohamed, MA, Yousem, DM: Clearing of red blood cells in lumbar puncture does not rule out ruptured aneurysm in patients with suspected subarachnoid hemorrhage but negative head CT findings. Am J Neuroradiol 2005;26:820–4.Google Scholar
O’Neill, J, McLaggan, S, Gibson, R: Acute headache and subarachnoid haemorrhage: a retrospective review of CT and lumbar puncture findings. Scott Med J 2005;50:151–3.Google Scholar
Morgenstern, LB, Luna-Gonzales, H, Huber, JC Jr, et al.: Worst headache and subarachnoid hemorrhage: prospective, modern computed tomography and spinal fluid analysis. Ann Emerg Med 1998;32(3 Pt 1):297304.Google Scholar
Foot, C, Staib, A: How valuable is a lumbar puncture in the management of patients with suspected subarachnoid haemorrhage? Emerg Med (Fremante) 2001;13:326–32.Google Scholar

References

Schuknecht, B, Graetz, K: Radiologic assessment of maxillofacial, mandibular, and skull base trauma. Eur Radiol 2005;15:560–8.Google Scholar
Kassel, EE, Cooper, PW, Rubernstein, JD: Radiologic studies of facial trauma associated with a regional trauma centre. J Can Assoc Radiol 1983;34:178–88.Google Scholar
Russell, J, Davidson, M, Daly, B, Corrigan, AM: Computed tomography in the diagnosis of maxillofacial trauma. Br J Oral Maxillofac Surg 1990;28:287–91.Google Scholar
Salvolini, U: Traumatic injuries: imaging of facial injuries. Eur Radiol 2002;12:1253–61.Google Scholar
Holmgren, EP, Dierks, EJ, Assael, LA, et al.: Facial soft tissue injuries as an aid to ordering a combination head and facial computed tomography in trauma patients. J Oral Maxillofac Surg 2005;63:651–4.Google Scholar
Holmgren, EP, Dierks, EJ, Homer, LD, Potter, BE: Facial computed tomography use in trauma patients who require a head computed tomogram. J Oral Maxillofac Surg 2004;62:913–8.Google Scholar
Marinaro, J, Crandall, CS, Doezema, D: Computed tomography of the head as a screening examination for facial fractures. Am J Emerg Med 2007;25(6):616–9.Google Scholar
Laine, FJ, Conway, WF, Laskin, DM: Radiology of maxillofacial trauma. Curr Probl Diagn Radiol 1993;22:145–88.Google Scholar
Ellstrom, CL, Evans, GR: Evidence-based medicine: zygoma fractures. Plast Reconstr Surg 2013 Dec;132(6):1649–57.Google Scholar
Gentry, LR, Manor, WF, Turski, PA, Strother, CM: High-resolution CT analysis of facial struts in trauma: 1. Normal anatomy. AJR Am J Roentgenol 1983;140:523–32.Google Scholar
Bullock, JD, Warwar, RE, Ballal, DR, Ballal, RD: Mechanisms of orbital floor fractures: a clinical, experimental, and theoretical study. Trans Am Ophthalmol Soc 1999;97:87110.Google Scholar
Avery, LL, Susarla, SM, Novelline, RA: Multidetector and three-dimensional CT evaluation of the patient with maxillofacial injury. Radiol Clin North Am 2011 Jan;49(1):183203.Google Scholar
Hussain, K, Wijetunge, DB, Grubnic, S, Jackson, IT: A comprehensive analysis of craniofacial trauma. J Trauma 1994;36:3447.CrossRefGoogle ScholarPubMed
He, D, Blomquist, PH, Ellis, E III: Association between ocular injuries and internal orbital fractures. J Oral Maxillofac Surg 2007;65:713–20.Google Scholar
Jank, S, Schuchter, B, Emshoff, R, et al.: Clinical signs of orbital wall fractures as a function of anatomic location. Oral Surg Oral Med Oral Pathol Oral Radiol Endod 2003;96:149–53.Google Scholar
Lee, HJ, Mohamed, J, Frohman, L, Baker, S: CT of orbital trauma. Emerg Radiol 2004;10:168–72.CrossRefGoogle ScholarPubMed
Ng, P, Chu, C, Young, N, Soo, M: Imaging of orbital floor fractures. Australas Radiol 1996;40:264–8.Google Scholar
Myllylä, V, Pyhtinen, J, Päivänsalo, M, et al.: CT detection and location of intraorbital foreign bodies: experiments with wood and glass. Rofo 1987;146:639–43.Google Scholar
Tanaka, T, Morimoto, Y, Kito, S, et al.: Evaluation of coronal CT findings of rare cases of isolated medial orbital wall blow-out fractures. Dentomaxillofac Radiol 2003;32:300–3.Google Scholar
Zingg, M, Laedrach, K, Chen, J, et al.: Classification and treatment of zygomatic fractures: a review of 1,025 cases. J Oral Maxillofac Surg 1992;50:778–90.Google Scholar
Newman, J: Medical imaging of facial and mandibular fractures. Radiol Technol 1998;69:417–35.Google Scholar
Bagheri, SC, Holmgren, E, Kademani, D, et al.: Comparison of the severity of bilateral Le Fort injuries in isolated midface trauma. J Oral Maxillofac Surg 2005;63:1123–9.Google Scholar
Le Fort, R: Etude experimentale sur les fractures de la machoire superieure. Rev Chir Paris 1901;23:208–27.Google Scholar
