Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-dnltx Total loading time: 0 Render date: 2024-04-19T22:13:14.187Z Has data issue: false hasContentIssue false

References

Published online by Cambridge University Press:  03 May 2011

Fernando de Felice
Affiliation:
Università degli Studi di Padova, Italy
Donato Bini
Affiliation:
Consiglio Nazionale delle Ricerche (CNR), Rome
Get access

Summary

Image of the first page of this content. For PDF version, please use the ‘Save PDF’ preceeding this image.'
Type
Chapter
Information
Publisher: Cambridge University Press
Print publication year: 2010

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

Abramowicz, M. A. and Calvani, M. (1979) Spinning particles orbiting the Kerr Black Hole. Monthly Notices of the Royal Astronomical Society 169, 21Google Scholar
Abramowicz, M. A. and Lasota, J. P. (1974) A note on a paradoxical property of the Schwarzschild solution. Acta Physica Polonica B5, 327Google Scholar
Audretsch, J. and Lämmerzahl, C. (1983) Local and nonlocal measurements of the Riemann tensor. General Relativity and Gravitation 15, 495CrossRefGoogle Scholar
Bardeen, J. M. (1970) Kerr metric black holes. Nature 226, 64CrossRefGoogle ScholarPubMed
Bardeen, J. M., Press, W. H., and Teukolsky, S. A. (1972) Rotating black holes: locally non rotating frames, energy extraction and scalar synchroton radiation. Astrophysical Journal 178, 347CrossRefGoogle Scholar
Begelman, M. C., Blandford, R. D., and Rees, M. J. (1984) Theory of extragalactic radio sources. Reviews of Modern Physics 56, 255CrossRefGoogle Scholar
Bel, L. (1958) Sur la radiation gravitationelle. Academie des Sciences Paris, Comptes Rendus 247, 1094Google Scholar
Bičak, J., Katz, J., and Lynden-Bell, D. (2008) Gravitational waves and dragging effects. Classical and Quantum Gravity 25, 165017CrossRefGoogle Scholar
Bini, D., Carini, P., and Jantzen, R. T. (1997a) The intrinsic derivative and centrifugal forces in general relativity: I. Theoretical foundations. International Journal of Modern Physics D 6, 1–38CrossRefGoogle Scholar
Bini, D., Carini, P., and Jantzen, R. T. (1997b) The intrinsic derivative and centrifugal forces in general relativity: II. Applications to circular orbits in some familiar stationary axisymmetric spacetimes. International Journal of Modern Physics D 6, 143CrossRefGoogle Scholar
Bini, D., Cherubini, C., Geralico, A., and Jantzen, R. T. (2006) Massless spinning test particles in vacuum algebraically special spacetimes. International Journal of Modern Physics D 15, 737CrossRefGoogle Scholar
Bini, D., Cherubini, C., Geralico, A., and Ortolan, A. (2009) Dixon's extended bodies and weak gravitational waves. General Relativity and Gravitation 41, 105CrossRefGoogle Scholar
Bini, D., Crosta, M. T., and de Felice, F. (2003) Orbiting frames and satellite attitudes in relativistic astrometry. Classical and Quantum Gravity 20, 4695CrossRefGoogle Scholar
Bini, D. and de Felice, F. (2000) Gyroscopes and gravitational waves. Classical and Quantum Gravity 17, 4627CrossRefGoogle Scholar
