Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-24T22:31:50.659Z Has data issue: false hasContentIssue false

2 - Fundamentals of Clays Surface and Colloid Science, and Rheology

Published online by Cambridge University Press:  30 August 2017

Markus Gräfe
Affiliation:
Emirates Global Aluminium (EGA)
Craig Klauber
Affiliation:
Curtin University of Technology, Perth
Angus J. McFarlane
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
David J. Robinson
Affiliation:
Commonwealth Scientific and Industrial Research Organisation, Canberra
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2017

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abend, S. & Lagaly, G. 2000. Sol–gel transitions of sodium montmorillonite dispersions. Applied Clay Science, 16 (3–4), 201227.Google Scholar
Adamson, A. W. 1985. Physical Chemistry of Surfaces. New York: Wiley & Sons.Google Scholar
Alther, G. R. 1986. The effect of the exchangeable cations on the physico-chemical properties of Wyoming bentonites. Applied Clay Science, 1 (3), 273284.Google Scholar
Arnold, B. J. & Aplan, F. F. 1986. The effect of clay slimes on coal flotation, part I: The nature of the clay. International Journal of Mineral Processing, 17 (3–4), 225242.Google Scholar
Attia, Y. A. & Deason, D. M. 1989. Control of slimes coating in mineral suspensions. Colloids and Surfaces, 39 (1), 227238.Google Scholar
Barnes, H. A., Hutton, J. F. & Walters, K. 1993. An Introduction to Rheology. Amsterdam: Elsevier.Google Scholar
Batchelor, G. K. 1977. The effect of Brownian motion on the bulk stress in a suspension of spherical particles. Journal of Fluid Mechanics, 83 (1), 97117.CrossRefGoogle Scholar
Benna, M., Kbir-Ariguib, N., Magnin, A. & Bergaya, F. 1999. Effect of pH on rheological properties of purified sodium bentonite suspensions. Journal of Colloid and Interface Science, 218 (2), 442455.Google Scholar
Bhattacharya, S. N., Kamal, M. R. & Gupta, R. K. 2008. Polymeric Nanocomposites: Theory and Practice. Berlin: Hanser Publishers.Google Scholar
Bracke, G., Satir, M. & Krauss, P. 1995. The cryptand [222] for exchanging cations of micas. Clays and Clay Minerals, 43 (6), 732737.Google Scholar
Brandenburg, U. & Lagaly, G. 1988. Rheological properties of sodium montmorillonite dispersions. Applied Clay Science, 3 (3), 263279.Google Scholar
Bremmell, K. E. & Addai-Mensah, J. 2005. Interfacial chemistry mediated behaviour of colloidal talc dispersions. Journal of Colloid and Interface Science, 283, 385391.CrossRefGoogle ScholarPubMed
Burdukova, E., Bradshaw, D. J. & Laskowski, J. S. 2007. Effect of CMC and pH on the rheology of suspensions of isotropic and anisotropic minerals. Canadian Metallurgical Quarterly, 46, 273278.Google Scholar
Burdukova, E., Becker, M., Ndlovu, B., Mokgethi, B. & Deglon, D. A. 2008. Relationship between slurry rheology and its mineralogical content. In: Wang, D. D., Xao, S. C., Wang, F. L., Cheng, Z. U. & Long, H., (eds) 24th Int. Minerals Processing Congress. Beijing: China Scientific Book Service Co. Ltd, 21692178.Google Scholar
Callaghan, I. C. & Ottewill, R. H. 1974. Interparticle forces in montmorillonite gels. Faraday Discussions of the Chemical Society, 57, 110118.Google Scholar
Casson, N. 1959. A flow equation for pigment-oil suspensions of the printing ink type. In: Mill, C. C. (ed.) Rheology of Disperse Systems. London: Pergamon Press.Google Scholar
Chang, S. H., Ryan, M. H. & Gupta, R. K. 1993. The effect of pH, ionic strength, and temperature on the rheology and stability of aqueous clay suspensions. Rheologica Acta, 32 (3), 263269.CrossRefGoogle Scholar
Christidis, G. E., Blum, A. E. & Eberl, D. D. 2006. Influence of layer charge and charge distribution of smectites on the flow behaviour and swelling of bentonites. Applied Clay Science, 34 (1–4), 125138.Google Scholar
