Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 1
  • Print publication year: 2006
  • Online publication date: July 2010

28 - Minimal residual disease

from Part III - Evaluation and treatment
    • By Dario Campana, Member, Departments of Hematology/Oncology and Pathology, St. Jude Children's Research Hospital, Professor, Department of Pediatrics College of Medicine University of Tennessee Health Science Center, Memphis, TN, USA, Andrea Biondi, Director, M. Tettamanti Research Center, Associate Professor, Department of Pediatrics, University of Milano-Bicocca, Monza, Italy, Jacques J. M. van Dongen, Professor, Department of Immunology, Erasmus University Rotterdam, Rotterdam, the Netherlands
  • Edited by Ching-Hon Pui
  • Publisher: Cambridge University Press
  • DOI: https://doi.org/10.1017/CBO9780511471001.029
  • pp 679-706

Summary

Introduction

A multitude of clinical and biologic factors have been associated with a variable response to treatment in patients with acute leukemia, but their predictive power is far from absolute, and their usefulness for guiding clinical decisions in individual patients is inherently limited. Rather than predicting treatment response, in vivo measurements of leukemia cytoreduction provide direct information on the effectiveness of treatment in each patient. This information should have great clinical utility, but estimates by conventional morphologic techniques have a relatively low sensitivity and accuracy: in most cases, leukemic cells can be detected in bone marrow with certainty only when they constitute 5% or more of the total cell population. These limitations are overcome by methods for detecting minimal (i.e. submicroscopic) residual disease (MRD), which can be 100 times more sensitive than morphology and allow a more objective assessement of treatment response. The definition of “remission” in patients with acute leukemia by these methods is becoming the standard at many cancer centers.

Initial reservations regarding the clinical utility of MRD testing arose from concerns regarding the heterogeneous distribution of leukemia during clinical remission. Another concern was that MRD signals may not correspond to viable leukemic cells with the capacity for renewal. As discussed in this chapter, several correlative studies of MRD and treatment outcome have now firmly established that MRD studies can be highly informative.

The first MRD studies in patients with leukemia were made soon after antibodies for leukocyte differentiation antigens became available.

References
Lowenberg, B., Downing, J. R., & Burnett, A.Acute myeloid leukemia. N Engl J Med, 1999; 341: 1051–62.
Pui, C. H., Campana, D., & Evans, W. E.Childhood acute lymphoblastic leukemia – current status and future perspectives. Lancet Oncol, 2001; 2: 597–607.
Mathe, G., Schwarzenberg, L., Mery, A. M., et al.Extensive histological and cytological survey of patients with acute leukaemia in “complete remission”. Br Med J, 1966; 5488: 640–2.
Martens, A. C., Schultz, F. W., & Hagenbeek, A.Nonhomogeneous distribution of leukemia in the bone marrow during minimal residual disease. Blood, 1987; 70: 1073–8.
Bradstock, K. F., Janossy, G., Tidman, N., et al.Immunological monitoring of residual disease in treated thymic acute lymphoblastic leukaemia. Leuk Res, 1981; 5: 301–9.
Mancini, M., Cedrone, M., Diverio, D., et al.Use of dual-color interphase FISH for the detection of inv(16) in acute myeloid leukemia at diagnosis, relapse and during follow-up: a study of 23 patients. Leukemia, 2000; 14: 364–8.
Bielorai, B., Golan, H., Trakhtenbrot, L., et al.Combined analysis of morphology and fluorescence in situ hybridization in follow-up of minimal residual disease in a child with Philadelphia-positive acute lymphoblastic leukemia. Cancer Genet Cytogenet, 2002; 138: 64–8.
Estrov, Z., Grunberger, T., Dube, I. D., Wang, Y. P., & Freedman, M. H.Detection of residual acute lymphoblastic leukemia cells in cultures of bone marrow obtained during remission. N Engl J Med, 1986; 315: 538–42.
Uckun, F. M., Kersey, J. H., Haake, R., et al.Pretransplantation burden of leukemic progenitor cells as a predictor of relapse after bone marrow transplantation for acute lymphoblastic leukemia. N Engl J Med, 1993; 329: 1296–301.
Saiki, R. K., Scharf, S., Faloona, F., et al.Enzymatic amplification of beta-globin genomic sequences and restriction site analysis for diagnosis of sickle cell anemia. Science, 1985; 230: 1350–4.
White, T. J., Arnheim, N., & Erlich, H. A.The polymerase chain reaction. Trends Genet, 1989; 5: 185–9.
Breit, T. M., Beishuizen, A., Ludwig, W. D., et al.tal-1 deletions in T-cell acute lymphoblastic leukemia as PCR target for detection of minimal residual disease. Leukemia, 1993; 7: 2004–11.
Pongers-Willemse, M. J., Seriu, T., Stolz, F., et al.Primers and protocols for standardized detection of minimal residual disease in acute lymphoblastic leukemia using immunoglobulin and T cell receptor gene rearrangements and TAL1 deletions as PCR targets. Leukemia, 1999; 13: 110–8.
Carlotti, E., Pettenella, F., Amaru, R., et al.Molecular characterization of a new recombination of the SIL/TAL-1 locus in a child with T-cell acute lymphoblastic leukaemia. Br J Haematol, 2002; 118: 1011–8.
Akasaka, T., Muramatsu, M., Ohno, H., et al.Application of long-distance polymerase chain reaction to detection of junctional sequences created by chromosomal translocation in mature B-cell neoplasms. Blood, 1996; 88: 985–94.
Reichel, M., Gillert, E., Breitenlohner, I., et al.Rapid isolation of chromosomal breakpoints from patients with t(4;11) acute lymphoblastic leukemia: implications for basic and clinical research. Leukemia, 2001; 15: 286–8.
Wiemels, J. L., Cazzaniga, G., Daniotti, M., et al.Prenatal origin of acute lymphoblastic leukaemia in children. Lancet, 1999; 354: 1499–503.
Basso, K., Frascella, E., Zanesco, L., & Rosolen, A.Improved long-distance polymerase chain reaction for the detection of t(8;14)(q24;q32) in Burkitt's lymphomas. Am J Pathol, 1999; 155: 1479–85.
Boeckx, N., Jansen, M. W., Haskovec, C., et al.Identification of e19a2 BCR-ABL fusions (μ-BCR breakpoints) at the DNA level by ligation-mediated PCR. Leukemia, 2005; 19: 1292–5.
Dongen, J J., Macintyre, E. A., Gabert, J. A., et al.Standardized RT-PCR analysis of fusion gene transcripts from chromosome aberrations in acute leukemia for detection of minimal residual disease. Report of the BIOMED-1 Concerted Action: investigation of minimal residual disease in acute leukemia. Leukemia, 1999; 1: 1901–28.
Sklar, J.Polymerase chain reaction: the molecular microscope of residual disease. J Clin Oncol, 1991; 9: 1521–4.
Saiki, R. K., Gelfand, D. H., Stoffel, S., et al.Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science, 1988; 239: 487–91.
Szczepanski, T., Orfao, A., Velden, V., San Miguel, J. F., & Dongen, J. J.Minimal residual disease in leukaemia patients. Lancet Oncol, 2001; 2: 409–17.