Escott, EJ, Branstetter, BF: Incidence and characterization of unifocal mandible fractures on CT. AJNR Am J Neuroradiol 2008 May;29(5):890–4.Google Scholar

References

Sosna, J, Slasky, BS, Bar-Ziv, J: Computed tomography in the emergency department. Am J Emerg Med 1997;15:244–7.Google Scholar
Broder, J, Warshauer, DM: Increasing utilization of computed tomography in the adult emergency department, 2000–2005. Emerg Radiol 2006;13:2530.Google Scholar
Wilson, T, Larsen, B, Blecha, M, et al.: Computed tomography of the chest: indications and utilization in the community hospital emergency department. Chest 2014;145:533A.Google Scholar
Rodriguez, R, Anglin, D, Langdorf, MI, et al.: NEXUS Chest, validation of a decision instrument for selective chest imaging in blunt trauma. JAMA Surgery 2013;148 (10):940–6.Google Scholar
Zinck, SE, Primack, SL: Radiographic and CT findings in blunt chest trauma. J Thorac Imaging 2000;15:8796.Google Scholar
Traub, M, Stevenson, M, McEvoy, S, et al.: The use of chest computed tomography versus chest x-ray in patients with major blunt trauma. Injury Int J Care Injured 2007;38:43–7.Google Scholar
Mirvis, SE: Diagnostic imaging of acute thoracic injury. Semin Ultrasound CT MRI 2004;25:156–79.Google Scholar
Andruszkiewicz, P, Sobczyk, D: Ultrasound in critical care. Anesthesiology Intensive Therapy 2013;45(3):177–81.Google Scholar
Blaivas, M, Lyon, M, Duggal, S: A prospective comparison of supine chest radiograph and bedside ultrasound for the diagnosis of traumatic pneumothorax. Acad Emerg Med 2005;12(9):844–9.Google Scholar
Trupka, A, Waydhas, C, Hallfeldt, KK, et al.: Value of thoracic computed tomography in the first assessment of severely injured patients with blunt chest trauma: results of a prospective study. J Trauma 1997;43:405–11.Google Scholar
Brink, M, Kool, DR, Deunk, J, et al.: Predictors of abnormal chest CT after blunt trauma: a critical appraisal of the literature. Clin Radiol 2009;64:272–83.Google Scholar
Scaglione, M, Pinto, A, Pedrosa, I, et al.: Multidetector row computed tomography and blunt chest trauma. Eur J Radiol 2008;65:377–88.Google Scholar
Exadaktylos, AK, Sclabas, G, Schmid, SW, et al.: Do we really need routine computed tomographic scanning in the primary evaluation of blunt chest trauma in patients with “normal” chest radiograph? J Trauma 2001;51:1173–6.Google Scholar
Washington, L, Palacio, D: Imaging of bacterial pulmonary infection in the immunocompetent patient. Semin Roentgenol 2007;42:122–45.Google Scholar
Reittner, P, Ward, S, Heyneman, L, et al.: Pneumonia: high-resolution CT findings in 114 patients. Eur Radiol 2003;13:515–21.Google Scholar
Richman, PB, Courtney, DM, Friese, J, et al.: Prevalence and significance of nonthromboembolic findings on chest computed tomography angiography performed to rule out pulmonary embolism: a multicenter study of 1,025 emergency department patients. Acad Emerg Med 2004;11:642–7.Google Scholar
Abbuhl, SB: Principles of emergency department use of computed tomography. In: Tintanelli, JE, Kelen, GD, Stapczynski, JS (eds), Emergency medicine: a comprehensive study guide. New York: McGraw-Hill, 2004:1878–83.Google Scholar
Holscher, CM, Faulk, LW, Moore, EE, et al.: Chest computed tomography imaging for blunt pediatric trauma: not worth the radiation risk. J Surg Res 2013;184:352–7.Google Scholar
Kea, B, Gamarallage, R, Vairamuthu, H, et al.: What is the clinical significance of chest CT when the chest x-ray result is normal in patients with blunt trauma? Am J Emerg Med 2013;31:1268–73.Google Scholar
Omert, L, Yeaney, WW, Protetch, J: Efficacy of thoracic computerized tomography in blunt chest trauma. Am Surg 2001;67:660–4.Google Scholar
Shanmuganathan, K, Matsumoto, J: Imaging of penetrating chest trauma. Radiol Clin North Am 2006;44:225–38.Google Scholar
Winer-Muram, HT, Steiner, RM, Gurney, JW, et al.: Ventilator-associated pneumonia in patients with adult respiratory distress syndrome: CT evaluation. Radiology 1998;208:193–9.Google Scholar
Lahde, S, Jartti, A, Broas, M, et al.: HRCT findings in the lungs of primary care patients with lower respiratory tract infection. Acta Radiol 2002;43:159–63.Google Scholar
Smith-Bindman, R, Lipson, J, Marcus, R, et al.: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 2009;269:2078–86.Google Scholar
Sarma, A, Heilbrun, ME, Conner, KE, et al.: Radiation and chest CT scan examinations. Chest 2012;142(3):750–60.Google Scholar
