Skip to main content Accessibility help
×
Hostname: page-component-8448b6f56d-42gr6 Total loading time: 0 Render date: 2024-04-20T02:13:20.787Z Has data issue: false hasContentIssue false

Part V - Beyond Classification

Published online by Cambridge University Press:  20 July 2020

David M. Williams
Affiliation:
Natural History Museum, London
Malte C. Ebach
Affiliation:
University of New South Wales, Sydney
Get access
Type
Chapter
Information
Cladistics
A Guide to Biological Classification
, pp. 351 - 429
Publisher: Cambridge University Press
Print publication year: 2020

Access options

Get access to the full version of this content by using one of the access options below. (Log in options will check for institutional or personal access. Content may require purchase if you do not have access.)

References

References

Alibardi, L. & Rogers, G. 2015. Observations on fur development in echidna (Monotremata, Mammalia) indicate that spines precede hairs in ontogeny. Anatomical Record 298: 6170.Google Scholar
Avise, JC. & Robinson, TJ. 2008. Hemiplasy: a new term in the lexicon of phylogenetics. Systematic Biology 57: 503507.CrossRefGoogle ScholarPubMed
Brundin, L. 1966. Transantarctic relationships and their significance as evidenced by midges. Kungliga Svenska Vetenskapsakademiens Handlinger 11 (Series 4):, 1472.Google Scholar
Carr, EH. 1961, What is History? University of Cambridge Press, Cambridge, UK.Google Scholar
Currie, A. 2012. Convergence as evidence. The British Journal for the Philosophy of Science 64: 763786.Google Scholar
Darwin, C. 1859. On the Origin of Species by Means of Natural Selection, or, the Preservation of Favoured Races in the Struggle for Life. John Murray, London.Google Scholar
Ebach, MC. & Edgecombe, GD. 1999. The Devonian trilobite Cordania from Australia. Journal of Paleontology 73: 431436.Google Scholar
Ebach, MC., Morrone, JJ. & Williams, DM. 2006. Getting rid of origins. Rivista di Biologia 99: 360-365.Google Scholar
Escapa, IH. & Catalano, SA. 2013. Phylogenetic analysis of Araucariaceae: integrating molecules, morphology, and fossils. International Journal of Plant Sciences 174: 11531170.Google Scholar
Escapa, IH., Iglesias, A., Wilf, P., Catalano, SA., Caraballo-Ortiz, MA. & Rubén Cúneo, N. 2018. Agathis trees of Patagonia’s Cretaceous-Paleogene death landscapes and their evolutionary significance. American Journal of Botany 105: 13451368.Google Scholar
Fara, E. 2001. What are Lazarus taxa? Geological Journal 36: 291303.Google Scholar
Flessa, KW. & Jablonski, D. 1983. Extinction is here to stay. Paleobiology 9: 315321.Google Scholar
Gilmore, S. & Hill, KD. 1997. Relationships of the Wollemi pine (Wollemia nobilis) and a molecular phylogeny of the Araucariaceae. Telopea 7: 275e291.CrossRefGoogle Scholar
Haeckel, EHPA. 1866. Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. G. Reimer, Berlin.Google Scholar
Haeckel, EHPA. 1894–1896. Systematische Phylogenie: Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte. G. Reimer, Berlin.Google Scholar
Haeckel, EHPA. 1909. Charles Darwin as an anthropologist. In: Seward, AC (ed.), Darwin and Modern Science. Cambridge University Press, Cambridge, pp. 137151.Google Scholar
Jansson, J. & Sung, WK. 2016. Algorithms for combining rooted triplets into a galled phylogenetic network. In: Kao, MY. (eds) Encyclopedia of Algorithms, 2nd ed. Springer, New York, NY, pp. 4852.CrossRefGoogle Scholar
Jansson, J., Nguyen, NB. & Sung, W-K. 2006. Algorithms for combining rooted triplets into a galled phylogenetic network. SIAM Journal on Computing 35(5): 10981121.Google Scholar
Matthew, WD. 1915. Climate and evolution. Annals of the New York Academy of Sciences 24: 171318.Google Scholar
Matz, MV., Treml, EA., Aglyamova, GV. & Bay, LK. 2018. Potential and limits for rapid genetic adaptation to warming in a Great Barrier Reef coral. PLOS Genetics 14(4): e1007220.Google Scholar
Mindell, DP. & Meyer, A. 2001. Homology evolving. Trends in Ecology & Evolution 16: 434440.Google Scholar
Nelson, GJ. 1978. Ontogeny, phylogeny, paleontology and the biogenetic law. Systematic Zoology 27: 324345.Google Scholar
Nelson, GJ. & Ladiges, PY. 1996. Paralogy in cladistic biogeography and analysis of paralogy-free subtrees. American Museum Novitates 3167.Google Scholar
Nelson, GJ. & Platnick, NI. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York.Google Scholar
Norell, MA. 1993. Tree-based approaches to understanding history; comments on ranks, rules and the quality of the fossil record. American Journal of Science 293-A: 407417.Google Scholar
Novacek, MJ. & Wheeler, QD. 1992. Extinction and Phylogeny. Columbia University Press, New York.Google Scholar
Ochoterena, H., Vrijdaghs, A., Smets, E. & Claβen-Bockhoffs, R. 2019. The search for common origin: homology revisited. Systematic Biology 68: 767780.Google Scholar
Olson, LE. 2013. Tenrecs. Current Biology 23: R5R8.Google Scholar
O’Neil, C. 2016. Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy. Crown, New York.Google Scholar
Parenti, LR. & Ebach, MC. 2009. Comparative Biogeography: Discovering and Classifying Biogeographical Patterns of a Dynamic Earth. University of California Press, Berkeley, CA.Google Scholar
Powell, R. 2007. Is convergence more than an analogy? Homoplasy and its implications for macroevolutionary predictability. Biology and Philosophy 22: 565-578.Google Scholar
Rickards, RB. & Wright, AJ. 2002. Lazarus taxa, refugia and relict faunas: evidence from graptolites. Journal of the Geological Society 159(1): 14.Google Scholar
Smith, JLB. 1939. A living fish of Mesozoic type. Nature 143: 455456.Google Scholar
Stockey, RA. 1990. Antarctic and Gondwanan conifers. In: Taylor, TN. & Taylor, EL. (eds) Antarctic Palaeobiology. Springer, New York, pp. 179191.Google Scholar
Stockey, RA. 1994. Mesozoic Araucariaceae: morphology and systematic relationships. Journal of Plant Research 107: 493502.Google Scholar
Turner, S., Bean, LB., Dettmann, M., McKellar, JL., McLoughlin, S. & Thulborn, T. 2009. Australian Jurassic sedimentary and fossil successions: current work and future prospects for marine and non-marine correlation. GFF 131: 4970.Google Scholar
Vajda, V. & McLoughlin, ST. 2005. A new Maastrichtian-Paleocene Azolla species from of Bolivia, with a comparison of the global record of coeval Azolla microfossils. Alcheringa 29: 305329.Google Scholar
Walkom, AB. 1921. Mesozoic Floras of New South Wales Part 1: fossil plants from Cockabutta Mountain and Talbragar. Memoirs of the Geological Survey of New South Wales. Memoir Palaeontology 12. W.A. Gullick, Government Printer, Sydney.Google Scholar
Weisbecker, V. & Beck, RMD. 2015. Marsupial and monotreme evolution and biogeography. In: Klieve, A., Hogan, L., Johnston, S. & Murray, P. (eds), Marsupials and Monotremes. Nova Science Publishers, Inc., New York, pp. 131.Google Scholar
White, ME. 1981. Revision of the Talbragar Fish Bed Flora (Jurassic) of New South Wales. Records of the Australian Museum 33: 695721.Google Scholar
Wilf, P., Escapa, IH., Cúneo, NR., Kooyman, RM., Johnson, KR. & Iglesias, A. 2014. First South American Agathis (Araucariaceae), Eocene of Patagonia. American Journal of Botany 101: 156179.Google Scholar
Williams, DM. 2007. Classification and diatom systematics: the past, the present and the future. In: Brodie, J. & Lewis, J. (eds), Unravelling the Algae. CRC Press, Boca Raton, FL, pp. 5791.Google Scholar
Williams, DM. & Ebach, MC. 2008. Foundations of Systematics and Biogeography. Springer-Verlag New York Inc., New York.Google Scholar
Zaragüeta i Bagils, R., Lelièvre, H. & Tassy, P. 2004. Temporal paralogy, cladograms, and the quality of the fossil record. Geodiversitas 26: 381389.Google Scholar