Cazzaniga, G., Rossi, V., & Biondi, A.Monitoring minimal residual disease using chromosomal translocations in childhood ALL. Best Pract Res Clin Haematol, 2002; 15: 21–35.
Cross, N. C.Quantitative PCR techniques and applications. Br J Haematol, 1995; 89: 693–7.
Velden, V., Hochhaus, A., Cazzaniga, G., et al.Detection of minimal residual disease in hematologic malignancies by real-time quantitative PCR: principles, approaches, and laboratory aspects. Leukemia, 2003; 17: 1013–34.
Lion, T.Current recommendations for positive controls in RT-PCR assays. Leukemia, 2001; 15: 1033–7.
Gessler, M., Poustka, A., Cavenee, W., et al.Homozygous deletion in Wilms tumours of a zinc-finger gene identified by chromosome jumping. Nature, 1990; 343: 774–8.
Niegemann, E., Wehner, S., Kornhuber, B., Schwabe, D., & Ebener, U.wt1 gene expression in childhood leukemias. Acta Haematol, 1999; 102: 72–6.
Bergmann, L., Maurer, U., & Weidmann, E.Wilms tumor gene expression in acute myeloid leukemias. Leuk Lymphoma, 1997; 25: 435–43.
Bergmann, L., Miething, C., Maurer, U., et al.High levels of Wilms' tumor gene (wt1) mRNA in acute myeloid leukemias are associated with a worse long-term outcome. Blood, 1997; 90: 1217–25.
Tamaki, H., Ogawa, H., Ohyashiki, K., et al.The Wilms' tumor gene WT1 is a good marker for diagnosis of disease progression of myelodysplastic syndromes. Leukemia, 1999; 13: 393–9.
Bader, P., Niemeyer, C. M., Weber, G., et al.WT1 gene expression: marker for minimal residual disease (MRD) in childhood MDS and JMML [abstract]. Blood, 2002; 100: 371a.
Cilloni, D., Gottardi, E., Messa, F., et al.Significant correlation between the degree of WT1 expression and the International Prognostic Scoring System Score in patients with myelodysplastic syndromes. J Clin Oncol, 2003; 21: 1988–95.
Nakao, M., Janssen, J. W., Erz, D., Seriu, T., & Bartram, C. R.Tandem duplication of the FLT3 gene in acute lymphoblastic leukemia: a marker for the monitoring of minimal residual disease. Leukemia, 2000; 14: 522–4.
Kondo, M., Horibe, K., Takahashi, Y., et al.Prognostic value of internal tandem duplication of the FLT3 gene in childhood acute myelogenous leukemia. Med Pediatr Oncol, 1999; 33: 525–9.
Kottaridis, P. D., Gale, R. E., Frew, M. E., et al.The presence of a FLT3 internal tandem duplication in patients with acute myeloid leukemia (AML) adds important prognostic information to cytogenetic risk group and response to the first cycle of chemotherapy: analysis of 854 patients from the United Kingdom Medical Research Council AML 10 and 12 trials. Blood, 2001; 98: 1752–9.
Iwai, T., Yokota, S., Nakao, M., et al.Internal tandem duplication in the juxtatransmembrane domain of the flt3 is not involved in blastic crisis of chronic myeloid leukemia. Leukemia, 1997; 11: 1992–3.
Xu, F., Taki, T., Yang, H. W., et al.Tandem duplication of the FLT3 gene is found in acute lymphoblastic leukaemia as well as acute myeloid leukaemia but not in myelodysplastic syndrome or juvenile chronic myelogenous leukaemia in children. Br J Haematol, 1999; 105: 155–62.
Meshinchi, S., Woods, W. G., Stirewalt, D. L., et al.Prevalence and prognostic significance of Flt3 internal tandem duplication in pediatric acute myeloid leukemia. Blood, 2001; 97: 89–94.
Arrigoni, P., Beretta, C., Silvestri, D., et al.FLT3 internal tandem duplication in childhood acute myeloid leukaemia: association with hyperleucocytosis in acute promyelocytic leukaemia. Br J Haematol, 2003; 120: 89–92.
Zwaan, C. M., Meshinchi, S., Radich, J. P., et al.FLT3 internal tandem duplication in 234 children with acute myeloid leukemia (AML): prognostic significance and relation to cellular drug resistance. Blood, 2003; 102: 2387–94.
Kiyoi, H., Naoe, T., Yokota, S., et al.Internal tandem duplication of FLT3 associated with leukocytosis in acute promyelocytic leukemia. Leukemia Study Group of the Ministry of Health and Welfare (Kohseisho). Leukemia, 1997; 11: 1447–52.
Noguera, N. I., Breccia, M., Divona, M., et al.Alterations of the FLT3 gene in acute promyelocytic leukemia: association with diagnostic characteristics and analysis of clinical outcome in patients treated with the Italian AIDA protocol. Leukemia, 2002; 16: 2185–9.
Cazzaniga, G., Beretta, C., Gaipa, G., et al.Molecular analysis of clonal evolution in a pediatric case by RQ-PCR of FLT3/ITD [abstract]. Hematol J, 2002; 4: 32a.
Kottaridis, P. D., Gale, R. E., Langabeer, S. E., et al.Studies of FLT3 mutations in paired presentation and relapse samples from patients with acute myeloid leukemia: implications for the role of FLT3 mutations in leukemogenesis, minimal residual disease detection, and possible therapy with FLT3 inhibitors. Blood, 2002; 100: 2393–8.
Shih, L. Y., Huang, C. F., Wu, J. H., et al.Internal tandem duplication of FLT3 in relapsed acute myeloid leukemia: a comparative analysis of bone marrow samples from 108 adult patients at diagnosis and relapse. Blood, 2002; 100: 2387–92.
Bernard, O. A., Busson-LeConiat, M., Ballerini, P., et al.A new recurrent and specific cryptic translocation, t(5;14)(q35;q32), is associated with expression of the Hox11L2 gene in T acute lymphoblastic leukemia. Leukemia, 2001; 15: 1495–504.
Ballerini, P., Blaise, A., Busson-Le Coniat, M., et al.HOX11L2 expression defines a clinical subtype of pediatric T-ALL associated with poor prognosis. Blood, 2002; 100: 991–7.
Steinbach, D., Hermann, J., Viehmann, S., Zintl, F., & Gruhn, B.Clinical implications of PRAME gene expression in childhood acute myeloid leukemia. Cancer Genet Cytogenet, 2002; 133: 118–23.
Matsushita, M., Yamazaki, R., & Kawakami, Y.Quantitative analysis of PRAME for detection of minimal residual disease in leukemia. Methods Mol Med, 2004; 97: 267–75.
Watari, K., Tojo, A., Nagamura-Inoue, T., et al.Identification of a melanoma antigen, PRAME, as a BCR/ABL-inducible gene. FEBS Lett, 2000; 46: 367–71.
Dongen, J J. & Wolvers-Tettero, I. L.Analysis of immunoglobulin and T cell receptor genes. Part I: basic and technical aspects. Clin Chim Acta, 1991; 198: 1–91.
Tonegawa, S.Somatic generation of antibody diversity. Nature, 1983; 302: 575–81.
Davis, M. M. & Bjorkman, P. J.T-cell antigen receptor genes and T-cell recognition. Nature, 1988; 334: 395–402.