Mulkens, TH, Marchal, P, Daineffe, S, et al.: Comparison of low-dose with standard-dose multidetector CT in cervical spine trauma. AJNR 2007;28:1444–50.Google Scholar
Miller, LA: Chest wall, lung, and pleural space trauma. Radiol Clin North Am 2006;44:213–24.Google Scholar
Shanmuganathan, K, Mirvis, SE: Imaging diagnosis of nonaortic thoracic injury. Radiol Clin North Am 1999;37:533–51.Google Scholar
Kang, E-Y, Muller, NL: CT in blunt chest trauma: pulmonary, tracheobronchial and diaphragmatic injuries. Semin Ultrasound CT MRI 1996;17:114–18.Google Scholar
Donnelly, LF, Klosterman, LA: Subpleural sparing: a CT finding of lung contusion in children. Radiology 1997;204:385–7.Google Scholar
Tocino, IM, Miller, MH: Computed tomography in blunt chest trauma. J Thorac Imaging 1987;2:4559.Google Scholar
Schild, HH, Strunk, H, Weber, W, et al.: Pulmonary contusion: CT vs. plain radiographs. J Comput Assist Tomogr 1989;13:417–20.Google Scholar
Syrjala, J, Braos, M, Suramo, I, et al.: High-resolution computed tomography for the diagnosis of community-acquired pneumonia. Clin Infect Dis 1998;27:358–63.Google Scholar
Tanaka, N, Matsumoto, T, Kuramitsu, T, et al.: High-resolution CT findings in community-acquired pneumonia. J Comput Assist Tomogr 1996;20:600–8.Google Scholar
Chan, O, Hiorns, M: Chest trauma. Eur Radiol 1996;23:2334.Google Scholar
Arenas-Jimenez, J, Alonso-Charterina, S, Sanchez-Paya, J, et al.: Evaluation of CT findings for diagnosis of pleural effusions. Eur Radiol 2000;10:681–90.Google Scholar
Aquino, SL, Web, WR, Gushiken, BJ: Pleural exudates and transudates: diagnosis with contrast-enhanced CT. Radiology 1994;192:803–8.Google Scholar
Waite, RJ, Carbonneau, RJ, Balikian, JP, et al.: Parietal pleural changes in empyema: appearances at CT. Radiology 1990;175:145–50.Google Scholar
Baber, CE, Hedlund, LW, Oddson, TA, Putnam, CE: Differentiating empyemas and peripheral pulmonary abscesses. Radiology 1980;125:755–8.Google Scholar
Tocino, IM, Miller, MH: Mediastinal trauma and other acute mediastinal conditions. J Thorac Imaging 1987;2:79100.Google Scholar
Wang, ZJ, Reddy, GP, Gotway, MB, et al.: CT and MR imaging of pericardial disease. Radiographics 2003;23:S167–80.Google Scholar
Stark, P: Imaging of tracheobronchial injuries. J Thorac Imaging 1995;10:206–19.Google Scholar
Scaglione, M, Romano, S, Pinto, A, et al.: Acute tracheobronchial injuries: impact of imaging on diagnosis and management implications. Eur J Radiol 2006;59:336–43.Google Scholar
Ketai, L, Brandt, M-M, Schermer, C: Nonaortic mediastinal injuries from blunt chest trauma. J Thorac Imaging 2000;15:120–7.Google Scholar
Euthrongchit, J, Thoongsuwan, N, Stern, E: Nonvascular mediastinal trauma. Radiol Clin North Am 2006;44:251–8.Google Scholar
Gelman, R, Mirvis, SE, Gens, D: Diaphragmatic rupture due to blunt trauma: sensitivity of plain chest radiographs. AJR Am J Roentgenol 1991;156:51–7.Google Scholar
Sliker, CW: Imaging of diaphragm injuries. Radiol Clin North Am 2006;44:199211.CrossRefGoogle ScholarPubMed
Worthy, SA, Jang, EY, Hartman, TE, et al.: Diaphragmatic rupture: CT findings in 11 patients. Radiology 1995;194:885–8.Google Scholar
Nchimi, A: Helical CT of blunt diaphragmatic rupture. AJR Am J Roentgenol 2005;184:2430.Google Scholar
Fermanis, GG, Deane, SA, Fitgerald, PM: The significance of first and second rib fractures. Aust N Z J Surg 1985;55:383–6.Google Scholar
Collins, J: Chest wall trauma. J Thorac Imaging 2000;15:112–9.CrossRefGoogle ScholarPubMed
Huggett, JM, Roszler, MH: CT findings of sternal fracture. Injury 1998;29:623–6.Google Scholar
Berry, GE, Adams, S, Harris, MB, et al.: Are plain radiographs of the spine necessary during evaluation after blunt trauma? Accuracy of screening torso computed tomography in thoracic/lumbar spine fracture diagnosis. J Trauma 2005;59:1410–13.Google Scholar
Ball, C, Lord, J, Laupland, KB, et al.: Chest tube placement: How well trained are our residents? Can J Surg 2007;50(6):450–8.Google Scholar

References

Brofman, N, Atri, M, Hanson, JM, et al.: Evaluation of mesenteric and bowel blunt trauma with multi-detector CT. Radiographics 2006;26:1119–31.Google Scholar
Gore, RM: Textbook of gastrointestinal radiology. Philadelphia: Saunders Elsevier, 2008.Google Scholar
Leschka, S, Alkhadi, A, Wildermuth, S, Marincek, B: Multidetector computed tomography of acute abdomen. Eur Radiol 2005;15:2435–47.Google Scholar