Bini, D. and de Felice, F. (2003) Ray tracing in relativistic astrometry: the boundary value problem. Classical and Quantum Gravity 20, 2251CrossRefGoogle Scholar
Bini, D., de Felice, F., and Geralico, A. (2006) Strains in general relativity. Classical and Quantum Gravity 23, 7603CrossRefGoogle Scholar
Bini, D., Geralico, A., and Jantzen, R. T. (2005) Kerr metric, static observers and Fermi coordinates. Classical and Quantum Gravity 22, 4729CrossRefGoogle Scholar
Bini, D., Geralico, A., Ruggiero, M. L., and Tartaglia, A. (2008) On the emission coordinate system for the Earth. Classical and Quantum Gravity 25, 205011CrossRefGoogle Scholar
Bini, D. and Jantzen, R. T. (2004) Inertial forces: the special relativistic assessment. In Relativity in Rotating Frames: Relativistic Physics in Rotating Reference Frames, ed. G., Rizzi and M. L., Ruggiero. Fundamental Theories of Physics, vol. 135. London: Kluwer Academic Press, pp. 221–239CrossRefGoogle Scholar
Bini, D., Jantzen, R. T., and Mashhoon, B. (2002) Circular holonomy and clock effects in stationary axisymmetric spacetimes. Classical and Quantum Gravity 19, 17CrossRefGoogle Scholar
Bini, D., Jantzen, R. T., and Miniutti, G. (2002) Electromagnetic-like boost transformations of Weyl and minimal super-energy observers in black hole spacetimes. International Journal of Modern Physics D 11, 1439CrossRefGoogle Scholar
Bondi, H. (1980) Relativity and Common Sense, Dover edn. New York: DoverGoogle Scholar
Bondi, H., Pirani, F. A. E., and Robinson, I. (1959) Gravitational waves in general relativity. III. Exact plane waves. Proceedings of the Royal Society A 251, 519CrossRefGoogle Scholar
Cardin, F. and Marigonda, A. (2004) Global world functions. Journal of Geometry and Symmetry in Physics 2, 1Google Scholar
Carter, B. (1968) Global structure of the Kerr family of gravitational fields. Physical Review 174, 1559CrossRefGoogle Scholar
Castagnino, M. (1965) Sulle formule di Frenet-Serret per le curve nulle di una V4 riemanniana a metrica iperbolica normale. Rendiconti di Matematica, Roma 24, 438Google Scholar
Cerdonio, M., Prodi, G. A., and Vitale, S. (1988) Dragging of inertial frames by the rotating Earth: proposal and feasibility for a ground-based detection. General Relativity and Gravitation 20, 83CrossRefGoogle Scholar
Chandrasekhar, S. (1983) The Mathematical Theory of Black Holes. Oxford: Clarendon PressGoogle Scholar
Chicone, C. and Mashhoon, B. (2002) The generalized Jacobi equation. Classical and Quantum Gravity 19, 4231CrossRefGoogle Scholar
Chicone, C. and Mashhoon, B. (2005a) A gravitational mechanism for the acceleration of ultrarelativistic particles. Annalen der Physik 14, 751CrossRefGoogle Scholar
Chicone, C. and Mashhoon, B. (2005b) Ultrarelativistic motion: inertial and tidal effects in Fermi coordinates. Classical and Quantum Gravity 22, 195CrossRefGoogle Scholar
Choquet-Bruhat, Y., Dillard-Bleick, M. and Dewitt-Movette, C. (1977) Analysis, Manifolds, and Physics Amsterdam, North Holland Pub Co.