References

Barnes, RSK, Calow, P., Olive, PJW., Golding, DW. & Spicer, JI. 2001. The Invertebrates: A Synthesis. Wiley-Blackwell, Oxford.Google Scholar
Baron, MG., Norman, DB. & Barrett, PM. 2017. A new hypothesis of dinosaur relationships and early dinosaur evolution. Nature 543: 501506.Google Scholar
Benton, MJ. 1999. Scleromochlus taylori and the origin of dinosaurs and pterosaurs. Philosophical Transactions of the Royal Society B: Biological Sciences 354: 14231446.Google Scholar
Benton, MJ. 2004. Vertebrate Palaeontology. 3rd ed. Blackwell Publishing, Oxford.Google Scholar
Cau, A. 2017. The assembly of the avian body plan: a 160-million-year long process. Bollettino della Societa Paleontologica Italiana 57(1): 125.Google Scholar
Chiappe, LM. 2009. Downsized dinosaurs: The evolutionary transition to modern birds. Evolution, Education and Outreach 2: 248256.CrossRefGoogle Scholar
Ebach, MC. & Williams, DM. 2013. Reading trees. Zootaxa 3814(2): 297300.Google Scholar
Gauthier, JA. 1986. Saurischian monophyly and the origin of birds. Memoirs of the California Academy of Sciences 8: 155.Google Scholar
Gauthier, JA. & de Queiroz, K. 2001. Feathered dinosaurs, flying dinosaurs, crown dinosaurs, and the name ‘Aves’. In: Gauthier, J. & Gall, LF. (eds), New Perspectives on the Origin and Early Evolution of Birds: Proceedings of the International Symposium in Honor of John H. Ostrom. Peabody Museum of Natural History, Yale University, New Haven, pp. 741.Google Scholar
Gee, H. 2001. Deuterostome phylogeny: the context for the origin and evolution of the Vertebrates. In: Ahlberg, P. (ed.), Major Events in Early Vertebrate Evolution. CRC Press, London, pp. 114.Google Scholar
Gregory, TR. 2008. Understanding evolutionary trees. Evolution, Education and Outreach 1: 121137.Google Scholar
Norell, MA., Clark, JM. & Chiappe, LM. 1993. Naming names. Nature 366: 518.Google Scholar
Patterson, C. 1993a. Bird or dinosaur? (correspondence). Nature 365: 2122.Google Scholar
Patterson, C. 1993b. Naming names (correspondence). Nature 366: 518.Google Scholar
Patterson, C. & Rosen, DE. 1977. Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Natural History Museum 158(2): 85172.Google Scholar
Perle, A., Norell, MA., Chiappe, LM. & Clark, JM. 1993a. Flightless bird from the Cretaceous of Mongolia. Nature 362: 623626.Google Scholar
Perle, A., Norell, MA., Chiappe, LM. & Clark, JM. 1993b. Correction: flightless bird from the Cretaceous of Mongolia. Nature 363: 188.Google Scholar
Prum, RO., Berv, JS., Dornburg, A., Field, DJ., Townsend, JP., Lemmon, EM. & Lemmon, AR. 2015. A comprehensive phylogeny of birds (Aves) using targeted next-generation DNA sequencing. Nature 526(7574): 569573.Google Scholar
Sandvik, H. 2008. Tree thinking cannot be taken for granted: challenges for teaching phylogenetics. Theory in Biosciences 12: 45–51.Google Scholar
Smith, A. 1994. Systematics and the Fossil Record. Blackwell Scientific Publications, Oxford.Google Scholar
Thanukos, A. 2009. A name by any other tree. Evolution, Education and Outreach 2: 303309.Google Scholar
Wang, M., Zheng, X., O’Connor, JK., Lloyd, GT., Wang, X., Wang, Y., Zhang, X., Zhou, Z. 2015.The oldest record of ornithuromorpha from the early Cretaceous of China. Nature Communications 6: 6987.Google Scholar

References

Benton, MJ. 2000. Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead? Biological Reviews 75: 633648.Google Scholar
de Queiroz, K. & Gauthier, J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 39: 307322.Google Scholar
Pleijel, F. & Härlin, M. 2004. Phylogenetic nomenclature is compatible with diverse philosophical perspectives. Zoologica Scripta 33: 587591.Google Scholar
Winsor, M. 2006. Linnaeus’s biology was not essentialist. Annals of the Missouri Botanical Garden 93(1): 27.Google Scholar