Kim, K, Kim, Y, Kim, S: Low-dose abdominal CT for evaluating suspected appendicitis. New Engl J Med 2012;366(17):1596–605.Google Scholar
Burkhardt, JH, Arshanskiy, Y, Munson, JL, Scholz, FJ: Diagnosis of inguinal hernias with axial CT: the lateral crescent sign and other key findings. Radiographics 2011;31(2):E1E12.Google Scholar
Brenner, D, Elliston, C, Hall, E, Berdon, W: Estimated risks of radiation-induced fatal cancer from pediatric CT. AJR Am J Roentgenol 2001;178(2):289–96.Google Scholar
U.S. Food and Drug Administration: Radiation-Emitting Products: What are the radiation risks from CT? 2009. Available at: www.fda.gov/radiation-emittingproducts/radiationemittingproductsandprocedures/medicalimaging/medicalx-rays/ucm115329.htmGoogle Scholar

References

Rosamond, W, Flegal, K, Friday, G, et al.: Heart disease and stroke statistics – 2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation 2007;115:e69171.Google Scholar
Achenbach, S: Computed tomography coronary angiography. J Am Coll Cardiol 2006;48:1919–28.Google Scholar
Johnson, TR, Nikolaou, K, Wintersperger, BJ, et al.: ECG-gated 64-MDCT angiography in the differential diagnosis of acute chest pain. AJR Am J Roentgenol 2007;188:7682.Google Scholar
Raff, GL, Gallagher, MJ, O’Neill, WW, Goldstein, JA: Diagnostic accuracy of noninvasive coronary angiography using 64-slice spiral computed tomography. J Am Coll Cardiol 2005;46:552–7.Google Scholar
Schaefer-Prokop, C, Prokop, M: MDCT for the diagnosis of acute pulmonary embolism. Eur Radiol 2005;15(Suppl 4):D3741.Google Scholar
Schoepf, UJ: Diagnosing pulmonary embolism: time to rewrite the textbooks. Int J Cardiovasc Imaging 2005;21:155–63.Google Scholar
Schoepf, UJ, Goldhaber, SZ, Costello, P: Spiral computed tomography for acute pulmonary embolism. Circulation 2004;109:2160–7.Google Scholar
Quiroz, R, Kucher, N, Zou, KH, et al.: Clinical validity of a negative computed tomography scan in patients with suspected pulmonary embolism: a systematic review. JAMA 2005;293:2012–7.Google Scholar
Nienaber, CA, Eagle, KA: Aortic dissection: new frontiers in diagnosis and management. Part I: from etiology to diagnostic strategies. Circulation 2003;108:628–35.Google Scholar
Hagan, PG, Nienaber, CA, Isselbacher, EM, et al.: The International Registry of Acute Aortic Dissection (IRAD): new insights into an old disease. JAMA 2000;283:897903.Google Scholar
Hirst, AE Jr, Johns, VJ Jr, Kime, SW Jr: Dissecting aneurysm of the aorta: a review of 505 cases. Medicine (Baltimore) 1958;37:217–79.Google Scholar
Hayter, RG, Rhea, JT, Small, A, et al.: Suspected aortic dissection and other aortic disorders: multi-detector row CT in 373 cases in the emergency setting. Radiology 2006;238:841–52.Google Scholar

Works Cited

Regine, G, Stasolla, A, Miele, V: Multidetector computed tomography of the renal arteries in vascular emergencies. Eur J Radiol 2007;64(1):8391.Google Scholar
Ptak, T, Rhea, JT, Novelline, RA: Experience with a continuous, single-pass whole-body multidetector CT protocol for trauma: the three-minute multiple trauma CT scan. Emergen Radiol 2001;8(5):250–6.Google Scholar
Güven, K, Acunaş, B: Multidetector computed tomography angiography of the abdomen. Eur J Radiol 2004;52(1):4455.Google Scholar
Feller, I, Woodburne, RT: Surgical anatomy of the abdominal aorta. Ann Surg 1961;154(6):239–52.Google Scholar
Lin, PH, Chaikof, EL: Embryology, anatomy, and surgical exposure of the great abdominal vessels. Surg Clin N Am 2000;80(1):417–33.Google Scholar
Moore, KL: Essential clinical anatomy, 4th ed. Philadelphia: Lippincott Williams and Wilkins, 2010.Google Scholar
Ozkan, U, Oğuzkurt, L, Tercan, F, et al.: Renal artery origins and variations: angiographic evaluation of 855 consecutive patients. Diagn Interv Radiol 2006;12(4):183–6.Google Scholar
Thomsen, HS: Guidelines for contrast media from the European Society of Urogenital Radiology. Am J Roen 2003;181(6):1462–71.Google Scholar
Parfrey, PS, Griffiths, SM, Barrett, BJ, et al.: Contrast material-induced renal failure in patients with diabetes mellitus, renal insufficiency, or both. N Engl J Med 1989;320:143–9.Google Scholar
Brockow, K, Romano, A, Aberer, W, et al.: Skin testing in patients with hypersensitivity reactions to iodinated contrast media – a European multicenter study. Allergy 2009;64(2):234–41.Google Scholar