Ciufolini, I. (1986) Generalized geodesic deviation equation. Physical Review D 34, 1014CrossRefGoogle ScholarPubMed
Ciufolini, I. and Demianski, M. (1986) How to measure the curvature of spacetime. Physical Review D 34, 1018CrossRefGoogle Scholar
Ciufolini, I. and Demianski, M. (1987) Erratum: How to measure the curvature of spacetime. Physical Review D 35, 773.CrossRefGoogle Scholar
Ciufolini, I. and Wheeler, J. A. (1995) Gravitation and Inertia. Princeton, NJ: Princeton University PressGoogle Scholar
Cohen, J. M. and Mashhoon, B. (1993) Standard clocks, interferometry and gravitomagnetism. Physics Letters A 181, 353CrossRefGoogle Scholar
Cotton, E. (1899) Sur les variétés trois dimensions. Annales de la Faculté des Sciences, Toulouse II-1, 385CrossRefGoogle Scholar
Cunningham, C. T. and Bardeen, J. M. (1973) The optical appearance of a star orbiting an extreme Kerr black hole. Astrophysical Journal 183, 237Google Scholar
de Felice, F. (1968) Equatorial geodesic motion in the gravitational field of a rotating source. Il Nuovo Cimento 57, 351CrossRefGoogle Scholar
de Felice, F. (1979) Effects of a gravitational wave on relativistic particles. Journal of Physics A: Mathematical and General 12, 1223CrossRefGoogle Scholar
de Felice, F. (1991) Rotating frames and measurements of forces in general relativity. Monthly Notices of the Royal Astronomical Society of London 252, 197CrossRefGoogle Scholar
de Felice, F. (1994) Kerr metric: the permitted angular velocity pattern and the pre-horizon regime. Classical and Quantum Gravity 11, 1283CrossRefGoogle Scholar
de Felice, F. (2006) L'intreccio spazio-temporale. La relatività dello spazio e del tempo: la sua origine e il suo mistero. Torino: Bollati Boringhieri EditoreGoogle Scholar
de Felice, F. and Clarke, C. J. S. (1990) Relativity on Curved Manifolds. Cambridge (UK): Cambridge University PressGoogle Scholar
de Felice, F., Nobili, L., and Calvani, M. (1974) Black-hole physics: some effects of gravity on the radiation emission. Astronomy and Astrophysics 30, 111Google Scholar
de Felice, F. and Preti, G. (2008) Ray tracing in relativistic astrometry: the satellite attitude error and the comprehensive error budget. Classical and Quantum Gravity 25, 165015CrossRefGoogle Scholar
de Felice, F. and Usseglio-Tomasset, S. (1991) On the pre-horizon regime in the Kerr metric. Classical and Quantum Gravity 8, 1871CrossRefGoogle Scholar
de Felice, F. and Usseglio-Tomasset, S. (1992) Circular orbits and relative strains in the Schwarszchild space-time. General Relativity and Gravitation 24, 1091CrossRefGoogle Scholar
de Felice, F. and Usseglio-Tomasset, S. (1993) Schwarzschild space-time: measurements in orbiting space-stations. Classical and Quantum Gravity 10, 353CrossRefGoogle Scholar
de Felice, F. and Usseglio-Tomasset, S. (1996) Strains and rigidity in black-hole physics. General Relativity and Gravitation 28, 179CrossRefGoogle Scholar
Dixon, W. G. (1964) A covariant multipole formalism for extended test bodies in general relativity. Il Nuovo Cimento 34, 318CrossRefGoogle Scholar
Dixon, W. G. (1970a) Dynamics of extended bodies in general relativity: I. Momentum and angular momentum. Proceedings of the Royal Society of London A 314, 499CrossRefGoogle Scholar
Dixon, W. G. (1970b) Dynamics of extended bodies in general relativity: II. Moments of charged-current vectors. Proceedings of the Royal Society of London A 319, 509CrossRefGoogle Scholar
Dixon, W. G. (1974) Dynamics of extended bodies in general relativity: III. Equations of motion. Philosophical Transaction of the Royal Society of London A, 277, 59CrossRefGoogle Scholar