Szczepanski, T., Flohr, T., Velden, V., Bartram, C. R., & Dongen, J. J.Molecular monitoring of residual disease using antigen receptor genes in childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol, 2002; 15: 37–57.
Dongen, J J. van, Szczepanski, T., & Adriaansen H J. Immunobiology of leukemia. In , E. S. Henderson, , T. A. Lister, & , M. F. Greaves, eds., Leukemia (Philadelphia, PA: W. B. Saunders, 2002), pp. 85–129.
Langerak, A. W., Szczepanski, T., Burg, M., Wolvers-Tettero, I. L., & Dongen, J. J.Heteroduplex PCR analysis of rearranged T cell receptor genes for clonality assessment in suspect T cell proliferations. Leukemia, 1997; 11: 2192–9.
Delabesse, E., Burtin, M. L., Millien, C., et al.Rapid, multifluorescent TCRG Vgamma and Jgamma typing: application to T cell acute lymphoblastic leukemia and to the detection of minor clonal populations. Leukemia, 2000; 14: 1143–52.
Dongen, J J. & Wolvers-Tettero, I. L.Analysis of immunoglobulin and T cell receptor genes. Part II: possibilities and limitations in the diagnosis and management of lymphoproliferative diseases and related disorders. Clin Chim Acta, 1991; 198: 93–174.
Beishuizen, A., Verhoeven, M. A., Mol, E. J., et al.Detection of immunoglobulin heavy-chain gene rearrangements by Southern blot analysis: recommendations for optimal results. Leukemia, 1993; 7: 2045–53.
Beishuizen, A., Hahlen, K., Hagemeijer, A., et al.Multiple rearranged immunoglobulin genes in childhood acute lymphoblastic leukemia of precursor B-cell origin. Leukemia, 1991; 5: 657–67.
Tumkaya, T., Burg, M., Garcia Sanz, R., et al.Immunoglobulin lambda isotype gene rearrangements in B cell malignancies. Leukemia, 2001; 15: 121–7.
Burg, M., Barendregt, B. H., Szczepanski, T., et al.Immunoglobulin light chain gene rearrangements display hierarchy in absence of selection for functionality in precursor-B-ALL. Leukemia, 2002; 16: 1448–53.
Szczepanski, T., Willemse, M. J., Wering, E R., et al.Precursor-B-ALL with D(H)-J(H) gene rearrangements have an immature immunogenotype with a high frequency of oligoclonality and hyperdiploidy of chromosome 14. Leukemia, 2001; 15: 1415–23.
Siminovitch, K. A., Bakhshi, A., Goldman, P., & Korsmeyer, S. J.A uniform deleting element mediates the loss of kappa genes in human B cells. Nature, 1985; 316: 260–2.
Seriu, T., Hansen-Hagge, T. E., Stark, Y., & Bartram, C. R.Immunoglobulin kappa gene rearrangements between the kappa deleting element and Jkappa recombination signal sequences in acute lymphoblastic leukemia and normal hematopoiesis. Leukemia, 2000; 14: 671–4.
Felix, C. A., Wright, J. J., Poplack, D. G., et al.T cell receptor alpha-, beta-, and gamma-genes in T cell and pre-B cell acute lymphoblastic leukemia. J Clin Invest, 1987; 80: 545–56.
Szczepanski, T., Beishuizen, A., Pongers-Willemse, M. J., et al.Cross-lineage T cell receptor gene rearrangements occur in more than ninety percent of childhood precursor-B acute lymphoblastic leukemias: alternative PCR targets for detection of minimal residual disease. Leukemia, 1999; 13: 196–205.
Bierings, M., Szczepanski, T., Wering, E R., et al.Two consecutive immunophenotypic switches in a child with immunogenotypically stable acute leukaemia. Br J Haematol, 2001; 113: 757–62.
Langerak, A. W., Wolvers-Tettero, I. L., Beemd, M. W., et al.Immunophenotypic and immunogenotypic characteristics of TCRgammadelta+ T cell acute lymphoblastic leukemia. Leukemia, 1999; 13: 206–14.
Yokota, S., Hansen-Hagge, T. E., & Bartram, C. R.T-cell receptor delta gene recombination in common acute lymphoblastic leukemia: preferential usage of V delta 2 and frequent involvement of the J alpha cluster. Blood, 1991; 77: 141–8.
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E F., et al.Frequent ongoing T-cell receptor rearrangements in childhood B-precursor acute lymphoblastic leukemia: implications for monitoring minimal residual disease. Blood, 1995; 86: 692–702.
Szczepanski, T., Langerak, A. W., Wolvers-Tettero, I. L., et al.Immunoglobulin and T cell receptor gene rearrangement patterns in acute lymphoblastic leukemia are less mature in adults than in children: implications for selection of PCR targets for detection of minimal residual disease. Leukemia, 1998; 12: 1081–8.
Brumpt, C., Delabesse, E., Beldjord, K., et al.The incidence of clonal T-cell receptor rearrangements in B-cell precursor acute lymphoblastic leukemia varies with age and genotype. Blood, 2000; 96: 2254–61.
Velden, V., Szczepanski, T., & Wijkhuijs, A. J.Age-related patterns of immunoglobulin and T cell receptor gene rearrangements in precursor-B-ALL: implications for detection of minimal residual disease. Leukemia, 2003; 17: 1834–44.
Peham, M., Panzer, S., Fasching, K., et al.Low frequency of clonotypic Ig and T-cell receptor gene rearrangements in t(4;11) infant acute lymphoblastic leukaemia and its implication for the detection of minimal residual disease. Br J Haematol, 2002; 117: 315–21.
Beishuizen, A., De Bruijn, M. A., Pongers-Willemse, M. J., et al.Heterogeneity in junctional regions of immunoglobulin kappa deleting element rearrangements in B cell leukemias: a new molecular target for detection of minimal residual disease. Leukemia, 1997; 11: 2200–7.
Dongen, J J., Comans-Bitter, W. M., Wolvers-Tettero, I. L., & Borst, J.Development of human T lymphocytes and their thymus-dependency. Thymus, 1990; 16: 207–34.
Breit, T. M., Wolvers-Tettero, I. L., Beishuizen, A., et al.Southern blot patterns, frequencies, and junctional diversity of T-cell receptor-delta gene rearrangements in acute lymphoblastic leukemia. Blood, 1993; 82: 3063–74.
Szczepanski, T., Langerak, A. W., Willemse, M. J., et al.T cell receptor gamma (TCRG) gene rearrangements in T cell acute lymphoblastic leukemia reflect ‘end-stage’ recombinations: implications for minimal residual disease monitoring. Leukemia, 2000; 14: 1208–14.
Langerak, A. W., Wolvers-Tettero, I. L., & Dongen, J. J.Detection of T cell receptor beta (TCRB) gene rearrangement patterns in T cell malignancies by Southern blot analysis. Leukemia, 1999; 13: 965–74.
Dongen, J J., Langerak, A. W., & Bruggemann, M.Design and standardization of PCR primers and protocols for detection of clonal immunoglobulin and T-cell receptor gene combinations in suspect lymphoproliferations. Report of the BIOMED-2 Concerted Action BMH4-CT98-3936. Leukemia, 2003; 17: 2257–317.