Brockow, K, Christiansen, C, Kanny, G, et al. Management of hypersensitivity reactions to iodinated contrast media. Allergy 2005;60(2):150–8.Google Scholar
Budovec, JJ, Pollema, M, Grogan, M: Update on multidetector computed tomography angiography of the abdominal aorta. Radiol Clin N Am 2010;48(2):283309.Google Scholar
Maruyama, T, Yoshizumi, T, Tamura, R, et al.: Comparison of eight- versus 16-slice multidetector-row computed tomography for visibility and image quality of coronary segments. Am J Cardiol 2004;94(12):1539–43.Google Scholar
Uyeda, JW, Anderson, SW, Sakai, O, Soto, JA: CT angiography in trauma. Radiol Clin N Am 2010;48(2):423–38.Google Scholar
Coll, AR: Ultrasound surveillance of ectatic abdominal aortas. Surg Engl 2008;90(6):477–82.Google Scholar
Erbel, R, Eggebrecht, H: Aortic dimensions and the risk of dissection. Heart 2006;92(1):137–42.Google Scholar
Jeffrey, RB Jr.: CT angiography of the abdominal and thoracic aorta. Semin Ultrasound CT 1998;19(5):405–12.Google Scholar
Borioni, R, Garofalo, M, De Paulis, R, et al.: Abdominal aortic dissections: anatomic and clinical features and therapeutic options. Tex Heart Inst J 2005;32:70–3.Google Scholar
Nienaber, CA, Eagle, KA: Aortic dissection: new frontiers in diagnosis and management: part I: from etiology to diagnostic strategies. Circulation 2003;108:628–35.Google Scholar
Jonker, FHW, Schlösser, FJ, Moll, FL, Muhs, BE: Dissection of the abdominal aorta: current evidence and implications for treatment strategies: a review and meta-analysis of 92 patients. J Endovasc Ther 2009;16:7180.Google Scholar
Horton, KM, Fishman, EK: CT angiography of the mesenteric circulation. Radiol Clin N Am 2012;48(2)331–45.Google Scholar
Lee, EW, Laberge, JM: Differential diagnosis of gastrointestinal bleeding. Tech Vasc Interv Radiol 2005;7(3):112–22.Google Scholar
McKinsey, JF, Gewertz, BL: Acute mesenteric ischemia. Surg Clin North Am 1997;77(2):307.Google Scholar
Wyers, MC: Acute mesenteric ischemia: diagnostic approach and surgical treatment. Semin Vasc Surg 2010;23(1):920.Google Scholar
Fleischmann, D: Multiple detector-row CT angiography of the renal and mesenteric vessels. Eur J Radiol 2003;45(1):S79S87.Google Scholar
Scovell, S, Hamdan, A: Celiac artery compression syndrome. Waltham, MA: UpToDate, 2014.Google Scholar
Baldassarre, E, Torino, G, Siani, A, et al.: The laparoscopic approach in the median arcuate ligament syndrome: a case report. Swiss Med Wkly 2007;137(23–24):353–4.Google Scholar
Gümüş, H, Gümüş, M, Tekbaş, G, et al.: Clinical and multidetector computed tomography findings of patients with median arcuate ligament syndrome. Clin Imag 2012;36(5):522–5.Google Scholar
Pellerin, O, Sapoval, M, Trinquart, L, et al.: Accuracy of multi-detector computed tomographic angiography assisted by post-processing software for diagnosis atheromatous renal artery stenosis. Diagn Interv Imag 2013;94(11):1123–31.Google Scholar
Sabharwal, R, Vladica, P, Coleman, P: Multidetector spiral CT renal angiography in the diagnosis of renal artery fibromuscular dysplasia. Eur J Radiol 2007;61(3):520–7.Google Scholar
Litmanovich, DE, Yildirim, A, Bankier, AA: Insights into imaging of aortitis. Insights Imaging 2012;3(6):545–60.Google Scholar
Cura, M: Vascular malformations and arteriovenous fistulas of the kidney. Acta Radiologica 2009;51(2):144–9.Google Scholar
Wajid, H, Herts, BR: Renal arteriovenous malformation. J Urol 2014;191(4):1128–9.Google Scholar
Lemos, AA, Sternberg, JM, Tognini, L, et al.: Nontraumatic abdominal hemorrhage: MDCTA. Abdom Imaging 2006;31(1):1724.Google Scholar
Shetty, MK: Abdominal computed tomography during pregnancy: a review of indications and fetal radiation exposure issues. Semin Ultrasound CT 2010;31(1):37.Google Scholar
Katz, DS, Klein, MA, Ganson, G, Hines, JJ: Imaging of abdominal pain in pregnancy. Radiol Clin N Am 2012;50(1):149–71.Google Scholar
Mettler, FA, Bhargavan, M, Faulkner, K, et al.: Radiologic and nuclear medicine studies in the United States and worldwide: frequency, radiation dose, and comparison with other radiation sources – 1950–2007. Radiology 2009;253(2):520–31.Google Scholar
Sodickson, A: Strategies for reducing radiation exposure in multi-detector row CT. Radiol Clin N Am 2012;50(1):114.CrossRefGoogle ScholarPubMed
Naumann, DN, Raven, D, Pallan, A, Bowley, DM: Radiation exposure during paediatric emergency CT: time we took notice? J Pediatr Surg 2014;49(2):305–7.Google Scholar

References