Dixon, W. G. (1979) Dynamics of extended bodies in general relativity: their description and motion. Proceedings of Course 67 of the International School of Physics “Enrico Fermi.” ed. J., Ehlers. Amsterdam: North Holland
Ehlers, J. and Rudolph, E. (1977) Dynamics of extended bodies in general relativity center-of-mass description and quasirigidity. General Relativity and Gravitation 8, 197CrossRefGoogle Scholar
Einstein, A. (1905) Zur elektrodynamik bewegter körper. Annalen der Physik 17, 891CrossRefGoogle Scholar
Eisenhart, L. P. (1997) Riemannian Geometry, 8th edn. Princeton, NJ: Princeton University PressGoogle Scholar
Ellis, G. F. R. (1971) Relativistic cosmology. In Sachs, R. K., ed., General Relativity and Cosmology, Proceedings of Course 47 of the International School of Physics “Enrico Fermi.” New York: Academic PressGoogle Scholar
Ellis, G. F. R. and van Elst, H. (1998) Cargése Lectures 1998, e-print: gr-qc/9812046
Fanton, C., Calvani, M., de Felice, F., and Cadez, A. (1997) Detecting accretion disks in active galactic nuclei. Pacific Astronomical Society of Japan 49, 159Google Scholar
Faruque, S. B. (2004) Gravitomagnetic clock effect in the orbit of a spinning particle orbiting the Kerr black hole. Physics Letters A 327, 95CrossRefGoogle Scholar
Fayos, F. and Sopuerta, C. F. (1999) On the Papapetrou field in vacuum. Classical and Quantum Gravity 16, 2965CrossRefGoogle Scholar
Ferrarese, G. (1965) Proprietà di II ordine di un generico riferimento fisico in relatività generale. Rendconditi di Matematica, Roma 24, 57Google Scholar
Ferrarese, G. and Bini, D. (2007) Introduction to Relativistic Continuum Mechanics. Lecture Notes in Physics 727. Berlin: SpringerGoogle Scholar
Fortini, P. and Ortolan, A. (1992) Space and time measurements in the field of a gravitational wave. Il Nuovo Cimento 107B, 1329CrossRefGoogle Scholar
Gödel, K. (1949) An example of a new type of cosmological solution of Einstein's field equations of gravitation. Reviews of Modern Physics 21, 447CrossRefGoogle Scholar
Gullstrand, A. (1922) Allgemeine Lösung des statischen Einkörperproblems in der Einsteinschen Gravitationstheorie. Arkiv för Matematik, Astronomi och Fysik 16(8), 1–15Google Scholar
Hawking, S. and Ellis, G. F. R. (1973) The Large Scale Structure of Space-Time. Cambridge (UK): Cambridge University PressCrossRefGoogle Scholar
Herrera, L., Paiva, F. M., and Santos, N. O. (2000) Gyroscope precession in cylindrically symmetric spacetimes. Classical and Quantum Gravity 17, 1549CrossRefGoogle Scholar
Israel, W. (1963) Relativistic kinetic theory of a simple gas. JMP 4, 1163CrossRefGoogle Scholar
Iyer, B. R. and Vishveshwara, C. V. (1993) Frenet-Serret description of gyroscopic precession. Physical Review D 48, 5706CrossRefGoogle ScholarPubMed
Jantzen, R. T., Carini, P., and Bini, D. (1992) The many faces of gravitoelectromagnetism. Annals of Physics 215, 1CrossRefGoogle Scholar
Karas, V. and Vokrouhlický, D. (1994) Relativistic precession of the orbit of a star near a supermassive black hole. Astrophysical Journal 422, 208CrossRefGoogle Scholar
Kasner, E. (1925) Solutions of the Einstein equations involving functions of only one variable. Transactions of the American Mathematical Society 27, 155CrossRefGoogle Scholar
Kerr, R. P. (1963) Gravitational field of a spinning mass as an example of algebraically special metric. Physical Review Letters 11, 237CrossRefGoogle Scholar
Kerr, R. P. and Shild, A. (1967) A new class of vacuum solutions of the Einstein field equations. Atti del Convegno sulla Relatività Generale Firenze, 222Google Scholar