References

Avise, JC. & Liu, J-X. 2011. On the temporal inconsistencies of Linnaean taxonomic ranks. Biological Journal of the Linnean Society 102: 707714.Google Scholar
Benton, MJ. 2007. The Phylocode: beating a dead horse? Acta Palaeontologica Polonica 52: 651-655.Google Scholar
Béthoux, O. 2007a. Propositions for a character-state-based biological taxonomy. Zoologica Scripta 36: 409416.Google Scholar
Béthoux, O. 2007b. Cladotypic taxonomy revisited. Arthropod Systematics & Phylogeny 65: 127133Google Scholar
Béthoux, O. 2007c. Cladotypic taxonomy applied: titanopterans are orthopterans. Arthropod Systematics & Phylogeny 65: 135156.Google Scholar
Béthoux, O. 2010a. Optimality of phylogenetic nomenclatural procedures. Organisms Diversity & Evolution 10: 173191.Google Scholar
Béthoux, O. 2010b. Alternative nomenclatural procedures as a potential benefit to natural history collections. A reply to Dubois in Org Divers Evol (2010) 10: 81–90. Organisms Diversity & Evolution 10: 341432.Google Scholar
Cantino, PD. & de Queiroz, K. 2010. PhyloCode: A Phylogenetic Code of Biological Nomenclature. www.ohio.edu/phylocode/PhyloCode4c.pdfGoogle Scholar
Cantino, PD., Bryant, HN., de Queiroz, K., Donoghue, MJ., Eriksson, T., Hillis, DM. & Lee, MSY. 1999. Species names in phylogenetic nomenclature. Systematic Biology 48: 790807.Google Scholar
Carter, JG., Altaba, CR., Anderson, LC., Campbell, CD., Fang, Z., Harries, PJ. & Skelton, PW. 2015. The paracladistic approach to phylogenetic taxonomy. Paleontological Contributions 21(12): 19.Google Scholar
Craske, AJ. & Jefferies, RPS. 1989. A new mitrate from the Upper Ordovician of Norway, and a new approach to subdividing a plesion. Palaeontology 32: 6999.Google Scholar
Dayrat, B., Schander, C. & Angielczyk, KD. 2004. Suggestions for a new species nomenclature. Taxon 53: 485491.Google Scholar
de Queiroz, K. 1988. Systematics and the Darwinian revolution. Philosophy of Science 55: 238259.Google Scholar
de Queiroz, K. 2006. The PhyloCode and the distinction between taxonomy and nomenclature. Systematic Biology 55: 160162.Google Scholar
de Queiroz, K. & Cantino, PD. 2020. PhyloCode: A Phylogenetic Code of Biological Nomenclature. CRC Press, Boca Raton, FL.Google Scholar
de Queiroz, K., Cantino, PD. & Gauthier, JA. 2020. Phylonyms: A Companion to the PhyloCode. CRC Press, Boca Raton, FL.Google Scholar
de Queiroz, K. & Gauthier, J. 1990. Phylogeny as a central principle in taxonomy: phylogenetic definitions of taxon names. Systematic Zoology 39: 307322.Google Scholar
Donoghue, PCJ. 2005. Saving the stem group: a contradiction in terms? Paleobiology 31: 553558.Google Scholar
Dubois, A. 2007. Phylogeny, taxonomy and nomenclature: the problem of taxonomic categories and of nomenclatural ranks. Zootaxa 1519: 2768.Google Scholar
Dubois, A. 2010. Nomenclatural rules in zoology as a potential threat against natural history museums. Organisms Diversity & Evolution 10: 8190.Google Scholar
Ebach, MC. & McNamara, KJ. 2002. A systematic revision of the family Harpetidae (Trilobita). Records of the Western Australian Museum 21: 135167.Google Scholar
Gascoigne, RM. 1991. Julian Huxley and biological progress. Journal of the History of Biology 24: 433455.Google Scholar
Gegenbaur, K. 1870. Grundzüge der vergleichenden Anatomie, 2nd ed. Wilhelm Engelmann, Leipzig.Google Scholar
Greuter, W. 2004. Recent developments in International Biological Nomenclature. Turkish Journal of Botany 28: 1726.Google Scholar
Haeckel, EHPA. 1866. Generelle Morphologie der Organismen: allgemeine Grundzüge der organischen Formen-Wissenschaft, mechanisch begründet durch die von Charles Darwin reformirte Descendenz-Theorie. G. Reimer, Berlin.Google Scholar
Haeckel, EHPA. 1894–1896. Systematische Phylogenie: Entwurf eines natürlichen Systems der Organismen auf Grund ihrer Stammesgeschichte. G. Reimer, Berlin.Google Scholar
Hennig, W. 1950. Grundzüge einer Theorie der Phylogenetischen Systematik. Deutscher zentralverlag, Berlin,Google Scholar
Hennig, W. 1966. Phylogenetic Systematics. University of Illinois Press, Urbana.Google Scholar
Hennig, W. 1969. Die Stammesgeschichte der Insekten. Waldemar Kramer & Co., Frankfurt am Main.Google Scholar
Hennig, W. 1981. Insect Phylogeny [translated and edited by Pont, Adrian C.; revisionary notes by Schlee, Dieter]. John Wiley, Chichester.Google Scholar
Hoβfeld, U., Olsson, L. & Breidbach, O. (eds) 2003. Carl Gegenbaur and evolutionary morphology. Theory in Biosciences 122(2–3).Google Scholar
Huxley, JS. 1957. The three types of evolutionary process. Nature 180: 454455.Google Scholar
Huxley, JS. 1958. Evolutionary processes and taxonomy with special reference to grades. Uppsala Universitets Ârsskrift 6: 2139.Google Scholar
Jefferies, RPS. 1979. The origin of chordates – a methodological essay. In: House, MR. (ed.), The Origin of Major Invertebrate Groups. Academic Press, London, New York, pp. 443447.Google Scholar
Joyce, WG., Parham, JF. & Gauthier, JA. 2004. Developing a protocol for the conversion of rank-based taxon names to phylogenetically defined clade names, as exemplified by turtles. Journal of Paleontology 78: 989–1013.Google Scholar
Kluge, AG. 2005. Taxonomy in theory and practice, with arguments for a new phylogenetic system of taxonomy. In: Donnelly, MA., Crother, BI., Guyer, C., Wake, MH. & White, ME. (eds), Ecology and Evolution in the Tropics: A Herpetological Perspective. The University of Chicago Press, Chicago, pp. 747.Google Scholar
Kuhn, JH., Wolf, YI., Krupovic, M., Zhang, Y–Z., Maes, P., Dolja, VV. & Koonin, EV. 2019. Classify viruses – the gain is worth the pain. Nature 566: 318320.Google Scholar
Lanham, U. 1965. Uninominal nomenclature. Systematic Biology 14: 144.Google Scholar
Lee, MCY. & Skinner, A. 2007. Stability, ranks, and the PhyloCode. Acta Palaeontologica Polonica 52(3): 643650.Google Scholar
McNeil, J. 1996. The BioCode: integrated biological nomenclature in the 21st century? In: Reveal, J.L. (ed.), Proceedings of a Mini-symposium on Biological Nomenclature in the 21st Century. University of Maryland, College Park, MD. www.plantsystematics.org/reveal/pbio/nomcl/mcne.htmlGoogle Scholar
Medawar, P. 1968 [1996] The Strange Case of the Spotted Mice: and Other Classic Essays on Science. Oxford University Press, Oxford.Google Scholar
Minelli, A. 2013. Zoological nomenclature in the digital era. Frontiers in Zoology 10(1): 4.CrossRefGoogle ScholarPubMed
Mishler, BD. & Wilkins, JS. 2018. The Hunting of the SNaRC: A Snarky solution to the species problem. Philosophy, Theory, Practice in Biology 10: 1.Google Scholar
Naef, A. 1919. Idealistische Morphologie und Phylogenetik. Gustav Fischer, Jena.Google Scholar
Naef, A. 1921–23. Die Cephalopoden (Systematik). In: Pubblicazioni della Stazione Zoologica di Napoli. Fauna e Flora del Golfo di Napoli, Monograph 35 (I-1). R. Friedländer & Sohn, Berlin, pp. 1863.Google Scholar
Naef, A. 1972. Cephalopoda. Fauna and Flora of the Bay of Naples [Fauna und Flora des Golfes von Neapel und der Angrenzenden Meers-Abschitte]. Monograph 35, Part I, [Vol. I], Fascicle I. Smithsonian Institution Libraries, Washington, UK.Google Scholar
Naomi, S-I. 2014. Proposal of an integrated framework of biological taxonomy: a phylogenetic taxonomy, with the method of using names with standard endings in clade nomenclature. Bionomina 7: 144.Google Scholar
Nelson, G. 1974. Darwin-Hennig classification: a reply to Ernst Mayr. Systematic Zoology 23: 452458.Google Scholar
Nelson, GJ. 2016. What we all learned from Hennig. In: Williams, DM., Schmitt, M. & Wheeler, Q. (eds), The Future of Phylogenetic Systematics: The Legacy of Willi Hennig. Systematics Association Special Volume Series. Cambridge University Press, Cambridge, pp. 200212.Google Scholar
Nelson, GJ. & Platnick, NI. 1981. Systematics and Biogeography: Cladistics and Vicariance. Columbia University Press, New York.Google Scholar
Nicolson, D. 1991. A history of botanical nomenclature. Annals of the Missouri Botanical Garden 78: 3356.Google Scholar
Nicolson, N., Challis, K., Tucker, A. & Knapp, S. 2017. Impact of e-publication changes in the International Code of Nomenclature for algae, fungi and plants (Melbourne Code, 2012) – did we need to “run for our lives”? BMC Evolutionary Biology 17: 116. https://doi.org/10.1186/s12862-017-0961-8 (see erratum at BMC Evolutionary Biology 17:156).Google Scholar
Nixon, KC. & Carpenter, JM. 2000. On the other “phylogenetic systematics”. Cladistics 16: 298318.Google Scholar
Nixon, KC., Carpenter, JM. & Stevenson, DW. 2003. The PhyloCode is fatally flawed, and the Linnaean system can easily be fixed. The Botanical Review 69: 111120.Google Scholar
Parker, CT., Tindall, BJ. & Garrity, GM. 2015. International Code of Nomenclature of Prokaryotes. 2008 Revision, Microbiology Society. https://doi.org/10.1099/ijsem.0.000778CrossRefGoogle Scholar
Patterson, C. & Rosen, DE. 1977. Review of ichthyodectiform and other Mesozoic teleost fishes and the theory and practice of classifying fossils. Bulletin of the American Natural History Museum 158(2): 85172.Google Scholar
Platnick, NI. 2009. [Letter to Linnaeus]. In: Knapp, S. & Wheeler, QD. (eds), Letters to Linnaeus. The Linnean Society of London, London, pp. 171184.Google Scholar
Platnick, NI. 2012a. The poverty of the phylocode: a reply to de Queiroz and Donoghue. Systematic Biology 61: 360–361.Google Scholar
Platnick, NI. 2012b. The information content of taxon names: a reply to de Queiroz and Donoghue. Systematic Biology 62: 175–176.Google Scholar
Pleijel, F. & Rouse, GW. 2003. Ceci n'est pas une pipe: names, clades and phylogenetic nomenclature. Journal of Zoological Systematics and Evolutionary Research 41: 162174.Google Scholar
Rieppel, O., Williams, DM. & Ebach, MC. 2013. Adolf Naef (1883–1949): On foundational concepts and principles of systematic morphology. Journal of the History of Biology 46: 445510.Google Scholar
Simpson, GG. 1945. The principles of classification and a classification of mammals. Bulletin of the American Museum of Natural History 85: 1350.Google Scholar
Simpson, GG. 1961. Principles of Animal Taxonomy. Columbia University Press, New York.Google Scholar
Wheeler, QD. 2001. Clever Caroli: Lessons from Linnaeus (invited comments). Plant Press (Washington) 4(2): 1415Google Scholar
Williams, DM., Schmitt, M. & Wheeler, Q. (eds) 2016. The Future of Phylogenetic Systematics: The Legacy of Willi Hennig. Cambridge University Press, Cambridge, UK.Google Scholar
Willmann, R. 1987. Phylogenetic systematics, classification and the plesion concept. Verhandlungen des Naturwissenschaftlichen Vereins in Hamburg (NF) 29: 221233.Google Scholar
Willmann, R. 2003. From Haeckel to Hennig: the early development of phylogenetics in German-speaking Europe. Cladistics 19: 449479.Google ScholarPubMed
Witteveen, J. 2014. Naming and contingency: the type method of biological taxonomy. Biology and Philosophy 30: 569586.Google Scholar
Witteveen, J. 2016. Suppressing synonymy with a homonym: the emergence of the nomenclatural type concept in nineteenth century natural history. Journal of the History of Biology 49: 135189.Google Scholar