Parsons, MW, Pepper, EM, Chan, V, et al.: Perfusion computed tomography: prediction of final infarct extent and stroke outcome. Ann Neurol 2005;58(5):672–9.Google Scholar
Bhatia, R, Bal, S, Shobha, N, et al.: CT angiographic source images predict outcome and final infarct volume better than noncontrast CT in proximal vascular occlusions. Stroke 2011;42(6):1575–80.Google Scholar
Yoo, A, Hu, R, Hakimelahi, R, et al.: CT Angiography source images acquired with a fast-acquisition protocol overestimate infarct core on diffusion weighted images in acute ischemic stroke. J Neuroimaging 2012;22(4):329–35.Google Scholar
Buerke, B, Wittkamp, G, Dziewas, R, et al.: Perfusion-weighted map and perfused blood volume in comparison with CT angiography source imaging in acute ischemic stroke: different sides of the same coin? Acad Radiol 2011;18(3):347–52.Google Scholar
Jauch, E, Saver, J, Adams, H, et al.: Guidelines for the early management of patients with acute ischemic stroke: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2013;44(3):870947.Google Scholar
Albers, GW, Amarenco, P, Easton, JD, et al.: Antithrombotic and thrombolytic therapy for ischemic stroke. Chest 2004;126(3):483S512S.Google Scholar
Vo, KD, Lin, WL, Lee, JM: Evidence-based neuroimaging in acute ischemic stroke. Neuroimaging Clin N Am 2003;13(2):167.Google Scholar
Grunwald, I, Reith, W: Non-traumatic neurological emergencies: imaging of cerebral ischemia. Eur Radiol 2002;12(7):1632–47.Google Scholar
Rother, J: CT and MRI in the diagnosis of acute stroke and their role in thrombolysis. Thromb Res 2001;103:S125–33.Google Scholar
Lev, MH, Segal, AZ, Farkas, J, et al.: Utility of perfusion-weighted CT imaging in acute middle cerebral artery stroke treated with intra-arterial thrombolysis – prediction of final infarct volume and clinical outcome. Stroke 2001;32(9):2021–7.Google Scholar
Lev, MH, Farkas, J, Rodriguez, VR, et al.: CT angiography in the rapid triage of patients with hyperacute stroke to intraarterial thrombolysis: accuracy in the detection of large vessel thrombus. J Comput Assist Tomogr 2001;25(4):520–8.Google Scholar
Adams, HP, del Zoppo, G, Alberts, MJ, et al.: Guidelines for the early management of adults with ischemic stroke – a guideline from the American Heart Association/American Stroke Association Stroke Council, Clinical Cardiology Council, Cardiovascular Radiology and Intervention Council, and the Atherosclerotic Peripheral Vascular Disease and Quality of Care Outcomes in Research Interdisciplinary Working Groups. Circulation 2007;115(20):E478534. (Reprinted from Stroke 2007;38:1655–711.)Google Scholar
Laloux, P: Intravenous rtPA thrombolysis in acute ischemic stroke. Acta Neurol Belg 2001;101(2):8895.Google Scholar
Warach, S: New imaging strategies for patient selection for thrombolytic and neuroprotective therapies. Neurology 2001;57(5):S4852.Google Scholar
Wildermuth, S, Knauth, M, Brandt, T, et al.: Role of CT angiography in patient selection for thrombolytic therapy in acute hemispheric stroke. Stroke 1998;29(5):935–8.Google Scholar
Suwanwela, N, Koroshetz, WJ: Acute ischemic stroke: overview of recent therapeutic developments. Ann Rev Med 2007;58:89106.Google Scholar
Mittal, VK, Paulson, TJ, Colaiuta, E, et al.: Carotid artery injuries and their management. J Cardiovasc Surg 2000;41(3):423–31.Google Scholar
Azuaje, RE, Jacobson, LE, Glover, J, et al.: Reliability of physical examination as a predictor of vascular injury after penetrating neck trauma. Am Surg 2003;69(9):804–7.Google Scholar
Asensio, JA, Valenziano, CP, Falcone, RE, Grosh, JD: Management of penetrating neck injuries – the controversy surrounding zone-injuries. Surg Clin North Am 1991;71(2):267–96.Google Scholar
Willinsky, RA, Taylor, SM, TerBrugge, K, et al.: Neurologic complications of cerebral angiography: prospective analysis of 2,899 procedures and review of the literature. Radiology 2003;227(2):522–8.Google Scholar
Stringaris, K: Three-dimensional time-of-flight MR angiography and MR imaging versus conventional angiography in carotid artery dissections. Int Angiol 1996;15(1):20–5.Google Scholar
Spokoyny, I, Raman, R, Ernstrom, K, et al.: Imaging negative stroke: diagnoses and outcomes in IV t-PA treated patients. J Stroke Cerebrovasc Dis 2014;23(5):1046–50.Google Scholar
Chalela, J, Kidwell, C, Nentwich, L, et al.: Magnetic resonance imaging and computed tomography in emergency assessment of patients with suspected acute stroke: a prospective comparison. Lancet 2007;369(9558):293–8.Google Scholar