Chryss, A., Bhattacharya, S. & Pullum, L. 2005. Rheology of shear thickening suspensions and the effects of wall slip in torsional flow. Rheologica Acta, 45 (2), 124131.Google Scholar
Churchman, G. J. 1980. Clay minerals from micas and chlorites in some New Zealand soils. Clay Minerals, 15, 5976.CrossRefGoogle Scholar
Çınar, M., Can, M. F., Sabah, E., Karagüzel, C. & Çelik, M. S. 2009. Rheological properties of sepiolite ground in acid and alkaline media. Applied Clay Science, 42 (3–4), 422426.Google Scholar
Clarke, B. 1967. Rheology of coarse settling suspensions. Transactions of the Institution of Chemical Engineers, 45, 251256.Google Scholar
Coussot, P., Proust, S. & Ancey, C. 1996. Rheological interpretation of deposits of yield stress fluids. Journal of Non-Newtonian Fluid Mechanics, 66(1), 5570.Google Scholar
Craig, V. S. J., Ninham, B. W. & Pashley, R. M. 1998. Study of the long-range hydrophobic attraction in concentrated salt solutions and its implications for electrostatic models. Langmuir, 14 (12), 33263332.Google Scholar
Craig, V. S. J., Ninham, B. W. & Pashley, R. M. 1999. Direct measurement of hydrophobic forces: A study of dissolved gas, approach rate, and neutron irradiation. Langmuir, 15 (4), 15621569.Google Scholar
de Kretser, R., Scales, P. J. & Boger, D. V. 1997. Improving clay-based tailings disposal: Case study on coal tailings. American Institute of Chemical Engineers Journal, 43 (7), 18941903.CrossRefGoogle Scholar
de Kretser, R. G., Scales, P. J. & Boger, D. V. 1998. Surface chemistry–rheology inter-relationships in clay suspensions. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 137 (1), 307318.Google Scholar
Deer, W. A., Howie, R. A. & Zussman, J. 1992. Introduction to Rock-Forming Minerals. New York: Prentice Hall.Google Scholar
Derjaguin, B. V. & Landau, L. 1941. Theory of stability of strongly charged lyophobic sols and the adhesion of strongly charged particles in solution of electrolytes. Acta Physiochimica, 14, 633662.Google Scholar
Du, J., Morris, G., Pushkarova, R. A. & St. C. Smart, R. 2010. Effect of surface structure of kaolinite on aggregation, settling rate, and bed density. Langmuir, 26 (16), 1322713235.CrossRefGoogle ScholarPubMed
Duc, M., Gaboriaud, F. & Thomas, F. 2005a. Sensitivity of the acid–base properties of clays to the methods of preparation and measurement: 1. Literature review. Journal of Colloid and Interface Science, 289 (1), 139147.Google Scholar
Duc, M., Gaboriaud, F. & Thomas, F. 2005b. Sensitivity of the acid–base properties of clays to the methods of preparation and measurement: 2. Evidence from continuous potentiometric titrations. Journal of Colloid and Interface Science, 289 (1), 148156.Google Scholar
Dukhin, S. S. & Derjaguin, B. V. 1976. Electrophoresis. Moscow: Academy of Sciences of the USSR.Google Scholar
Einstein, A. 1956. Investigations on the Theory of the Brownian Movement. Mineola, NY: Dover Publications, Inc.Google Scholar
Farris, R. J. 1968. Prediction of the viscosity of multimodal suspensions from unimodal viscosity data. Transactions of the Society of Rheology, 12 (2), 281302.Google Scholar
Franks, G. V., Johnson, S. B., Scales, P. J., Boger, D. V. & Healy, T. W. 1999. Ion-specific strength of attractive particle networks. Langmuir, 15 (13), 44114420.Google Scholar
Fuerstenau, D. W. & Huang, P. 2003. Interfacial phenomena involved in talc flotation. In: Bradshaw, D. J. (ed.) 22nd Int. Minerals Processing Congress. Cape Town: Document Transformation Technologies, 10341043.Google Scholar