Szczepanski, T., Pongers-Willemse, M. J., Langerak, A. W., et al.Ig heavy chain gene rearrangements in T-cell acute lymphoblastic leukemia exhibit predominant DH6-19 and DH7-27 gene usage, can result in complete V-D-J rearrangements, and are rare in T-cell receptor alpha beta lineage. Blood, 1999; 93: 4079–85.
Adriaansen, H. J., Soeting, P. W., Wolvers-Tettero, I. L., & Dongen, J. J.Immunoglobulin and T-cell receptor gene rearrangements in acute non-lymphocytic leukemias. Analysis of 54 cases and a review of the literature. Leukemia, 1991; 5: 744–51.
Schmidt, C. A., Oettle, H., Neubauer, A., et al.Rearrangements of T-cell receptor delta, gamma and beta genes in acute myeloid leukemia coexpressing T-lymphoid features. Leukemia, 1992; 6: 1263–7.
Sanchez, I., San, Miguel, J F., Corral, J., et al.Gene rearrangement in acute non-lymphoblastic leukaemia: correlation with morphological and immunophenotypic characteristics of blast cells. Br J Haematol, 1995; 89: 104–9.
Boeckx, N., Willemse, M. J., Szczepanski, T., et al.Fusion gene transcripts and Ig/TCR gene rearrangements are complementary but infrequent targets for PCR-based detection of minimal residual disease in acute myeloid leukemia. Leukemia, 2002; 16: 368–75.
Szczepanski, T., Pongers-Willemse, M. J., Langerak, A. W., & Dongen, J. J.Unusual immunoglobulin and T-cell receptor gene rearrangement patterns in acute lymphoblastic leukemias. Curr Top Microbiol Immunol, 1999; 246: 205–13.
Kitchingman, G. R.Immunoglobulin heavy chain gene VH-D junctional diversity at diagnosis in patients with acute lymphoblastic leukemia. Blood, 1993; 81: 775–82.
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E F., Borne, A. E. von dem, & Schoot, C. E. van der.Distinct ongoing Ig heavy chain rearrangement processes in childhood B-precursor acute lymphoblastic leukemia. Blood, 1993; 82: 581–9.
Szczepanski, T., Willemse, M. J., Kamps, W. A., et al.Molecular discrimination between relapsed and secondary acute lymphoblastic leukemia: proposal for an easy strategy. Med Pediatr Oncol, 2001; 36: 352–8.
Szczepanski, T., Willemse, M. J., Brinkhof, B., et al.Comparative analysis of Ig and TCR gene rearrangements at diagnosis and at relapse of childhood precursor-B-ALL provides improved strategies for selection of stable PCR targets for monitoring of minimal residual disease. Blood, 2002; 99: 2315–23.
Beishuizen, A., Verhoeven, M. A., Wering, E R., et al.Analysis of Ig and T-cell receptor genes in 40 childhood acute lymphoblastic leukemias at diagnosis and subsequent relapse: implications for the detection of minimal residual disease by polymerase chain reaction analysis. Blood, 1994; 83: 2238–47.
Steward, C. G., Goulden, N. J., Katz, F., et al.A polymerase chain reaction study of the stability of Ig heavy-chain and T-cell receptor delta gene rearrangements between presentation and relapse of childhood B-lineage acute lymphoblastic leukemia. Blood, 1994; 83: 1355–62.
Taylor, J. J., Rowe, D., Kylefjord, H., et al.Characterisation of non-concordance in the T-cell receptor gamma chain genes at presentation and clinical relapse in acute lymphoblastic leukemia. Leukemia, 1994; 8: 60–6.
Velden, V., Willemse, M. J., Schoot, C. E., et al.Immunoglobulin kappa deleting element rearrangements in precursor-B acute lymphoblastic leukemia are stable targets for detection of minimal residual disease by real-time quantitative PCR. Leukemia, 2002; 16: 928–36.
Dongen, J J., Seriu, T., Panzer-Grumayer, E. R., et al.Prognostic value of minimal residual disease in acute lymphoblastic leukaemia in childhood. Lancet, 1998; 352: 1731–8.
Szczepanski, T., Velden, V. H., & Raff, T.Comparative analysis of T-cell receptor gene rearrangements at diagnosis and relapse of T-cell acute lymphoblastic leukemia (T-ALL) shows high stability of clonal markers for monitoring of minimal residual disease and reveals the occurrence of secondary T-ALL. Leukemia, 2003; 17: 2149–56.
Knechtli, C. J. C., Goulden, N. J., Hancock, J. P., et al.Minimal residual disease status before allogeneic bone marrow transplantation is an important determinant of successful outcome for children and adolescents with acute lymphoblastic leukemia. Blood, 1998; 92: 4072–9.
Velden, V. H. van der, Szczepanski, T., & Dongen, J J. van. Polymerase chain reaction, real-time quantitative. In , S. Brenner & , J. H. Miller, eds., Encyclopedia of Genetics (London: Academic Press, 2001), pp. 1503–6.
Verhagen, O. J., Willemse, M. J., Breunis, W. B., et al.Application of germline IGH probes in real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia. Leukemia, 2000; 14: 1426–35.
Langerak, A. W., Wolvers-Tettero, I. L., Gastel-Mol, E. J., Oud, M. E., & Dongen, J. J. van.Basic helix-loop-helix proteins E2A and HEB induce immature T-cell receptor rearrangements in nonlymphoid cells. Blood, 2001; 98: 2456–65.
Velden, V. H., Wijkhuijs, J. M., Jacobs, D. C., Wering, E. R., & Dongen, J. J. van.T cell receptor gamma gene rearrangements as targets for detection of minimal residual disease in acute lymphoblastic leukemia by real-time quantitative PCR analysis. Leukemia, 2002; 16: 1372–80.
Wering, E. R., Linden-Schrever, B. E., Velden, V., Szczepanski, T., & Dongen, J. J. van.T-lymphocytes in bone marrow samples of children with acute lymphoblastic leukemia during and after chemotherapy might hamper PCR-based minimal residual disease studies. Leukemia, 2001; 15: 1301–3.
Dongen, J. J., Breit, T. M., Adriaansen, H. J., Beishuizen, A., & Hooijkaas, H.Detection of minimal residual disease in acute leukemia by immunological marker analysis and polymerase chain reaction. Leukemia, 1992; 6(Suppl. 1): 47–59.
Campana, D., Coustan-Smith, E., & Janossy, G.The immunologic detection of minimal residual disease in acute leukemia. Blood, 1990; 76: 163–71.
Farahat, N., Morilla, A., Owusu-Ankomah, K., et al.Detection of minimal residual disease in B-lineage acute lymphoblastic leukaemia by quantitative flow cytometry. Br J Haematol, 1998; 101: 158–64.
Coustan-Smith, E., Sancho, J., Hancock, M. L., et al.Clinical importance of minimal residual disease in childhood acute lymphoblastic leukemia. Blood, 2000; 96: 2691–6.
San Miguel, J. F., Vidriales, M. B., Lopez-Berges, C., et al.Early immunophenotypical evaluation of minimal residual disease in acute myeloid leukemia identifies different patient risk groups and may contribute to postinduction treatment stratification. Blood, 2001; 98: 1746–51.