Further Reading

Ebach, MC. 2017. Reinvention of Australasian Biogeography: Reform, Revolt, Rebellion. CSIRO Publishing, Clayton.Google Scholar
Nyhart, LK. 1995. Biology Takes Form: Animal Morphology and the German Universities, 1800-1900. Chicago University Press, Chicago.Google Scholar
Rieppel, O. 2016. Phylogenetic Systematics: Haeckel to Hennig. CRC Press, Boca Raton, FL.Google Scholar
Stevens, PF. 1994. The Development of Biological Systematics: Antoine-Laurent de Jussieu, Nature, and the Natural System. Columbia University Press, New York.Google Scholar
Williams, DM., Schmitt, M. & Wheeler, Q. (eds) 2016. The Future of Phylogenetic Systematics: The Legacy of Willi Hennig. Cambridge University Press, Cambridge, UK.Google Scholar
Ebach, MC. 2017. Reinvention of Australasian Biogeography: Reform, Revolt, Rebellion. CSIRO Publishing, Clayton.Google Scholar
Nyhart, LK. 1995. Biology Takes Form: Animal Morphology and the German Universities, 1800-1900. Chicago University Press, Chicago.Google Scholar
Rieppel, O. 2016. Phylogenetic Systematics: Haeckel to Hennig. CRC Press, Boca Raton, FL.Google Scholar
Stevens, PF. 1994. The Development of Biological Systematics: Antoine-Laurent de Jussieu, Nature, and the Natural System. Columbia University Press, New York.Google Scholar
Williams, DM., Schmitt, M. & Wheeler, Q. (eds) 2016. The Future of Phylogenetic Systematics: The Legacy of Willi Hennig. Cambridge University Press, Cambridge, UK.Google Scholar

General Matters

Ebach, MC. 2017. Reinvention of Australasian Biogeography: Reform, Revolt, Rebellion. CSIRO Publishing, Clayton.Google Scholar
Nyhart, LK. 1995. Biology Takes Form: Animal Morphology and the German Universities, 1800-1900. Chicago University Press, Chicago.Google Scholar
Rieppel, O. 2016. Phylogenetic Systematics: Haeckel to Hennig. CRC Press, Boca Raton, FL.Google Scholar
Stevens, PF. 1994. The Development of Biological Systematics: Antoine-Laurent de Jussieu, Nature, and the Natural System. Columbia University Press, New York.Google Scholar
Williams, DM., Schmitt, M. & Wheeler, Q. (eds) 2016. The Future of Phylogenetic Systematics: The Legacy of Willi Hennig. Cambridge University Press, Cambridge, UK.Google Scholar