Fuerstenau, D. W., Gaudin, A. M. & Miaw, H. L. 1958. Iron oxide slime coatings in flotation. Transactions of the American Institute of Mining, Metallurgy, and Petroleum Engineers, 211, 792793.Google Scholar
Fuerstenau, M. C., Valdivieso, A. & Fuerstenau, D. W. 1988. Role of hydrolyzed cations in the natural hydrophobicity of talc. International Journal of Minerals Processing, 23, 161170.Google Scholar
Gay, E. C., Nelson, P. A. & Armstrong, W. P. 1969. Flow properties of suspensions with high solids concentration. AIChE Journal, 15 (6), 815822.Google Scholar
Gregory, J. 2006. Particles in Water, Properties and Processes. Boca Raton, FL: Taylor & Francis.Google Scholar
Güler, Ç. & Balci, E. 1998. Effect of some salts on the viscosity of slip casting. Applied Clay Science, 13 (3), 213218.Google Scholar
Hiemenz, P. C. & Rajagopolan, R. 1997. Principles of Colloid Chemistry. New York: Dekker.Google Scholar
Hogg, R., Healy, T. W. & Fuerstenau, D. W. 1966. Mutual coagulation of colloidal dispersions. Transactions of the Faraday Society, 62, 16381651.Google Scholar
Hou, J., Li, H., Zhu, H. & Wu, L. 2009. Determination of clay surface potential: A more reliable approach. Soil Science Society of America Journal, 73 (5), 16581663.Google Scholar
Huang, N., Ovarlez, G., Bertrand, F., et al. 2005. Flow of wet granular materials. Physical Review Letters, 94 (2), 028301.Google Scholar
Hunter, R. J. 1988. Zeta Potential in Colloid Science: Principles and Applications. San Diego, CA: Academic Press.Google Scholar
Husband, D. M., Aksel, N. & Gleissle, W. 1993. The existence of static yield stresses in suspensions containing noncolloidal particles. Journal of Rheology, 37 (2), 215235.Google Scholar
Ishida, N., Sakamoto, M., Miyahara, M. & Higashitani, K. 2000a. Attraction between hydrophobic surfaces with and without gas phase. Langmuir, 16, 56815687.CrossRefGoogle Scholar
Ishida, N., Inoue, T., Miyahara, M. & Higashitani, K. 2000b. Nano bubbles in a hydrophobic surface in water observed by tapping-mode atomic force microscopy. Langmuir, 16, 63776380.Google Scholar
Israelachvili, J. 1985. Intermolecular & Surface Forces. London: Academic Press.Google Scholar
Israelachvili, J. N. & Pashley, R. M. 1983. Measurement of the hydrophobic interaction between two hydrophobic surfaces in aqueous electrolyte solution. Journal of Colloid and Interface Science, 98 (2), 500514.Google Scholar
Iwasaki, I., Cooke, S. R. B., Haraway, D. H. & Choi, H. S. 1962. Iron wash slimes: Some mineralogical characteristics. Transactions AIME, 223, 97108.Google Scholar
Janek, M. & Lagaly, G. 2001. Proton saturation and rheological properties of smectite dispersions. Applied Clay Science, 19 (1–6), 121130.Google Scholar
Johnson, S. B., Russell, A. S. & Scales, P. J. 1998. Volume fraction effects in shear rheology and electroacoustic studies of concentrated alumina and kaolin suspensions. Colloids and Surfaces, 141, 119130.Google Scholar
Kassab, S. Z., Ismail, A. S. & Elessawi, M. M. 2011. Drilling fluid rheology and hydraulics for oil fields. European Journal of Scientific Research, 57 (1), 6886.Google Scholar
Kelessidis, V. C., Tsamantaki, C. & Dalamarinis, P. 2007. Effect of pH and electrolyte on the rheology of aqueous Wyoming bentonite dispersions. Applied Clay Science, 38 (1–2), 8696.Google Scholar
Kitchener, J. A. 1969. Colloid minerals: Chemical aspects of their dispersion, flocculation and filtration. Filtration and Separation, 6 (5), 553558.Google Scholar
Klein, C. & Hurlbut, C. S. 1993. Manual of Mineralogy. New York: Wiley & Sons.Google Scholar
Krieger, I. M. & Dougherty, T. J. 1959. A mechanism for non-Newtonian flow in suspensions of rigid spheres. Transactions of the Society of Rheology, 3 (1), 137152.Google Scholar