Dworzak, M. N., Froschl, G., Printz, D., et al.Prognostic significance and modalities of flow cytometric minimal residual disease detection in childhood acute lymphoblastic leukemia. Blood, 2002; 99: 1952–8.
Coustan-Smith, E., Sancho, J., Behm, F. G., et al.Prognostic importance of measuring early clearance of leukemic cells by flow cytometry in childhood acute lymphoblastic leukemia. Blood, 2002; 100: 52–8.
Coustan-Smith, E., Sancho, J., Hancock, M. L., et al.Use of peripheral blood instead of bone marrow to monitor residual disease in children with acute lymphoblastic leukemia. Blood, 2002; 100: 2399–402.
Howard, S C., Campana, D., & Coustan-Smith, E., et al.Development of a regional flow cytometry center for diagnosis of childhood leukemia in Central America. Leukemia, 2005; 19: 323–5.
Wells, D. A., Sale, G. E., Shulman, H. M., et al.Multidimensional flow cytometry of marrow can differentiate leukemic from normal lymphoblasts and myeloblasts after chemotherapy and bone marrow transplantation. Am J Clin Pathol, 1998; 110: 84–94.
Sang, B. C., Shi, L., Dias, P., et al.Monoclonal antibodies specific to the acute lymphoblastic leukemia t(1;19)-associated E2A/pbx1 chimeric protein: characterization and diagnostic utility. Blood, 1997; 89: 2909–14.
Paolucci, P., Hayward, A. R., & Rapson, N. T.Pre-B and B cells in children on leukaemia remission maintenance treatment. Clin Exp Immunol, 1979; 37: 259–66.
Longacre, T. A., Foucar, K., Crago, S., et al.Hematogones: a multiparameter analysis of bone marrow precursor cells. Blood, 1989; 73: 543–52.
Caldwell, C. W., Poje, E., Helikson, M. A.B-cell precursors in normal pediatric bone marrow. Am J Clin Pathol, 1991; 95: 816–23.
Lucio, P., Parreira, A., Beemd, M. W., et al.Flow cytometric analysis of normal B cell differentiation: a frame of reference for the detection of minimal residual disease in precursor-B- ALL. Leukemia, 1999; 13: 419–27.
Asma, G. E., Bergh, R. L., & Vossen, J. M.Regeneration of TdT+, pre-B, and B cells in bone marrow after allogeneic bone marrow transplantation. Transplantation, 1987; 43: 865–70.
Ciudad, J., San Miguel, J. F., Lopez-Berges, M. C., et al.Detection of abnormalities in B-cell differentiation pattern is a useful tool to predict relapse in precursor-B-ALL. Br J Haematol, 1999; 104: 695–705.
Lochem, E. G., Wiegers, Y. M., Beemd, R., et al.Regeneration pattern of precursor-B-cells in bone marrow of acute lymphoblastic leukemia patients depends on the type of preceding chemotherapy. Leukemia, 2000; 14: 688–95.
McKenna, R. W., Washington, L. T., Aquino, D. B., Picker, L. J., & Kroft, S. H.Immunophenotypic analysis of hematogones (B-lymphocyte precursors) in 662 consecutive bone marrow specimens by 4-color flow cytometry. Blood, 2001; 98: 2498–507.
Porwit-MacDonald, A., Bjorklund, E., Lucio, P., et al.BIOMED-1 concerted action report: flow cytometric characterization of CD7+ cell subsets in normal bone marrow as a basis for the diagnosis and follow-up of T cell acute lymphoblastic leukemia (T-ALL). Leukemia, 2000; 14: 816–25.
Ciudad, J., San Miguel, J. F., Lopez-Berges, M. C., et al.Prognostic value of immunophenotypic detection of minimal residual disease in acute lymphoblastic leukemia. J Clin Oncol, 1998; 16: 3774–81.
Lucio, P., Gaipa, G., Lochem, E. G., et al.BIOMED-I concerted action report: flow cytometric immunophenotyping of precursor B-ALL with standardized triple-stainings. BIOMED-1 Concerted Action Investigation of Minimal Residual Disease in Acute Leukemia: International Standardization and Clinical Evaluation. Leukemia, 2001; 15: 1185–92.
Weir, E. G., Cowan, K., LeBeau, P., & Borowitz, M. J.A limited antibody panel can distinguish B-precursor acute lymphoblastic leukemia from normal B precursors with four color flow cytometry: implications for residual disease detection. Leukemia, 1999; 13: 558–67.
Dworzak, M. N., Fritsch, G., Fleischer, C., et al.Comparative phenotype mapping of normal versus malignant pediatric B- lymphopoiesis unveils leukemia-associated aberrations. Exp Hematol, 1998; 26: 305–13.
Campana, D., Thompson, J. S., Amlot, P., Brown, S., & Janossy, G.The cytoplasmic expression of CD3 antigens in normal and malignant cells of the T lymphoid lineage. J Immunol, 1987; 138: 648–55.
Hurwitz, C. A., Loken, M. R., Graham, M. L., et al.Asynchronous antigen expression in B lineage acute lymphoblastic leukemia. Blood, 1988; 72: 299–307.
Wells, D. A., Hall, M. C., Shulman, H. M., & Loken, M. R.Occult B cell malignancies can be detected by three-color flow cytometry in patients with cytopenias. Leukemia, 1998; 12: 2015–23.
Campana, D. & Coustan-Smith, E.Advances in the immunological monitoring of childhood acute lymphoblastic leukaemia. Best Pract Res Clin Haematol, 2002; 15: 1–19.
Lavabre-Bertrand, T., Janossy, G., Ivory, K., et al.Leukemia-associated changes identified by quantitative flow cytometry: I. CD10 expression. Cytometry, 1994; 18: 209–17.
Terstappen, L. W. & Loken, M. R.Myeloid cell differentiation in normal bone marrow and acute myeloid leukemia assessed by multi-dimensional flow cytometry. Anal Cell Pathol, 1990; 2: 229–40.
Coustan-Smith, E., Ribeiro, R. C., Rubnitz, J. E., et al.Clinical significance of residual disease during treatment in childhood acute myeloid leukemia. Br J Haematol, 2003; 123: 243–52.
Campana, D. & Coustan-Smith, E.Detection of minimal residual disease in acute leukemia by flow cytometry. Cytometry, 1999; 38: 139–52.
Venditti, A., Buccisano, F., Del Poeta, G, et al.Level of minimal residual disease after consolidation therapy predicts outcome in acute myeloid leukemia. Blood, 2000; 96: 3948–52.
Sievers, E. L., Lange, B. J., Alonzo, T. A., et al.Immunophenotypic evidence of leukemia after induction therapy predicts relapse: results from a prospective Children's Cancer Group study of 252 acute myeloid leukemia patients. Blood, 2003; 101: 3398–406.
Yeoh, E. J., Ross, M. E., Shurtleff, S. A., et al.Classification, subtype discovery, and prediction of outcome in pediatric acute lymphoblastic leukemia by gene expression profiling. Cancer Cell, 2002; 1: 133–43.
Chen, J. S., Coustan-Smith, E., Suzuki, T., et al.Identification of novel markers for monitoring minimal residual disease in acute lymphoblastic leukemia. Blood, 2001; 97: 2115–20.