Latchaw, R, Alberts, M, Lev, M, et al. Recommendations for imaging of acute ischemic stroke a scientific statement from the American Heart Association. Stroke 2009;40(11):3646–78.Google Scholar
Wardlaw, JM, Chappell, FM, Best, JJ, et al.: Noninvasive imaging compared with intra-arterial angiography in the diagnosis of symptomatic carotid stenosis: a meta-analysis. Lancet 2006;367(9521):1503–12.Google Scholar
Koelemay, MJW, Nederkoorn, PJ, Reitsma, JB, Majoie, CB: Systematic review of computed tomographic angiography for assessment of carotid artery disease. Stroke 2004;35(10):2306–12.Google Scholar
Anzidei, M, Napoli, A, Zaccagna, F, et al.: Diagnostic accuracy of colour Doppler ultrasonography, CT angiography and blood-pool-enhanced MR angiography in assessing carotid stenosis: a comparative study with DSA in 170 patients. La Radiologia Medica 2012;117(1):5471.Google Scholar
Katz, DA, Marks, MP, Napel, SA, et al.: Circle of Willis – evaluation with spiral CT angiography, MR-angiography, and conventional angiography. Radiology 1995;195(2):445–9.Google Scholar
Gottesman, R, Sharma, P, Robinson, K, et al.: Imaging characteristics of symptomatic vertebral artery dissection: a systematic review. Neurologist 2012;18(5):255–60.Google Scholar
Kloska, SP, Nabavi, DG, Gaus, C, et al.: Acute stroke assessment with CT: do we need multimodal evaluation? Radiology 2004;233(1):7986.Google Scholar
Schramm, P, Schellinger, PD, Klotz, E, et al.: Comparison of perfusion computed tomography and computed tomography angiography source images with perfusion-weighted imaging and diffusion-weighted imaging in patients with acute stroke of less than 6 hours’ duration. Stroke 2004;35(7):1652–7.Google Scholar
Wintermark, M, Fischbein, NJ, Smith, WS, et al.: Accuracy of dynamic perfusion CT with deconvolution in detecting acute hemispheric stroke. Am J Neuroradiol 2005;26(1):104–12.Google Scholar
Schramm, P, Schellinger, PD, Fiebach, JB, et al.: Comparison of CT and CT angiography source images with diffusion-weighted imaging in patients with acute stroke within 6 hours after onset. Stroke 2002;33(10):2426–32.Google Scholar
Wintermark, M, Reichhart, M, Cuisenaire, O, et al.: Comparison of admission perfusion computed tomography and qualitative diffusion- and perfusion-weighted magnetic resonance imaging in acute stroke patients. Stroke 2002;33(8):2025–31.Google Scholar
Nieuwkamp, D, Setz, L, Algra, A, et al.: Changes in case fatality of aneurysmal subarachnoid haemorrhage over time, according to age, sex, and region: a meta-analysis. Lancet Neurol 2009;8(7):635–42.Google Scholar
White, PM, Wardlaw, JM, Easton, V: Can noninvasive imaging accurately depict intracranial aneurysms? A systematic review. Radiology 2000;217(2):361–70.Google Scholar
Kangasniemi, M, Mäkelä, T, Koskinen, S, et al.: Detection of intracranial aneurysms with two-dimensional and three-dimensional multislice helical computed tomographic angiography. Neurosurgery 2004;54(2):336–40.Google Scholar
Chappell, ET, Moure, FC, Good, MC: Comparison of computed tomographic angiography with digital subtraction angiography in the diagnosis of cerebral aneurysms: a meta-analysis. Neurosurgery 2003;52(3):624–30.Google Scholar
Wintermark, M, Uske, A, Chalaron, M, et al.: Multislice computerized tomography angiography in the evaluation of intracranial aneurysms: a comparison with intraarterial digital subtraction angiography. J Neurosurg 2003;98(4):828–36.Google Scholar
Westerlaan, H, Van Dijk, J, Jansen-Van Der Weide, M, et al.: Intracranial aneurysms in patients with subarachnoid hemorrhage: CT angiography as a primary examination tool for diagnosis – systematic review and meta-analysis. Radiology 2011;258(1):134–45.Google Scholar
Munera, F, Soto, JA, Palacio, DM, et al.: Penetrating neck injuries: helical CT angiography for initial evaluation. Radiology 2002;224(2):366–72.Google Scholar
Soto, JA, Soto, JA, Palacio, DM, et al.: Focal arterial injuries of the proximal extremities: helical CT arteriography as the initial method of diagnosis. Radiology 2001;218(1):188–94.Google Scholar
Inaba, K, Munera, F, McKenney, M, et al.: Prospective evaluation of screening multislice helical computed tomographic angiography in the initial evaluation of penetrating neck injuries. J Trauma-Injury Infect Crit Care 2006;61(1):144–9.Google Scholar