Kurihara, K., Kato, S. & Kunitake, T. 1990. Very strong long range attractive forces between stable hydrophobic monolayers of a polymerized ammonium surfactant. Chemistry Letters, 19 (9), 1555.Google Scholar
Lagaly, G. 1989. Principles of flow of kaolin and bentonite dispersions. Applied Clay Science, 4 (2), 105123.Google Scholar
Lagaly, G. & Ziesmer, S. 2003. Colloid chemistry of clay minerals: The coagulation of montmorillonite dispersions. Advances in Colloid and Interface Science, 100–102, 105128.Google Scholar
Laskowski, J. S. & Pugh, R. J. 1992. Dispersion stability and dispersing agents. In: Laskowski, J. S. & Ralston, J. (eds) Colloid Chemistry in Mineral Processing. New York: Elsevier.Google Scholar
Laskowski, J. S. & Sobieraj, S. 1969. Zero points of charge of spinel minerals. Transactions of the Canadian Institute of Mining and Metallurgy, 78, C161–C162.Google Scholar
Liu, J., Zhou, Z., Xu, Z. & Masliyah, J. 2002. Bitumen–clay interactions in aqueous media studied by zeta potential distribution measurement. Journal of Colloid and Interface Science, 252 (2), 409418.Google Scholar
Luckham, P. S. & Rossi, S. 1999. The colloidal and rheological properties of bentonite suspensions. Journal of Colloid and Interface Science, 82, 4392.Google Scholar
Mantel, M., Rabinovich, Y. I., Wightman, J. P. & Yoon, R. H. 1995. A study of hydrophobic interactions between stainless steel and salinated glass surfaces using atomic force microscopy. Journal of Colloid and Interface Science, 170, 203214.Google Scholar
Marra, J. & Hair, M. L. 1988. Forces between two poly(2-vinylpyridine)-covered surfaces as a function of ionic strength and polymer charge. The Journal of Physical Chemistry, 92 (21), 60446051.Google Scholar
McFarlane, A., Bremmell, K. & Addai-Mensah, J. 2005. Microstructure, rheology and dewatering behaviour of smectite dispersions during orthokinetic flocculation. Minerals Engineering, 18 (12), 11731182.Google Scholar
McFarlane, A., Bremmell, K. & Addai-Mensah, J. 2006. Improved dewatering behavior of clay minerals dispersions via interfacial chemistry and particle interactions optimization. Journal of Colloid and Interface Science, 293 (1), 116127.Google Scholar
Meagher, L. & Craig, V. S. J. 1994. Effect of dissolved gas and salt on the hydrophobic force between polypropylene surfaces. Langmuir, 10 (8), 27362742.Google Scholar
Mellini, M. & Zanazzi, P. R. 1987. Crystal structures of lizardite-IT and lizardite-2Hl from Coli, Italy. American Mineralogist, 72, 941948.Google Scholar
Meyer, E. E., Rosenberg, K. J. & Israelachvili, J. 2006. Recent progress in understanding hydrophobic interactions. Proceedings of the National Academy of Sciences of United States of America, 103 (43), 1573915746.Google Scholar
Missana, T. & Adell, A. 2000. On the applicability of DLVO theory to the prediction of clay colloids stability. Journal of Colloid and Interface Science, 230 (1), 150156.Google Scholar
Mooney, M. 1931. Explicit formulas for slip and fluidity. Journal of Rheology, 2 (2), 210222.Google Scholar
Mular, A. L. & Roberts, R. B. 1966. A simplified method to determine isoelectric points of oxides. Transactions of the Canadian Institute of Mining and Metallurgy, 69, 438439.Google Scholar
Murray, H. H. 2006. Exploration, mining, and processing. In: Haydn, H. M. (ed.) Developments in Clay Science. New York: Elsevier.Google Scholar
Nalaskowski, J., Abdul, B., Du, H. & Miller, J. D. 2007. Anisotropic character of talc surfaces as revealed by streaming potential measurements, atomic force microscopy, molecular dynamics simulations and contact angle measurements. Canadian Metallurgical Quarterly, 46 (3), 227235.CrossRefGoogle Scholar
Ndlovu, B. N., Forbes, E., Becker, M., et al. 2011. The effects of chrysotile mineralogical properties on the rheology of chrysotile suspensions. Minerals Engineering, 24 (9), 10041009.Google Scholar