De Waele, M, Renmans, W., Jochmans, K., et al.Different expression of adhesion molecules on CD34+ cells in AML and B-lineage ALL and their normal bone marrow counterparts. Eur J Haematol, 1999; 63: 192–201.
Gross, H. J., Verwer, B., Houck, D., & Recktenwald, D.Detection of rare cells at a frequency of one per million by flow cytometry. Cytometry, 1993; 14: 519–26.
Neale, G. A., Coustan-Smith, E., Pan, Q., et al.Tandem application of flow cytometry and polymerase chain reaction for comprehensive detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia, 1999; 13: 1221–6.
Coustan-Smith, E., Behm, F. G., Sanchez, J., et al.Immunological detection of minimal residual disease in children with acute lymphoblastic leukaemia. Lancet, 1998; 351: 550–4.
Pui, C. H., Raimondi, S. C., Behm, F. G., et al.Shifts in blast cell phenotype and karyotype at relapse of childhood lymphoblastic leukemia. Blood, 1986; 68: 1306–10.
Abshire, T. C., Buchanan, G. R., Jackson, J. F., et al.Morphologic, immunologic and cytogenetic studies in children with acute lymphoblastic leukemia at diagnosis and relapse: a Pediatric Oncology Group study. Leukemia, 1992; 6: 357–62.
Macedo, A., San Miguel, J. F., Vidriales, M. B., et al.Phenotypic changes in acute myeloid leukaemia: implications in the detection of minimal residual disease. J Clin Pathol, 1996; 49: 15–18.
Thomas, X., Campos, L., Archimbaud, E., et al.Surface marker expression in acute myeloid leukaemia at first relapse. Br J Haematol, 1992; 81: 40–4.
Wering, E. R., Beishuizen, A., Roeffen, E. T., et al.Immunophenotypic changes between diagnosis and relapse in childhood acute lymphoblastic leukemia. Leukemia, 1995; 9: 1523–33.
Chucrallah, A. E., Stass, S. A., Huh, Y. O., Albitar, M., & Kantarjian, H. M.Adult acute lymphoblastic leukemia at relapse. Cytogenetic, immunophenotypic, and molecular changes. Cancer, 1995; 76: 985–91.
Guglielmi, C., Cordone, I., Boecklin, F., et al.Immunophenotype of adult and childhood acute lymphoblastic leukemia: changes at first relapse and clinico-prognostic implications. Leukemia, 1997; 11: 1501–7.
Oelschlagel, U., Nowak, R., Schaub, A., et al.Shift of aberrant antigen expression at relapse or at treatment failure in acute leukemia. Cytometry, 2000; 42: 247–53.
Baer, M. R., Stewart, C. C., Dodge, R. K., et al.High frequency of immunophenotype changes in acute myeloid leukemia at relapse: implications for residual disease detection (Cancer and Leukemia Group B Study 8361). Blood, 2001; 97: 3574–80.
Tomova, A. & Babusikova, O.Shifts in expression of immunological cell markers in relapsed acute leukemia. Neoplasma, 2001; 48: 164–8.
Foroni, L., Harrison, C. J., Hoffbrand, A. V., & Potter, M. N.Investigation of minimal residual disease in childhood and adult acute lymphoblastic leukaemia by molecular analysis. Br J Haematol, 1999; 105: 7–24.
Radich, J. P.Philadelphia chromosome-positive acute lymphocytic leukemia. Hematol Oncol Clin North Am, 2001; 15: 21–36.
Arico, M., Valsecchi, M. G., Camitta, B., et al.Outcome of treatment in children with Philadelphia chromosome-positive acute lymphoblastic leukemia. N Engl J Med, 2000; 342: 998–1006.
Kebriaei, P. & Larson, R. A.Progress and challenges in the therapy of adult acute lymphoblastic leukemia. Curr Opin Hematol, 2003; 10: 284–9.
Gokbuget, N., Kneba, M., Raff, T., et al.Risk-adapted treatment according to minimal residual disease in adult ALL. Best Pract Res Clin Haematol, 2002; 15: 639–52.
Cazzaniga, G., Lanciotti, M., Rossi, V., et al.Prospective molecular monitoring of BCR/ABL transcript in children with Ph+ acute lymphoblastic leukaemia unravels differences in treatment response. Br J Haematol, 2002; 119: 445–53.
Scheuring, U. J., Pfeifer, H., Wassmann, B., et al.Early minimal residual disease (MRD) analysis during treatment of Philadelphia chromosome/Bcr-Abl-positive acute lymphoblastic leukemia with the Abl-tyrosine kinase inhibitor imatinib (STI571). Blood, 2003; 101: 85–90.
Biondi, A., Rambaldi, A., Rossi, V., et al.Detection of ALL-1/AF4 fusion transcript by reverse transcription-polymerase chain reaction for diagnosis and monitoring of acute leukemias with the t(4;11) translocation. Blood, 1993; 82: 2943–7.
Cimino, G., Elia, L., Rivolta, A., et al.Clinical relevance of residual disease monitoring by polymerase chain reaction in patients with ALL-1/AF-4 positive-acute lymphoblastic leukaemia. Br J Haematol, 1996; 92: 659–64.
Ida, K., Taki, T., Bessho, F., et al.Detection of chimeric mRNAs by reverse transcriptase-polymerase chain reaction for diagnosis and monitoring of acute leukemias with 11q23 abnormalities. Med Pediatr Oncol, 1997; 28: 325–32.
Cimino, G., Elia, L., Rapanotti, M. C., et al.A prospective study of residual-disease monitoring of the ALL1/AF4 transcript in patients with t(4;11) acute lymphoblastic leukemia. Blood, 2000; 95: 96–101.
Cayuela, J. M., Baruchel, A., Orange, C., et al.TEL-AML1 fusion RNA as a new target to detect minimal residual disease in pediatric B-cell precursor acute lymphoblastic leukemia. Blood, 1996; 88: 302–8.
Nakao, M., Yokota, S., Horiike, S., et al.Detection and quantification of TEL/AML1 fusion transcripts by polymerase chain reaction in childhood acute lymphoblastic leukemia. Leukemia, 1996; 10: 1463–70.
Satake, N., Kobayashi, H., Tsunematsu, Y., et al.Minimal residual disease with TEL-AML1 fusion transcript in childhood acute lymphoblastic leukaemia with t(12;21). Br J Haematol, 1997; 97: 607–11.
Zuna, J., Hrusak, O., Kalinova, M., et al.TEL/AML1 positivity in childhood ALL: average or better prognosis ? Czech Paediatric Haematology Working Group. Leukemia, 1999; 13: 22–4.
Riehm, H., Reiter, A., Schrappe, M., et al.[Corticosteroid-dependent reduction of leukocyte count in blood as a prognostic factor in acute lymphoblastic leukemia in childhood (therapy study ALL-BFM 83)]. Klin Padiatr, 1987; 199: 151–60.
Cave, H., Werff ten Bosch, J., Suciu, S., et al.Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia. European Organization for Research and Treatment of Cancer – Childhood Leukemia Cooperative Group. N Engl J Med, 1998; 339: 591–8.
Jacquy, C., Delepaut, B., Daele, S., et al.A prospective study of minimal residual disease in childhood B-lineage acute lymphoblastic leukaemia: MRD level at the end of induction is a strong predictive factor of relapse. Br J Haematol, 1997; 98: 140–6.