Kretschmann, E. (1915a) Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme beliebiger Relativitätstheorien (I). Annalen der Physik 48, 907–942CrossRefGoogle Scholar
Kretschmann, E. (1915b) Über die prinzipielle Bestimmbarkeit der berechtigten Bezugssysteme beliebiger Relativitätstheorien (II). Annalen der Physik 48, 943–982CrossRefGoogle Scholar
Krori, K. D., Chaudhury, T., and Mahanta, C. R. (1990) Geodetic precession in a quadrupole field. Physical Review D 42, 3584CrossRefGoogle Scholar
Landau, L. D. and Lifshitz, E. M. (1959) Fluid Mechanics. London: Pergamon PressGoogle Scholar
Landau, L. D. and Lifshitz, E. M. (1975) The Classical Theory of Fields. New York: Pergamon PressGoogle Scholar
Lathrop, J. D. (1973) Covariant description of motion in general relativity. Annals of Physics 79, 580CrossRefGoogle Scholar
Leaute, B. and Linet, B. (1983) Principle of equivalence and electromagnetism. International Journal of Theoretical Physics 22, 67CrossRefGoogle Scholar
Lense, J. and Thirring, H. (1918) Über den einfluß der eigenrotation der zentralkörper auf die bewegung der planeten und monde nach der einsteinschen gravitationstheorie. Physicalische Zeitschrift 19, 156. English translation in Mashhoon B., Hehl F. W. and Theiss D. S. (1984) On the gravitational effects of rotating masses: the Thirring-Lense papers. General Relativity and Gravitation16, 711Google Scholar
Li, L.-X., Zimmerman, E. R., Narayan, R., and McClintock, J. E. (2005) Multitemperature black body spectrum of a thin accretion disk around a Kerr black hole: model computations and comparison with observations. Astrophysical Journal Supplement 157, 335CrossRefGoogle Scholar
Lichtenegger, H. I. M., Gronwald, F., and Mashhoon, B. (2000) On detecting the gravitomagnetic field of the Earth by means of orbiting clocks. Advances in Space Research 25, 1255CrossRefGoogle Scholar
Maartens, R. and Bassett, B. A. (1998) Gravito-electromagnetism. Classical and Quantum Gravity 15, 705CrossRefGoogle Scholar
Mashhoon, B. (1988) Neutron interferometry in a rotating frame of reference. Physical Review Letters 61, 2639CrossRefGoogle Scholar
Mashhoon, B. (1995) On the coupling of intrinsic spin with the rotation of the Earth. General Relativity and Gravitation 31, 681CrossRefGoogle Scholar
Mashhoon, B. (1999) On the spin-rotation-gravity coupling. Physics Letters A 198, 9CrossRefGoogle Scholar
Mashhoon, B., Paik, H., and Will, C. (1989) Detection of the gravitomagnetic field using an orbiting superconducting gravity gradiometer: theoretical principles. Physical Review D 39, 2825CrossRefGoogle ScholarPubMed
Mashhoon, B. and Theiss, D. S. (1982) Relativistic tidal forces and the possibility of measuring them. Physical Review Letters 49, 1542CrossRefGoogle Scholar
Mathisson, M. (1937) Neue mechanik materieller systeme. Acta Physica Polonica 6, 163Google Scholar
Matsko, A. B., Yu, N., and Maleki, L. (2003) Gravity field measurements using cold atoms with direct optical readout. Physical Review A 67, 043819CrossRefGoogle Scholar
Misner, C. W., Thorne, K. S., and Wheeler, J. A. (1973) Gravitation. San Francisco: W. H. FreemanGoogle Scholar
Mohseni, M. and Sepangi, H. R. (2000) Gravitational waves and spinning test particles. Classical and Quantum Gravity 17, 4615CrossRefGoogle Scholar
Mullari, T. and Tammelo, R. (2006) On the relativistic tidal effects in the second approximation. Classical and Quantum Gravity 23, 4047CrossRefGoogle Scholar
Newman, E. T., Couch, E., Chinnapared, K.et al. (1965) Metric of a rotating charged mass. Journal of Mathematical Physics (NY) 6, 918CrossRefGoogle Scholar
Newman, E. T. and Penrose, R. (1962) An approach to gravitational radiation by a method of spin coefficients. Journal of Mathematical Physics (NY) 3, 566CrossRefGoogle Scholar