Paulus, E, Fabian, T, Savage, S, et al.: Blunt cerebrovascular injury screening with 64-channel multidetector computed tomography: more slices finally cut it. J Trauma Acute Care Surg 2014;76(2):279–85.Google Scholar
Etzel, RA: Risk of ionizing radiation exposure to children: a subject review. Pediatrics 1998;101(4):717–19.Google Scholar

References

Norgren, L, Hiatt, WR, Dormandy, JA, et al.: Inter-society consensus for the management of peripheral arterial disease (TASC II). J Vasc Surg 2007;45(1, Suppl):S5S67.Google Scholar
Chan, D, Anderson, ME, Domatch, BL: Imaging evaluation of lower extremity infrainguinal disease: role of the noninvasive vascular laboratory, computed tomography angiography, and magnetic resonance angiography. Tech Vasc Interv Radiol 2010;13(1):1122.Google Scholar
Schernthaner, R, Stadler, A, Lomoschitz, F, et al.: Multidetector CT angiography in the assessment of peripheral arterial occlusive disease: accuracy in detecting the severity, number, and length of stenoses. Eur Radiol 2008;18(4):665–71.Google Scholar
Lee, GK, Fox, PM, Riboh, J, et al.: Computed tomography angiography in microsurgery: indications, clinical utility, and pitfalls. Eplasty 2013;13:e42.Google Scholar
McCorkell, SJ, Harley, JD, Morishima, MS, Cummings, DK: Indications for angiography in extremity trauma. AJR Am J Roentgenol 1985;145(6):1245–7.Google Scholar
Wallin, D, Yaghoubian, A, Rosing, D, et al.: Computed tomographic angiography as the primary diagnostic modality in penetrating lower extremity vascular injuries: a level I trauma experience. Ann Vasc Surg 2011;25(5):620–3.Google Scholar
Bell, KW, Heng, RC, Atallah, J, Chaitowitz, I: Use of intra-arterial multi-detector row CT angiography for the evaluation of an ischaemic limb in a patient with renal impairment. Australas Radiol 2006;50(4):377–80.Google Scholar
Willmann, JK, Wildermuth, S: Multidetector-row CT angiography of upper- and lower-extremity peripheral arteries. Eur Radiol 2005;15(Suppl 4):D39.Google Scholar
Fleischmann, D: Lower-extremity CTA. In Reiser, MF, Becker, CR, Nikolaou, K, Glazer, G (eds), Multislice CT. Springer, 2009:321–30.Google Scholar
Soto, JA, Múnera, F, Morales, C, et al.: Focal arterial injuries of the proximal extremities: helical CT arteriography as the initial method of diagnosis. Radiology 2001;218(1):188–94.Google Scholar
Rieger, M, Mallouhi, A, Tauscher, T, et al.: Traumatic arterial injuries of the extremities: initial evaluation with MDCT angiography. AJR Am J Roentgenol 2006;186(3):656–64.Google Scholar
Jens, S, Kerstens, MK, Legemate, DA, et al. Diagnostic performance of computed tomography angiography in peripheral arterial injury due to trauma: a systematic review and meta-analysis. Eur J Vasc Endovasc Surg 2013;46(3):329–37.Google Scholar
Jakobs, T, Wintersperger, B, Becker, C: MDCT-imaging of peripheral arterial disease. Semin Ultrasound CT MR 2004;25(2):145–55.Google Scholar
Met, R, Bipat, S, Legemate, DA, et al.: Diagnostic performance of computed tomography angiography in peripheral arterial disease. JAMA 2009;301(4):415–24.Google Scholar
Anderson, SW, Lucey, BC, Varghese, JC, Soto, JA: Sixty-four multi-detector row computed tomography in multitrauma patient imaging: early experience. Curr Probl Diagn Radiol 2006;35(5):188–98.Google Scholar
Miller-Thomas, MM, West, OC, Cohen, AM: Diagnosing traumatic arterial injury in the extremities with CT angiography: pearls and pitfalls. Radiographics 2005;25(Suppl 1):S133–42.Google Scholar
Anil, G, Tay, K-H, Howe, TC, Tan, BS: Dynamic computed tomography angiography: role in the evaluation of popliteal artery entrapment syndrome. Cardiovasc Intervent Radiol 2011;34(2):259–70.Google Scholar
Brenner, DJ, Hall, EJ: Computed tomography: an increasing source of radiation exposure. N Engl J Med 2007;357(22):2277–84.Google Scholar
European Stroke Organisation, Tendera, M, Aboyans, V, et al.: ESC guidelines on the diagnosis and treatment of peripheral artery diseases: document covering atherosclerotic disease of extracranial carotid and vertebral, mesenteric, renal, upper and lower extremity arteries: the Task Force on the Diagnosis and Treatment of Peripheral Artery Diseases of the European Society of Cardiology (ESC). Eur Heart J 2011;32(22):2851–906.Google Scholar
Kelly, AM, Dwamena, B, Cronin, P, et al.: Meta-analysis: effectiveness of drugs for preventing contrast-induced nephropathy. Ann Intern Med 2008;148(4):284–94.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×