Codes, Taxonomy and Nomenclature

Barkley, T., DePriest, P., Funk, V., Kiger, R., Kress, W. & Moore, G. 2004. Linnaean nomenclature in the 21st century: a report from a workshop on integrating traditional nomenclature and phylogenetic classification. Taxon 53: 153158.Google Scholar
Benton, MJ. 2000. Stems, nodes, crown clades, and rank-free lists: is Linnaeus dead? Biological Reviews 75: 633648.CrossRefGoogle ScholarPubMed
Dayrat, B. 2010. Celebrating 250 dynamic years of nomenclatural debates. In: Polaszek, A. (ed.), Systema Naturae 250: The Linnean Ark. CRC Press, Boca Raton, FL, pp. 185239.Google Scholar
Forey, PL. 2001. The PhyloCode: description and commentary. Bulletin of Zoological Nomenclature 58: 8196.Google Scholar
Hedberg, I. 2005. Species Plantarum 250 Years. Proceedings of the Species Plantarum Symposium held in Uppsala August 22-24 2003. Symbolae Botanicae Upsalienses 33(3), 219 pp.Google Scholar
Heller, JI. 1964. The early history of binomial nomenclature. Huntia 1: 3370.Google Scholar
Michel, E. 2016. (ed.) Anchoring biodiversity information: from Sherborn to the 21st century and beyond. Zookeys 550: 1298.Google Scholar
Nixon, KC. & Carpenter, JM. 2000. On the other “phylogenetic systematics”. Cladistics 16: 298318.Google Scholar
Papavero, N., Llorente-Bousquets, J. & Abe, JM. 2001. Proposal of a new system of nomenclature for phylogenetic systematics. Arquivos de Zoologia 36: 1145.Google Scholar
Pavlinov, IY. 2014a. Taxonomic nomenclature. Book 1. From Adam to Linnaeus [In Russian]. Zoologicheskie Issledovania, 12, 153 pp.Google Scholar
Pavlinov, IY. 2014b. Taxonomic nomenclature. Book 2. From Linnaeus to the first codes. [In Russian]. Zoologicheskie Issledovania, 15, 223 pp.Google Scholar
Pavlinov, IY. 2015a. Taxonomic nomenclature. Book 3. Contemporary Codes. [In Russian]. Zoologicheskie Issledovania 17, 59 pp.Google Scholar
Pavlinov, IY. 2015b. Nomenclature in Systematics. History, Theory, Practice [in Russian]. KMC, Moscow.Google Scholar
Polaszek, A. 2010. Systema Naturae 250 – The Linnaean Ark. CRC Press, Baton Rouge, FL.Google Scholar
Rieppel, O. 2006, The PhyloCode: a critical discussion of its theoretical foundation. Cladistics 22: 186197.Google Scholar
Smith, A. 1994. Systematics and the Fossil Record. Blackwell Scientific Publications, Oxford.Google Scholar
Stevenson, DW. & Davis, JI. (eds) 2003. Approaches in examining the existing nomenclatural systems used in biology. The Botanical Review 69: 1123.Google Scholar
Vaczy, C. 1971. Les Origines et les principes du developpement de la nomenclature binaire en botanique. Taxon 20: 573590.Google Scholar
Watson, MF., Lyal, CHC. & Pendry, CA. 2015. Descriptive Taxonomy: The Foundation of Biodiversity Research. Cambridge University Press, Cambridge and New York.CrossRefGoogle Scholar
Watt, JC. 1968. Grades, clades, phenetics, and phylogeny. Systematic Zoology 17: 350353.Google Scholar
Wheeler, QD. (ed.) 2008. The New Taxonomy. Systematics Association Special Volume Series. CRC Press, Boca Raton, FL.Google Scholar
Witteveen, J. 2014. Naming and contingency: the type method of biological taxonomy. Biology and Philosophy 30: 569586.Google Scholar
Witteveen, J. 2016. Suppressing synonymy with a homonym: the emergence of the nomenclatural type concept in nineteenth century natural history. Journal of the History of Biology 49: 135189.Google Scholar