Brisco, M. J., Condon, J., Hughes, E., et al.Outcome prediction in childhood acute lymphoblastic leukaemia by molecular quantification of residual disease at the end of induction. Lancet, 1994; 343: 196–200.
Wasserman, R., Galili, N., Ito, Y., et al.Residual disease at the end of induction therapy as a predictor of relapse during therapy in childhood B-lineage acute lymphoblastic leukemia. J Clin Oncol, 1992; 10: 1879–88.
Gruhn, B., Hongeng, S., Yi, H., et al.Minimal residual disease after intensive induction therapy in childhood acute lymphoblastic leukemia predicts outcome. Leukemia, 1998; 12: 675–81.
Goulden, N. J., Knechtli, C. J., Garland, R. J., et al.Minimal residual disease analysis for the prediction of relapse in children with standard-risk acute lymphoblastic leukaemia. Br J Haematol, 1998; 100: 235–44.
Nyvold, C., Madsen, H. O., Ryder, L. P., et al.Precise quantification of minimal residual disease at day 29 allows identification of children with acute lymphoblastic leukemia and an excellent outcome. Blood, 2002; 99: 1253–8.
Willemse, M. J., Seriu, T., Hettinger, K., et al.Detection of minimal residual disease identifies differences in treatment response between T-ALL and precursor B-ALL. Blood, 2002; 99: 4386–93.
Pongers-Willemse, M. J., Verhagen, O. J., Tibbe, G. J., et al.Real-time quantitative PCR for the detection of minimal residual disease in acute lymphoblastic leukemia using junctional region specific TaqMan probes. Leukemia, 1998; 12: 2006–14.
Rivera, G. K., Pinkel, D., Simone, J. V., Hancock, M. L., & Crist, W. M.Treatment of acute lymphoblastic leukemia. 30 years' experience at St. Jude Children's Research Hospital. N Engl J Med, 1993; 329: 1289–95.
Panzer-Grumayer, E. R., Schneider, M., Panzer, S., Fasching, K., & Gadner, H.Rapid molecular response during early induction chemotherapy predicts a good outcome in childhood acute lymphoblastic leukemia. Blood, 2000; 95: 790–4.
Dibenedetto, S. P., LoNigro, L., Mayer, S. P., Rovera, G., & Schiliro, G.Detectable molecular residual disease at the beginning of maintenance therapy indicates poor outcome in children with T-cell acute lymphoblastic leukemia. Blood, 1997; 90: 1226–32.
Nizet, Y., Daele, S., Lewalle, P., et al.Long-term follow-up of residual disease in acute lymphoblastic leukemia patients in complete remission using clonogeneic IgH probes and the polymerase chain reaction. Blood, 1993; 82: 1618–25.
Neale, G. A., Menarguez, J., Kitchingman, G. R., et al.Detection of minimal residual disease in T-cell acute lymphoblastic leukemia using polymerase chain reaction predicts impending relapse. Blood, 1991; 78: 739–47.
Yokota, S., Hansen-Hagge, T. E., Ludwig, W. D., et al.Use of polymerase chain reactions to monitor minimal residual disease in acute lymphoblastic leukemia patients. Blood, 1991; 77: 331–9.
Biondi, A., Yokota, S., Hansen-Hagge, T. E., et al.Minimal residual disease in childhood acute lymphoblastic leukemia: analysis of patients in continuous complete remission or with consecutive relapse. Leukemia, 1992; 6: 282–8.
Roberts, W. M., Estrov, Z., Ouspenskaia, M. V., et al.Measurement of residual leukemia during remission in childhood acute lymphoblastic leukemia. N Engl J Med, 1997; 336: 317–23.
Steenbergen, E. J., Verhagen, O. J., Leeuwen, E. F., et al.Prolonged persistence of PCR-detectable minimal residual disease after diagnosis or first relapse predicts poor outcome in childhood B-precursor acute lymphoblastic leukemia. Leukemia, 1995; 9: 1726–34.
Eckert, C., Biondi, A., Seeger, K., et al.Prognostic value of minimal residual disease in relapsed childhood acute lymphoblastic leukaemia. Lancet, 2001; 358: 1239–41.
Velden, V., Joosten, S. A., Willemse, M. J., et al.Real-time quantitative PCR for detection of minimal residual disease before allogeneic stem cell transplantation predicts outcome in children with acute lymphoblastic leukemia. Leukemia, 2001; 15: 1485–7.
Bader, P., Hancock, J., Kreyenberg, H., et al.Minimal residual disease (MRD) status prior to allogeneic stem cell transplantation is a powerful predictor for post-transplant outcome in children with ALL. Leukemia, 2002; 16: 1668–72.
Uzunel, M., Mattsson, J., Jaksch, M., Remberger, M., & Ringden, O.The significance of graft-versus-host disease and pretransplantation minimal residual disease status to outcome after allogeneic stem cell transplantation in patients with acute lymphoblastic leukemia. Blood, 2001; 98: 1982–4.
Knechtli, C. J., Goulden, N. J., Hancock, J. P., et al.Minimal residual disease status as a predictor of relapse after allogeneic bone marrow transplantation for children with acute lymphoblastic leukaemia. Br J Haematol, 1998; 102: 860–71.
Ishikawa, K., Seriu, T., Watanabe, A., et al.Detection of neoplastic clone in the hypoplastic and recovery phases preceding acute lymphoblastic leukemia by in vitro amplification of rearranged T-cell receptor delta chain gene. J Pediatr Hematol Oncol, 1995; 17: 270–5.
Morley, A. A., Brisco, M. J., Rice, M., et al.Leukaemia presenting as marrow hypoplasia: molecular detection of the leukaemic clone at the time of initial presentation. Br J Haematol, 1997; 98: 940–4.
Goulden, N., Langlands, K., Steward, C., et al.PCR assessment of bone marrow status in ‘isolated’ extramedullary relapse of childhood B-precursor acute lymphoblastic leukaemia. Br J Haematol, 1994; 87: 282–5.
Neale, G. A., Pui, C. H., Mahmoud, H. H., et al.Molecular evidence for minimal residual bone marrow disease in children with ‘isolated’ extra-medullary relapse of T-cell acute lymphoblastic leukemia. Leukemia, 1994; 8: 768–75.
O'Reilly, J., Meyer, B., Baker, D., et al.Correlation of bone marrow minimal residual disease and apparent isolated extramedullary relapse in childhood acute lymphoblastic leukaemia. Leukemia, 1995; 9: 624–7.
Cave, H., Guidal, C., Rohrlich, P., et al.Prospective monitoring and quantitation of residual blasts in childhood acute lymphoblastic leukemia by polymerase chain reaction study of delta and gamma T-cell receptor genes. Blood, 1994; 83: 1892–902.
Lal, A., Kwan, E., al Mahr, M.et al.Molecular detection of acute lymphoblastic leukaemia in boys with testicular relapse. Mol Pathol, 1998; 51: 277–81.
Vervoordeldonk, S. F., Merle, P. A., Behrendt, H., et al.PCR-positivity in harvested bone marrow predicts relapse after transplantation with autologous purged bone marrow in children in second remission of precursor B-cell acute leukaemia. Br J Haematol, 1997; 96: 395–402.