Nguyen, Q. D. & Boger, D. V. 1987. The rheology of concentrated bauxite residue suspensions: a complete story. In: Wagh, A. S. & Desai, P. (eds) Bauxite Tailings ‘Red Mud’. Kingston: The Jamaica Bauxite Institute.Google Scholar
Nishimura, S., Scales, P. J., Tateyama, H., Tsunematsu, K. & Healy, T. W. 1995. Cationic modification of muscovite mica: An electrokinetic study. Langmuir, 11 (1), 291295.Google Scholar
Packter, A. 1962. Studies in the rheology of clay–water systems. Rheologica Acta, 2 (1), 4450.Google Scholar
Pashley, R. M., McGuiggan, P. M. & Ninham, B. W. 1985. Attractive forces between uncharged hydrophobic surfaces: Direct measurement in aqueous solution. Science, 229, 10881089.Google Scholar
Penner, D. & Lagaly, G. 2001. Influence of anions on the rheological properties of clay mineral dispersions. Applied Clay Science, 19 (1–6), 131142.Google Scholar
Pignon, F., Magnin, A., Piau, J.-M., et al. 1997. Yield stress thixotropic clay suspension: Investigations of structure by light, neutron, and x-ray scattering. Physical Review E, 56 (3), 32813289.Google Scholar
Power, G., Gräfe, M. & Klauber, C. 2011. Bauxite residue issues: I. Current management, disposal and storage practices. Hydrometallurgy, 108 (1–2), 3345.Google Scholar
Rabinovich, Y. I. & Derjaguin, B. V. 1988. Interaction of hydrophobized filaments in aqueous electrolyte solutions. Colloids and Surfaces, 30 (3–4), 243251.Google Scholar
Ralston, J. & Fornaserio, D. 2006. Effect of MgO minerals on pentlandite flotation. In: Onal, G., Acarkan, N., Celik, M. S., et al. (eds) 23rd International Minerals Processing Congress. Istanbul:Promed Advertising Ltd, 750755.Google Scholar
Rand, B. & Melton, I. E. 1975. Isoelectric point of edge surface of kaolinite. Nature, 257, 214216.Google Scholar
Rand, B. & Melton, I. E. 1976. Particle interactions in aqueous kaolinite suspensions. Journal of Colloid and Interface Science, 60 (2), 308320.Google Scholar
Scales, P. J., Grieser, F. & Healy, T. W. 1990. Electrokinetics of the muscovite mica–aqueous solution interface. Langmuir, 6 (3), 582589.Google Scholar
Scales, P. J., Johnson, S. B., Healy, T. W. & Kapur, P. C. 1998. Shear yield stress of partially flocculated colloidal suspensions. American Institute of Chemical Engineers Journal, 44 (3), 538544.Google Scholar
Schofield, R. K. & Samson, H. R. 1954. Flocculation of kaolinite due to the attraction of oppositely charged crystal faces. Discussions of the Faraday Society, 18, 135145.Google Scholar
Schouwstra, R. P., Kinloch, E. D. & Lee, C. A. 2000. A short geological review of the Bushvelt Complex. Platinum Metals Review, 44, 3339.Google Scholar
Schowalter, W. R. & Christensen, G. 1998. Toward a rationalization of the slump test for fresh concrete: Comparisons of calculations and experiments. Journal of Rheology, 42 (4), 865870.Google Scholar
Senior, G. D. & Thomas, S. A. 2005. Development and implementation of a new flowsheet for the flotation of a low grade nickel ore. International Journal of Mineral Processing, 78 (1), 4961.Google Scholar
Sofrá, F. & Boger, D. V. 2002. Environmental rheology for waste minimisation in the minerals industry. Chemical Engineering Journal, 86 (3), 319330.Google Scholar
Steenberg, E. & Harris, P. J. 1984. Adsorption of carboxymethyl cellulose, guar gum and starch onto talc, sulphides, oxides and salt type minerals. South African Journal of Chemistry, 37, 8590.Google Scholar
Stickel, J. J. & Powell, R. L. 2005. Fluid mechanics and rheology of dense suspensions. Annual Review of Fluid Mechanics. 37, 129149.Google Scholar
Swartzen-Allen, S. L. & Matijevic, E. 1974. Surface and colloid chemistry of clays. Chemical Reviews, 74 (3), 385400.Google Scholar