References

Anglada-Escudé, G., Amado, PJ., Barnes, J., Berdiñas, ZM., Butler, RP., Coleman, GAL., de la Cueva, I., Dreizler, S., Endl, M., Giesers, B., Jeffers, SV., Jenkins, JS., Jones, HRA., Kiraga, M., Kürster, M., López-González, MJ., Marvin, CJ., Morales, N., Morin, J., Nelson, RP., Ortiz, JL., Ofir, A., Paardekooper, S-J., Reiners, A., Rodríguez, E., Rodrίguez-López, C., Sarmiento, LF., Strachan, JP., Tsapras, Y., Tuomi, M. & Zechmeister, M. 2016. A terrestrial planet candidate in a temperature orbit around Proxima Centauri. Nature 536(7617): 437440.Google Scholar
Baum, DA. 2013. Developmental causation and the problem of homology. Philosophy, Theory, and Practice in Biology 5: e403Google Scholar
Baum, DA. 2017. Does the future of systematics really rest on the legacy of one mid-20th-century German entomologist? The Quarterly Review of Biology 92: 450453.Google Scholar
Beatty, J. 1982. Classes and cladists. Systematic Zoology 31: 2534.Google Scholar
Brady, RH. 1981. Mind, models and Cartesian observers: a note on conceptual problems. Journal of Social and Biological Systems 4: 277286.Google Scholar
Brigandt, I. 2002. Homology and the origin of correspondence. Biology and Philosophy 17: 389407.Google Scholar
Brigandt, I. 2007. Typology now: homology and developmental constraints explain evolvability. Biology and Philosophy 22: 709725.Google Scholar
Brigandt, I. & Griffiths, PE. 2007. The importance of homology for biology and philosophy. Biology and Philosophy 22: 633641.Google Scholar
Brower, AVZ. 2006. Problems with DNA barcodes for species delimitation: ‘ten species’ of Astraptes fulgerator reassessed (Lepidoptera: Hesperiidae). Systematics and Biodiversity 4: 127132.Google Scholar
Brower, AVZ. 2010. Alleviating the taxonomic impediment of DNA barcoding and setting a bad precedent: names for ten species of ‘Astraptes fulgerator’ (Lepidoptera: Hesperiidae: Eudaminae) with DNA-based diagnoses. Systematics and Biodiversity 8: 485491.Google Scholar
Brower, AV. 2018. Statistical consistency and phylogenetic inference: a brief review. Cladistics 34: 562567.CrossRefGoogle ScholarPubMed
Brower, AVZ. & Warren, A. 2010. Astraptes fulgerator (Walch 1775). Version 30, December 2010. http://tolweb.org/Astraptes_fulgerator/96653/2010.12.30 in The Tree of Life Web Project, http://tolweb.org/Google Scholar
Brummitt, RK. 2002. How to chop up a tree. Taxon 51: 3141.Google Scholar
Bryant, HM. 1995. The threefold parallelism of Agassiz and Haeckel, and polarity determination in phylogenetic systematics. Biology and Philosophy 10: 197217.Google Scholar
Burkhardt, RW. 1994. Ernst Mayr: Biologist-Historian. Biology and Philosophy 9: 359371.Google Scholar
Cartmill, M. 2018. A sort of revolution: systematics and physical anthropology in the 20th century. American Journal of Physical Anthropology 165: 677687.Google Scholar
Conway-Morris, S. 1994. Wonderfully, gloriously wrong. Trends in Evolution and Ecology 9(10): 407408.Google Scholar
Costello, MJ., Wilson, S. & Houlding, B. 2013. More taxonomists describing significantly fewer species per unit effort may indicate that most species have been discovered. Systematic Biology 62: 616624.Google Scholar
Crisp, MD., Trewick, SA. & Cook, LG. 2011. Hypothesis testing in biogeography. Trends in Ecology and Evolution 26: 6672.Google Scholar
Crowther, MS., Fillios, M., Colman, N. & Letnic, M. 2014. An updated description of the Australian dingo (Canis dingo Meyer, 1793). Journal of Zoology 293: 192–203.Google Scholar
Currie, A. 2012. Convergence as evidence. The British Journal for the Philosophy of Science 64: 763786.Google Scholar
Dawkins, R. 1986. The Blind Watchmaker. W. W. Norton & Company, Inc., New York [2nd edition 1996; numerous other editions exist, including a 25th anniversary edition and it has its own Wikipedia page, https://en.wikipedia.org/wiki/The_Blind_Watchmaker#Reception].Google Scholar
de Carvalho, MR., Bockmann, FA., Amorim, DS., Brandao, CRF., de Vivo, M., de Figueiredo, JL., Britski, HA., de Pinna, MCC., Menezes, NA., Marques, FPL., Papavero, N., Cancello, EM., Crisci, JV., McEachran, JD., Schelly, RC., Lundberg, JG., Gill, AC., Britz, R., Wheeler, QD., Stiassny, MLJ., Parenti, LR., Page, LM., Wheeler, WC., Faivovich, J., Vari, RP., Grande, L., Humphries, CJ., DeSalle, R., Ebach, MC. & Nelson, GJ. 2007. Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm. Evolutionary Biology 34: 140143.Google Scholar
de Carvalho, MR., Bockmann, FA., Amorim, DS. & Branda, CRF. 2008. Systematics must embrace comparative biology and evolution, not speed and automation. Evolutionary Biology 35: 150157.Google Scholar
de Carvalho, MR., Ebach, MC., Williams, DM., Nihei, SS., Trefaut Rodrigues, M., Grant, T., Silveira, LF., Zaher, H., Gill, AC., Schelly, RC., Sparks, JS., Bockmann, FA., Séret, B., Ho, H-C., Grande, L., Rieppel, O., Dubois, A., Ohler, A., Faivovich, J., Assis, LCS., Wheeler, QD., Goldstein, PZ., de Almeida, EAB., Valdecasas, AG. & Nelson, G. 2014. Does counting species count as taxonomy? On misrepresenting systematics, yet again. Cladistics 30: 322329.Google Scholar
Dubois, A. 2010. Zoological nomenclature in the century of extinctions: priority vs. ‘usage’. Organisms, Diversity & Evolution 10: 259274.Google Scholar
Ebach, M, 2005. Anschauung and the Archetype: the role of Goethe’s Delicate Empiricism in Comparative Biology. Janus Head 8: 254270.Google Scholar
Ebach, MC. & Holdrege, C. 2005. More taxonomy, not DNA barcoding. Bioscience 55: 822823.CrossRefGoogle Scholar
Ebach, MC., Valdecasas, AG. & Wheeler, QD. 2011. Impediments to taxonomy and users of taxonomy: accessibility and impact evaluation. Cladistics 27: 550-557.Google Scholar
Eisen, JA. 1998. Phylogenomics: improving functional predictions for uncharacterized genes by evolutionary analysis. Genome Research 8: 163167.Google Scholar
Eisen, JA. & Fraser, CM. 2003. Phylogenomics: intersection of evolution and genomics. Science 300(5626), 17061707.Google Scholar
Eldredge, N. & Novacek, MJ. 1985. Systematics and paleobiology. Paleobiology 11: 6574.Google Scholar
Farris, JS. 2014. “Pattern cladistics” really means paraphyly. Cladistics 30: 236239.Google Scholar
Felsenstein, J. 2001. The troubled growth of statistical phylogenetics. Systematic Biology 50: 465467.Google Scholar
Fernholm, B., Bremer, K. & Jornvall, H. (eds) 1989. The Hierarchy of Life. Excerpta Medica, Amsterdam.Google Scholar
Fitzhugh, K. 2008. Abductive inference: implications for “Linnean” and “Phylogenetic” approaches for representing biological systematization. Evolutionary Biology 35: 5282.Google Scholar
Flowers, RW. 2011. Review of Naming Nature: The Clash between Instinct and Science. American Entomologist 57: 115116.Google Scholar
Gardiner, B., Janvier, P., Patterson, C., Forey, PL., Greenwood, PH., Miles, RS. & Jefferies, RPS. 1979. The salmon, the lungfish, the cow: a reply. Nature 277: 175176.Google Scholar
Garnett, ST. & Christidis, L. 2017. Taxonomy anarchy hampers conservation. Nature 546: 2527.Google Scholar
Gee, HE. 2001. Deep Time: Cladistics, the Revolution in Evolution. Fourth Estate, London. [There are various versions of this book, for example: Gee, H. E. (1999). In Search of Deep Time: Beyond the Fossil Record to a New History of Life. Comstock Publishing, Sacramento.]Google Scholar
Godfray, HCJ. 2002. Challenges for taxonomy. Nature 417: 1719.Google Scholar
Godfray, HCJ., Clark, BR., Kitching, IJ., Mayo, SJ. & Scoble, MJ. 2007. The web and the structure of taxonomy. Systematic Biology 56: 943955.Google Scholar
Goloboff, PA., Torres, A. & Arias, JS. 2018. Weighted parsimony outperforms other methods of phylogenetic inference under models appropriate for morphology. Cladistics 34: 407437.Google Scholar
Grant, T., Faivovich, J. & Pol, D. 2003. The perils of ‘point-and-click’ systematics. Cladistics 19: 276285.Google Scholar
Haber, MN. 2016. The individuality thesis (3 ways). Biology and Philosophy 31: 913930.Google Scholar
Halstead, LB. 1978. Cladistic revolution – can it make the grade? Nature 276: 759760.Google Scholar
Halstead, LB., White, EI. & MacIntire, GT. 1979. L. B. Halstead and colleagues reply. Nature 277: 176.Google Scholar
Hebert, PDN., Penton, EH., Burns, JM., Janzen, DH. & Hallwachs, W. 2004. Ten species in one: DNA barcoding reveals cryptic species in the neotropical skipper butterfly Astraptes fulgerator. Proceedings of the National Academy of Sciences USA 101: 14 81214 817.Google Scholar
Hull, DL. 1964. Consistency and monophyly. Systematic Zoology 13: 111.Google Scholar
Hull, DL. 1965. The effects of essentialism on taxonomy: two thousand years of stasis. The British Journal for the Philosophy of Science 15: 314326 & 16: 1–18 [reprinted in Concepts of Species, C. N. Slobodchikoff (ed.), University of California Press, Berkeley, 1976; The Units of Selection, Marc Ereshefsky (ed.), MIT Press, Cambridge, 1992].Google Scholar
Hull, DL. 1969. What philosophy of biology is not. Journal of the History of Biology 2: 241268 [and Synthese 20: 157–184].Google Scholar
Hull, DL. 1976. Are species really individuals? Systematic Zoology 25: 174191.Google Scholar
Hull, DL. 1988. Science As a Process: An Evolutionary Account of the Social and Conceptual Development of Science. University of Chicago Press, Chicago.Google Scholar