Balduzzi, A., Gaipa, G., Bonanomi, S., et al.Purified autologous grafting in childhood acute lymphoblastic leukemia in second remission: evidence for long-term clinical and molecular remissions. Leukemia, 2001; 15: 50–6.
Velden, V., Willemse, M. J., Mulder, M. F., et al.Clearance of maternal leukaemic cells in a neonate. Br J Haematol, 2001; 114: 104–6.
Greaves, M.Molecular genetics, natural history and the demise of childhood leukaemia. Eur J Cancer, 1999; 35: 1941–53.
Wiemels, J. L., Ford, A. M., Wering, E. R., Postma, A., & Greaves, M.Protracted and variable latency of acute lymphoblastic leukemia after TEL-AML1 gene fusion in utero. Blood, 1999; 94: 1057–62.
Campana, D.Determination of minimal residual disease in leukemia patients. Br J Haematol, 2003; 121: 823–38.
Velden, V., Jacobs, D. C., Wijkhuijs, A. J., et al.Minimal residual disease levels in bone marrow and peripheral blood are comparable in children with T cell acute lymphoblastic leukemia (ALL), but not in precursor-B-ALL. Leukemia, 2002; 16: 1432–6.
Coustan-Smith, E., Gajjar, A., Hijiya, N., et al.Clinical significance of minimal residual disease in childhood acute lymphoblastic leukemia after first relapse. Leukemia, 2004; 18: 499–504.
Grimwade, D.The pathogenesis of acute promyelocytic leukaemia: evaluation of the role of molecular diagnosis and monitoring in the management of the disease. Br J Haematol, 1999; 106: 591–613.
Mandelli, F., Diverio, D., Avvisati, G., et al.Molecular remission in PML/RAR alpha-positive acute promyelocytic leukemia by combined all-trans retinoic acid and idarubicin (AIDA) therapy. Gruppo Italiano-Malattie Ematologiche Maligne dell'Adulto and Associazione Italiana di Ematologia ed Oncologia Pediatrica Cooperative Groups. Blood, 1997; 90: 1014–21.
Burnett, A. K., Grimwade, D., Solomon, E., Wheatley, K., & Goldstone, A. H.Presenting white blood cell count and kinetics of molecular remission predict prognosis in acute promyelocytic leukemia treated with all-trans retinoic acid: result of the Randomized MRC Trial. Blood, 1999; 93: 4131–43.
Slack, J. L., Bi, W., Livak, K. J., et al.Pre-clinical validation of a novel, highly sensitive assay to detect PML-RARalpha mRNA using real-time reverse-transcription polymerase chain reaction. J Mol Diagn, 2001; 3: 141–9.
Cassinat, B., Zassadowski, F., Balitrand, N., et al.Quantitation of minimal residual disease in acute promyelocytic leukemia patients with t(15;17) translocation using real-time RT-PCR. Leukemia, 2000; 14: 324–8.
Lo Coco, F.Diverio, D., Avvisati, G., et al.Therapy of molecular relapse in acute promyelocytic leukemia. Blood, 1999; 94: 2225–9.
Nucifora, G., Larson, R. A., & Rowley, J. D.Persistence of the 8;21 translocation in patients with acute myeloid leukemia type M2 in long-term remission. Blood, 1993; 82: 712–15.
Kusec, R., Laczika, K., Knobl, P., et al.AML1/ETO fusion mRNA can be detected in remission blood samples of all patients with t(8;21) acute myeloid leukemia after chemotherapy or autologous bone marrow transplantation. Leukemia, 1994; 8: 735–9.
Saunders, M. J., Tobal, K., & Yin, J. A.Detection of t(8;21) by reverse transcriptase polymerase chain reaction in patients in remission of acute myeloid leukaemia type M2 after chemotherapy or bone marrow transplantation. Leuk Res, 1994; 18: 891–5.
Jurlander, J., Caligiuri, M. A., Ruutu, T., et al.Persistence of the AML1/ETO fusion transcript in patients treated with allogeneic bone marrow transplantation for t(8;21) leukemia. Blood, 1996; 88: 2183–91.
Kwong, Y. L., Chan, V., Wong, K. F., & Chan, T. K.Use of the polymerase chain reaction in the detection of AML1/ETO fusion transcript in t(8;21). Cancer, 1995; 75: 821–5.
Satake, N., Maseki, N., Kozu, T., et al.Disappearance of AML1-MTG8(ETO) fusion transcript in acute myeloid leukaemia patients with t(8;21) in long-term remission. Br J Haematol, 1995; 91: 892–8.
Sugimoto, T., Das, H., Imoto, S., et al.Quantitation of minimal residual disease in t(8;21)-positive acute myelogenous leukemia patients using real-time quantitative RT-PCR. Am J Hematol, 2000; 64: 101–6.
Marcucci, G., Livak, K. J., Bi, W., et al.Detection of minimal residual disease in patients with AML1/ETO-associated acute myeloid leukemia using a novel quantitative reverse transcription polymerase chain reaction assay. Leukemia, 1998; 12: 1482–9.
Barragan, E., Bolufer, P., Moreno, I., et al.Quantitative detection of AML1-ETO rearrangement by real-time RT-PCR using fluorescently labeled probes. Leuk Lymphoma, 2001; 42: 747–56.
Viehmann, S., Teigler-Schlegel, A., Bruch, J., et al.Monitoring of minimal residual disease (MRD) by real-time quantitative reverse transcription PCR (RQ-RT-PCR) in childhood acute myeloid leukemia with AML1/ETO rearrangement. Leukemia, 2003; 17: 1130–6.
Marcucci, G., Caligiuri, M. A., Dohner, H., et al.Quantification of CBFbeta/MYH11 fusion transcript by real time RT-PCR in patients with INV(16) acute myeloid leukemia. Leukemia, 2001; 15: 1072–80.
Buonamici, S., Ottaviani, E., Testoni, N., et al.Real-time quantitation of minimal residual disease in inv(16)-positive acute myeloid leukemia may indicate risk for clinical relapse and may identify patients in a curable state. Blood, 2002; 99: 443–9.
Reijden, B. A., Simons, A., Luiten, E., et al.Minimal residual disease quantification in patients with acute myeloid leukaemia and inv(16)/CBFB-MYH11 gene fusion. Br J Haematol, 2002; 118: 411–18.
Reichle, A., Rothe, G., Krause, S., et al.Transplant characteristics: minimal residual disease and impaired megakaryocytic colony growth as sensitive parameters for predicting relapse in acute myeloid leukemia. Leukemia, 1999; 13: 1227–34.
Pui, C. H. & Campana, D.New definition of remission in childhood acute lymphoblastic leukemia. Leukemia, 2000; 14: 783–5.
Neale, G. A. M., Coustan-Smith, E., Stow, P., et al.Comparative analysis of polymerase chain reaction and flow cytometry for the detection of minimal residual disease in childhood acute lymphoblastic leukemia. Leukemia, 2004; 18: 934–8.
Muller, M. C., Merx, K., Weibetaer, A., et al.Improvement of molecular monitoring of residual disease in leukemias by bedside RNA stabilization. Leukemia, 2002; 16: 2395–9.