Nordström, G. (1918) On the energy of the gravitational field in Einstein's theory. Proceedings of the Koninklijke Nederlandse Akademie van Wetenschappen 20, 1238Google Scholar
Novikov, I. D. and Thorne, K. S. (1973). Astrophysics of black holes. In Black Holes: Les Houches 1972. Lectures delivered at the Summer School of Theoretical Physics, University of Grenoble, ed. C., DeWitt and B. S., DeWitt. New York: Gordon and Breach pp. 343–450.Google Scholar
Painlevé, P. (1921) La mécanique classique et la théorie de la relativité. Academie des Sciences de Paris, Comptes Rendus 173, 677–680Google Scholar
Papapetrou, A. (1951) Spinning test particles in General Relativity I. Proceedings of the Royal Society of London A 230, 248CrossRefGoogle Scholar
Papapetrou, A. (1966) Champs gravitationnels stationnaires a symetrie axiale. Annales del' Institut Henri Poincaré A4, 83Google Scholar
Pirani, F. A. E. (1956a) On the physical significance of the Riemann tensor. Acta Physica Polonica 15, 389Google Scholar
Pirani, F. A. E. (1956b) Tetrad formulation of general relativity theory. Helvetica Physica Acta Supplementum 4, 198Google Scholar
Polnarev, A. G. (1972) Radiation spectrum of a source moving in a stable circular orbit near a rotating black hole. Astrophysics 8, 273CrossRefGoogle Scholar
Rauch, K. D. and Blandford, R. D. (1994) Optical caustics in a Kerr spacetime and the origin of rapid X-ray variability in active galactic nuclei. Astrophysical Journal 421, 46CrossRefGoogle Scholar
Rees, M. (1988) Tidal disruption of stars by black holes of 106–108 solar masses in nearby galaxies. Nature 333, 523–528CrossRefGoogle Scholar
Rees, M. (1998) Astrophysical evidence for black holes. In Black Holes and Relativistic Stars, ed. R. M., Wald. Chicago: University of Chicago Press, pp. 79–101Google Scholar
Rees, M., Ruffini, R. and Wheeler, J. A. (1974) Black Holes, Gravitational Waves and CosmologyGarden and Breach, New YorkGoogle Scholar
Reissner, H. (1916) Über die eigengravitation des elektrischen feleds nach der Einsteinschen theorie. Annalen der Physik 50, 106CrossRefGoogle Scholar
Rindler, W. and Perlick, V. (1990) Rotating coordinates as tools for calculating circular geodesics and gyroscopic precession. General Relativity and Gravitation 22, 1067CrossRefGoogle Scholar
Rovelli, C. (2002) GPS observables in general relativity. Physical Review D 65, 044017CrossRefGoogle Scholar
Ruffini, R. (1973) On the Energetics of Black Holes in: Black Holes, DeWitt, C. and DeWitt, B. S. eds. Garden and Breach, New YorkGoogle Scholar
Ruffini, R. (1978) Physics outside the horizon of a black hole in: Physics and astrophysics of neutron stars and black holes. (A79-19101 06-90) Bologna, Society italiana di Fisica; Amsterdam, North Holland Publishing Co., 1978, p. 287–355
Ruse, H. S. (1931) Taylor's theorem in the tensor calculus. Proceedings of the London Mathematical Society 32, 87CrossRefGoogle Scholar
Schouten, J. A. (1954) Ricci Calculus. Berlin: SpringerCrossRefGoogle Scholar
Schwarzschild, K. (1916a) Uber das gravitationsfeld einer massenpunktes nach der Einsteinschen theorie. Sitzungsberichte der Preussischen Akademie der Wissenschaft Zu Berlin189Google Scholar
Schwarzschild, K. (1916b) Uber das gravitationsfeld einer kugel aus incompressible flussigkeit nach der Einsteinschen theorie. Sitzungsberichte der Preussischen Akademie der Wissenschaft Zu Berlin424Google Scholar
Semerák, O. (1994) On the competition of forces in the Kerr field. Astronomy and Astrophysics 291, 679Google Scholar