Hull, DL. 1994. Ernst Mayr’s influence on the history and philosophy of biology: a personal memoir. Biology and Philosophy 9: 375386.CrossRefGoogle Scholar
Hull, DL. 1998. Taxonomy. In: The Routledge Encyclopedia of Philosophy. Taylor and Francis. doi:10.4324/9780415249126-Q102-1 (accessed 24 May 2018).Google Scholar
Hull, DL. 2006 [2007]. Essentialism in taxonomy: four decades later. Annals of the History and Philosophy of Biology 11: 4758.Google Scholar
Huneman, P. & Walsh, DM. 2017. Challenging the Modern Synthesis: Adaptation, Development and Inheritance. Oxford University Press, Oxford.Google Scholar
Janzen, DH. 2004. Now is the time. Philosophical Transactions of the Royal Society of London B 359: 731732.Google Scholar
Kemp, RM. 1984. Evolution and cladism. New Scientist, 5 January 1984, p. 42.Google Scholar
Kohn, D. 1985a. (ed.) The Darwinian Heritage. Princeton University Press, Princeton, NJ.Google Scholar
Kohn, D. 1985b. Introduction: a high regard for Darwin. In: Kohn, D. (ed.), The Darwinian Heritage. Princeton University Press, Princeton, NJ, pp. 15.Google Scholar
Koonin, EV. 2009. The Origin at 150: is a new evolutionary synthesis in sight? Trends in Genetics 25: 473475.Google Scholar
LaPorte, J. 2005. Is there a single objective, evolutionary tree of life? The Journal of Philosophy 102(7): 357374.Google Scholar
LaPorte, J. 2009. On systematists’ single objective tree of ancestors and descendants. Biological Theory: Integrating Development, Evolution, and Cognition 4: 260266.Google Scholar
Loewenberg, BJ. 1965. Darwin and Darwin studies 1959–1965. History of Science 4: 1554.Google Scholar
MacLeod, M. 2011. How to compare homology concepts: Class reasoning about evolution and morphology in phylogenetics and developmental biology. Biological Theory 6: 141153.CrossRefGoogle Scholar
MacLeod, N. 2008. Automated Taxon Identification in Systematics: Theory, Approaches and Applications. CRC Press, Boca Raton, FL.Google Scholar
Mayr, E. 1982. The Growth of Biological Thought: Diversity, Evolution, and lnheritance. Harvard University Press, Cambridge, MA.Google Scholar
Medawar, PB. 1967. The Art of the Soluble. Metheun & Co. Ltd., London.Google Scholar
Nelson, GJ. 1979. Cladistic analysis and synthesis: principles and definitions, with a historical note on Adanson's Familles des Plantes. Systematic Zoology 28: 121.Google Scholar
Nelson, GJ. 2009. Cladistics. In: Milner, R. (ed.), Darwin’s Universe: Evolution from A to Z. University of California Press, Berkeley, pp. 8082.Google Scholar
OED [Oxford English Dictionary] Online. systematics, n. March 2018. Oxford University Press. www.oed.com/view/Entry/378323?rskey=BBS1hY&result=2&isAdvanced=false (accessed 27 May 2018).Google Scholar
OED [Oxford English Dictionary] Online. phylogenetics, n. March 2018. Oxford University Press. www.oed.com/view/Entry/143086?redirectedFrom=phylogenetics (accessed 27 May 2018).Google Scholar
O’Neil, C. 2016. Weapons of Math Destruction. Crown, New York.Google Scholar
Ørvig, T. (ed.) 1968. Current Problems of Lower Vertebrate Phylogeny. Fourth Nobel Symposium, June 1967, Stockholm. Interscience Publishers, John Wiley and Sons, Inc., New York, London, Sydney; Almqvist and Wiksell, Stockholm.Google Scholar
Patterson, C. 1982. Morphological characters and homology. In: Joysey, KA. & Friday, AE. (eds.), Problems of Phylogenetic Reconstruction. Academic Press, London, pp. 2174.Google Scholar
Patterson, C. 1985. Cladistics. In: Campbell, B. & Lack, E. (eds), A Dictionary of Birds. A. & D. Poyser, London, p. 88.Google Scholar
Patterson, C. 1987. Introduction. In: Patterson, C. (ed.), Molecules and Morphology in Evolution: Conflict or Compromise? Cambridge University Press, Cambridge, UK, pp. 122.Google Scholar
Patterson, C. 1989. Phylogenetic relations of major groups: conclusions and prospects. In: Fernholm, B., Bremer, K. & Jôrnvaîl, H. (eds.), The Hierarchy of Life. Nobel Symp. 70. Excerpta Medica, Amsterdam, pp. 471488.Google Scholar
Patterson, C. 1990. Erik Helge Osvald Stensiö. Biographical Memoirs of Fellows of the Royal Society 35: 363380.Google Scholar
Pigliucci, M. & Finkleman, L. 2014. The Extended (Evolutionary) Synthesis debate: Where science meets philosophy. Bioscience 64: 511516.Google Scholar
Platnick, NI. 1979. Philosophy and the transformation of cladistics. Systematic Zoology 28: 537546.Google Scholar
Popper, K. 1963. Conjectures and Refutations: The Growth of Scientific Knowledge. Routledge & K. Paul, Oxford.Google Scholar
Quammen, D. 2018. The Tangled Tree. William Collins, London.Google Scholar
Rapini, A. 2004. Classes or individuals? The paradox of systematics revisited. Studies in History and Philosophy of Science Part C: Studies in History and Philosophy of Biological and Biomedical Sciences 35: 675695.Google Scholar
Raposo, M., Stopiglia, R., Brito, GRR, Bockmann, FA., Kirwani, GM., Gayon, J. & Dubois, A. 2017. What really hampers taxonomy and conservation? A riposte to Garnett and Christidis (2017). Zootaxa 4317(1): 179184.Google Scholar
Ridley, M. 1983. Can classification do without evolution? New Scientist, 1 December, p. 647.Google Scholar
Ridley, M. 1986. Evolution and Classification: The Reformation of Cladism. Longman, London.Google Scholar
Rieppel, O. 2013. Biological individuals and natural kinds. Biological Theory 7: 162169.Google Scholar
Rudwick, MJS. 1988. The Great Devonian Controversy: The Shaping of Scientific Knowledge among Gentlemanly Specialists. University of Chicago Press, Chicago.Google Scholar
Sangster, G. & Luksenburg, JA. 2015. Declining rates of species described per taxonomist: slowdown of progress or a side-effect of improved quality in taxonomy? Systematic Biology 64: 144151.Google Scholar
Schoch, RM. 1984. Cladism defended. New Scientist (12 January), p. 47.Google Scholar
Schultze, H-P. 2005. The first ten symposia on early/lower vertebrates. Revista Brasileira de Paleontologia 8: vxviii.Google Scholar
Simpson, GG. 1982. Autobiology. Quarterly Review of Biology 57: 437444.Google Scholar
Sloan, PR. 1985. Essay Review: Ernst Mayr on the History of Biology. Journal of the History of Biology 18: 145153.Google Scholar
Sluys, R. 2013. The unappreciated, fundamentally analytical nature of taxonomy and the implications for the inventory of biodiversity. Biodiversity & Conservation 22: 10951105.Google Scholar
Stoltzfus, A. 2017. Why we don’t want another “Synthesis”. Biology Direct 12: 23. https://doi.org/10.1186/s13062–017-0194-1Google Scholar
Sturdy, S. 2011. The meanings of ‘life’: Biology and biography in the work of J. S. Haldane (1860-1936). Transactions of the Royal Historical Society 21: 171191.Google Scholar
Tancoigne, E. & Dubois, A. 2013. Taxonomy: no decline, but inertia. Cladistics 29: 567570.Google Scholar
Vanderlaan, TA., Ebach, MC. & Williams, DM. 2013. Defining and redefining monophyly: Haeckel, Hennig, Ashlock, Nelson and the proliferation of definitions. Australian Systematic Botany 26: 347355.Google Scholar
Velasco, J. 2008. Philosophy and the Tree of Life: the metaphysics and epistemology of phylogenetic systematics. Ph.D. dissertation, University of Wisconsin.Google Scholar
Velasco, J. 2013. Phylogeny as population history. Philosophy and Theory in Biology 5:e402Google Scholar
Velasco, J. 2018. Universal common ancestry, LUCA, and the Tree of Life: three distinct hypotheses about the evolution of life. Biology and Philosophy 33: 31.Google Scholar
Wheeler, QD. 1995. The ‘old systematics’: classification and phylogeny. In: Pakaluk, J. & Slipinski, S. A. (eds), Biology, Phylogeny, and Classification of Coleoptera: Papers Celebrating the 80th Birthday of Roy A. Crowson. Muzeum I Instytut Zoologii PAN, Warszawa, pp. 3162.Google Scholar
Wheeler, QD. 2004. Taxonomic triage and the poverty of phylogeny. Philosophical Transactions of the Royal Society of London B Biological Sciences 359: 571583.CrossRefGoogle ScholarPubMed
Wheeler, QD. 2008a. Taxonomic shock and awe. In: Wheeler, QD. (ed.), The New Taxonomy. CRC Press, Boca Raton, FL, pp. 211226.Google Scholar
Wheeler, QD. 2008b. Undisciplined thinking: morphology and Hennig’s unfinished revolution. Systematic Entomology 33: 27.Google Scholar
Wheeler, QD., Raven, PH. & Wilson, EO. 2004. Taxonomy: impediment or expedient? Science 303: 285.Google Scholar
Wilkins, JS. & Ebach, MC. 2014. The Nature of Classification: Relationships and Kinds in the Natural Sciences. Palgrave Macmillan, New York.Google Scholar
Williams, DM. & Ebach, MC. 2008. The Foundations of Systematics & Biogeography. Springer-Verlag New York Inc., New York.Google Scholar
Williams, DM. & Ebach, MC. 2017. What is intuitive taxonomic practice? Systematic Biology 66: 637643.Google Scholar
Winsor, MP. 2001. The practitioner of science: everyone her own historian. Journal of the History of Biology 34: 229245.Google Scholar
Winsor, MP. 2003. Non-essentialist methods in pre-Darwinian taxonomy. Biology and Philosophy 18: 387400.Google Scholar
Winther, R. 2018 (ed.), Phylogenetic Inference, Selection Theory, and History of Science: Selected Papers of A. W. F. Edwards with Commentaries. Cambridge University Press, Cambridge, UK.Google Scholar
Yoon, CK. 2009. Naming Nature: The Clash Between Instinct and Science. W.W. Norton & Company, New York, London.Google Scholar