Tateyama, H., Scales, P. J., Ooi, M., et al. 1997. X-ray diffraction and rheology study of highly ordered clay platelet alignment in aqueous solutions of sodium tripolyphosphate. Langmuir, 13 (9), 24402446.Google Scholar
Thomas, D. G. 1961. Transport characteristics of suspensions: 3. Laminar-flow properties of flocculated suspensions. AIChE Journal, 7 (3), 431437.Google Scholar
Tombácz, E. & Szekeres, M. 2004. Colloidal behavior of aqueous montmorillonite suspensions: The specific role of pH in the presence of indifferent electrolytes. Applied Clay Science, 27 (1–2), 7594.Google Scholar
Tombácz, E. & Szekeres, M. 2006. Surface charge heterogeneity of kaolinite in aqueous suspension in comparison with montmorillonite. Applied Clay Science, 34, 105124.Google Scholar
van Olphen, H. 1951. Rheological phenomena of clay sols in connection with the charge distribution on the micelles. Discussions of the Faraday Society, 11, 8396.Google Scholar
Verwey, E. J. W. & Overbeek, J. T. G. 1948. Theory of Stability of Lyophobic Solids. Amsterdam: Elsevier.Google Scholar
Whorlow, R. W. 1980. Rheological Techniques. Sussex: Ellis Horwood.Google Scholar
Wildemuth, C. R. & Williams, M. C. 1984. Viscosity of suspensions modeled with a shear-dependent maximum packing fraction. Rheologica Acta, 23 (6), 627635.Google Scholar
Wildemuth, C. R. & Williams, M. C. 1985. A new interpretation of viscosity and yield stress in dense slurries: Coal and other irregular particles. Rheologica Acta, 24 (1), 7591.Google Scholar
Williams, D. J. A. & Williams, K. P. 1977. Electrophoresis and zeta potential of kaolinite. Journal of Colloid and Interface Science, 65 (1), 7987.CrossRefGoogle Scholar
Worrall, D. M. 1986. Clays and Ceramic Raw Materials. Dordrecht: Springer.Google Scholar
Xu, Z., Liu, J., Choung, J. W. & Zhou, Z. 2003. Electrokinetic study of clay interactions with coal in flotation. International Journal of Mineral Processing, 68 (1–4), 183196.Google Scholar
Yada, K. 1971. Study of microstructure of chrysotile asbestos by high resolution electron microscopy. Acta Chrystallographica A, A27 (6), 659664.Google Scholar
Yan, L., Englert, A. H., Masliyah, J. H. & Xu, Z. 2011. Determination of anisotropic surface characteristics of different phyllosilicates by direct force measurements. Langmuir, 27 (21), 1299613007.Google Scholar
Yin, X., Gupta, V., Du, H., Wang, X. & Miller, J. D. 2012. Surface charge and wetting characteristics of layered silicate minerals. Advances in Colloid and Interface Science, 179–182, 4350.Google Scholar
Yong, R. N. & Ohtsubo, M. 1987. Interparticle action and rheology of kaolinite–amorphous iron hydroxide (ferrihydrite) complexes. Applied Clay Science, 2 (1), 6381.Google Scholar
Yuan, J. & Murray, H. H. 1997. The importance of crystal morphology on the viscosity of concentrated suspensions of kaolins. Applied Clay Science, 12 (3), 209219.Google Scholar
Żbik, M. S., Smart, R. S. C. & Morris, G. E. 2008. Kaolinite flocculation structure. Journal of Colloid and Interface Science, 328 (1), 7380.Google Scholar
Żbik, M. S., Martens, W. N., Frost, R. L., et al. 2010. Smectite flocculation structure modified by Al13 macro-molecules – As revealed by the transmission X-ray microscopy (TXM). Journal of Colloid and Interface Science, 345 (1), 3440.Google Scholar
Zhang, X. H., Quinn, A. & Ducker, W. A. 2008. Nanobubbles at the interface between water and a hydrophobic solid. Langmuir, 24, 47564764.Google Scholar
Zhao, H., Bhattacharjee, S., Chow, R., et al. 2008. Probing surface charge potentials of clay basal planes and edges by direct force measurements. Langmuir, 24 (22), 1289912910.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×