Semerák, O. (1995) What forces drive the relativistic motion? Il Nuovo Cimento B 110, 973CrossRefGoogle Scholar
Semerák, O. (1996) What forces act in relativistic gyroscope precession? Classical and Quantum Gravity 13, 2987CrossRefGoogle Scholar
Semerák, O. and de Felice, F. (1997) Quasi-local measurements and orientation in black-hole fields. Classical and Quantum Gravity 14, 2381CrossRefGoogle Scholar
Semerák, O., Karas, V., and de Felice, F. (1999) Parameters of black holes in sources with periodic variability. Publications of the Astronomical Society of Japan 51, 571 (see Appendix of astro-ph/9802025 for details)CrossRefGoogle Scholar
Simon, W. (1984) Characterization of the Kerr metric. General Relativity and Gravitation 16, 465CrossRefGoogle Scholar
Sorge, F., Bini, D., and de Felice, F. (2001) Gravitational waves, gyroscopes and frame dragging. Classical and Quantum Gravity 18, 2945–2958CrossRefGoogle Scholar
Stephani, H., Kramer, D., MacCallum, M., Hoenselars, C., and Hertl, E. (2003) Exact Solutions to Einstein's Field Equations, 2nd edn. Cambridge Monographs on Mathematical Physics. Cambridge (UK): Cambridge University PressCrossRefGoogle Scholar
Synge, J. L. (1960) Relativity: The General Theory. Amsterdam: North HollandGoogle Scholar
Szekeres, P. (1965) The gravitational compass. Journal of Mathematical Physics (NY) 6, 1387CrossRefGoogle Scholar
Taylor, J. H. and Weisberg, J. M. (1989) Further experimental tests of relativistic gravity using the binary pulsar PSR 1913 + 16. Astrophysical Journal, 345, 434CrossRefGoogle Scholar
Teyssandier, P., Le Poncin-Lafitte, C. B., and Linet, B. (2008) A universal tool for determining the time delay and the frequency shift of light: Synge's world function. In Laser, Clocks and Drag-Free Control: Exploration of Relativistic Gravity in Space. Springer series in Astrophysics and Space Science Library, vol. 349, ed. H., Dittus, C., Lämmerzahl and S. G., Turyshev. Berlin: Springer, p. 153CrossRefGoogle Scholar
Tod, K. P., de Felice, F., and Calvani, M. (1976) Spinning test particles in the field of a black hole. Il Nuovo cimento B, 34, 365CrossRefGoogle Scholar
Vessiot, E. C. (1905) Sur les curbes minima. Comptes Rendus 140, 1381Google Scholar
Wald, R. M. (1974) Black hole in a uniform magnetic field. Physical Review D 10, 1680CrossRefGoogle Scholar
Wald, R. M. (1984) General Relativity. Chicago: University of Chicago PressCrossRefGoogle Scholar
Warner, N. P. and Buchdahl, H. A. (1980) On the world function of the Gödel metric. Journal of Physics A: Mathematical and General 13, 509CrossRefGoogle Scholar
Wilkins, D. C. (1972) Bound geodesics in the Kerr metric. Physical Review D 5, 814CrossRefGoogle Scholar
Will, C. (1981) Theory and Experiment in Gravitational Physics. Cambridge: Cambridge University PressGoogle Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

  • References
  • Fernando de Felice, Università degli Studi di Padova, Italy, Donato Bini
  • Book: Classical Measurements in Curved Space-Times
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511777059.014
Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

  • References
  • Fernando de Felice, Università degli Studi di Padova, Italy, Donato Bini
  • Book: Classical Measurements in Curved Space-Times
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511777059.014
Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

  • References
  • Fernando de Felice, Università degli Studi di Padova, Italy, Donato Bini
  • Book: Classical Measurements in Curved Space-Times
  • Online publication: 03 May 2011
  • Chapter DOI: https://doi.org/10.1017/CBO9780511777059.014
Available formats
×