Further Reading

Inspiration for this paper was largely as a response to the contributions of Charles Godfray, and while they are not without some merit, his position reflects that of a ‘user’ rather than practitioner (‘Godfray is a user of taxonomic end-products who has frequently been critical of the slowness with which modern taxonomy is furnishing these—especially species names—to ecologists, conservationists, ‘biodiversity scientists’, etc. … Godfray’s criticism, echoed in other circles … is cast in what he has termed the ‘second bioinformatics crisis’, viz. that the alleged lethargy of modern taxonomy is mostly due to the lack of an adequate cyberstructure to disseminate its much needed products’, p. 141). Having noted that, it is worth dipping into some of Godfray’s papers to understand some of the technical possibilities for data storage (e.g., Godfray, HCJ. 2002. Challenges for taxonomy. Nature 417: 17–19; Godfray, HCJ. 2007. Linnaeus in the information age. Nature 446: 259–260; Godfray, HCJ., Mayo, SJ. & Scoble, MJ. Pragmatism and rigour can coexist in taxonomy. Evolutionary Biology 34: 309–311).

In relation to this paper, see: Flowers, RW. 2007. Taxonomy’s unexamined impediment. The Systematist 28: 3–7; Flowers, RW. 2007. Comments on ‘Helping Solve the “Other” Taxonomic Impediment: ‘Completing the Eight Steps to Total Enlightenment and Taxonomic Nirvana’ by Evenhuis (2007). Zootaxa 1494: 67–68 (‘Many taxonomists in my age cohort are now “molecular systematists”, and I know that some of them became so because they saw that funding would be impossible otherwise. If funding became linked to describing new species, you can bet that many would switch back, some reluctantly but others gladly’, p. 68).

A philosopher’s viewpoint. Perhaps if less time was spent agonising over species, progress would be had.

‘Thinking of naming systems as conventions may help clarify what we should be doing, if we are not to squander both the time and the reputation of systematics. Time is in short supply and our reputation not what it might be; solving the less cosmic issues may involve a self-discipline that also seems in short supply in the systematic community’.

This editorial was followed by a series of comments, all worth reading in the context of the future of taxonomy (Science 305: 1104–1107, includes five contributions).

Brower, AV. 2019. Background knowledge: the assumptions of pattern cladistics. Cladistics 35: 717731 https://doi.org/10.1111/cla.12379Google Scholar
de Carvalho, MR., Bockmann, FA., Amorim, DS., Brandao, CRF., de Vivo, M., de Figueiredo, JL., Britski, HA., de Pinna, MCC., Menezes, NA., Marques, FPL., Papavero, N., Cancello, EM., Crisci, JV., McEachran, JD., Schelly, RC., Lundberg, JG., Gill, AC., Britz, R., Wheeler, QD., Stiassny, MLJ., Parenti, LR., Page, LM., Wheeler, WC., Faivovich, J., Vari, RP., Grande, L., Humphries, CJ., DeSalle, R., Ebach, MC. & Nelson, GJ. 2007. Taxonomic impediment or impediment to taxonomy? A commentary on systematics and the cybertaxonomic-automation paradigm. Evolutionary Biology 34: 140143.Google Scholar
Evenhuis, NL. 2007. Helping solve the “other” taxonomic impediment: Completing the Eight Steps to Total Enlightenment and Taxonomic Nirvana. Zootaxa 1407: 312.Google Scholar
Richards, RA. 2016. Biological Classification. A Philosophical Introduction. Cambridge University Press, Cambridge, UK.Google Scholar
Stevens, PF. 2006. An end to all things? – plants and their names. Australian Systematic Botany 19: 115133.Google Scholar
Wheeler, QD., Raven, PH. & Wilson, EO. 2004. Taxonomy: impediment or expedient? Science 303: 285.Google Scholar

Save book to Kindle

To save this book to your Kindle, first ensure coreplatform@cambridge.org is added to your Approved Personal Document E-mail List under your Personal Document Settings on the Manage Your Content and Devices page of your Amazon account. Then enter the ‘name’ part of your Kindle email address below. Find out more about saving to your Kindle.

Note you can select to save to either the @free.kindle.com or @kindle.com variations. ‘@free.kindle.com’ emails are free but can only be saved to your device when it is connected to wi-fi. ‘@kindle.com’ emails can be delivered even when you are not connected to wi-fi, but note that service fees apply.

Find out more about the Kindle Personal Document Service.

Available formats
×

Save book to Dropbox

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Dropbox.

Available formats
×

Save book to Google Drive

To save content items to your account, please confirm that you agree to abide by our usage policies. If this is the first time you use this feature, you will be asked to authorise Cambridge Core to connect with your account. Find out more about saving content to Google Drive.

Available formats
×