Skip to main content Accessibility help
×
Home
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 2
  • Print publication year: 2014
  • Online publication date: June 2014

Section 1 - Classification, pathology, and basic aspects

References

1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701.
2. Wardlaw JM, Smith EE, Biessels GJ, et al. Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822–838.
3. Pantoni L, Sarti C, Alafuzoff I, et al. Postmortem examination of vascular lesions in cognitive impairment: a survey among neuropathological services. Stroke 2006;37:1005–1009.
4. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013;12:483–97. Erratum in Lancet Neurol 2013;12:532.
5.Editorial. A united approach to vascular disease and neurodegeneration. Lancet Neurol 2012;11:293.
6. Appelman AP, Exalto LG, van der Graaf Y, et al. White matter lesions and brain atrophy: more than shared risk factors? A systematic review. Cerebrovasc Dis 2009;28:227–242.

References

1. Ogata J, Yutani C, Otsubo R, et al. Heart and vessel pathology underlying brain infarction in 142 stroke patients. Ann Neurol 2008;63:770–781.
2. Ogata J, Yamanishi H, Ishibashi-Ueda H. Review: role of cerebral vessels in ischaemic injury of the brain. Neuropathol Appl Neurobiol 2011;37:40–55.
3. Ogata J, Fijishima M, Tamaki K, et al. Stroke-prone spontaneously hypertensive rats as an experimental model of malignant hypertension. I. A light- and electron-microscopic study of the brain. Acta Neuropathol 1980;51:179–184.
4. Amano S. Vascular changes in the brain of spontaneously hypertensive rats: hyaline and fibrinoid degeneration. J Pathol 1977;121:119–128.
5. Rosenblum WI. Fibrinoid necrosis of small brain arteries and arterioles and miliary aneurysms as causes of hypertensive hemorrhage: a critical reappraisal. Acta Neuropathol 2008;116:361–369.
6. Fisher CM. Cerebral miliary aneurysms in hypertension. Am J Pathol 1971;66:313–330.
7. Fisher CM. Pathological observations in hypertensive cerebral hemorrhage. J Neuropathol Exper Neurol 1971;30:536–550.
8. Takebayashi S, Kaneko M. Electron microscopic studies of ruptured arteries in hypertensive intracerebral hemorrhage. Stroke 1983;14:28–36.
9. Wakai S, Nagai M. Histological verification of microaneurysms as a cause of cerebral haemorrhage in surgical specimens. J Neurol Neurosurg Psychiatry 1989;52:595–599.
10. Wakai S, Kumakura N, Nagai M. Lobar intracerebral hemorrhage. A clinical, radiological, and pathological study of 29 consecutive operated cases with negative angiography. J Neurosurg 1992;76:231–238.
11. Naghavi M, Libby P, Falk E, et al. From vulnerable plaque to vulnerable patient. A call for new definitions and risk assessment strategies: part I. Circulation 2003;108:1664–1672.
12. Fisher CM. Capsular infarcts. The underlying vascular lesions. Arch Neurol 1979;36:65–73.
13. Caplan LR. Intracranial branch atheromatous disease: a neglected, understudied, and underused concept. Neurology 1989;39:1246–1250.
14. Fisher CM, Caplan LR. Basilar artery branch occlusion: a cause of pontine infarction. Neurology 1971;21:900–905.
15. Fisher CM. Lacunes: small, deep cerebral infarcts. Neurology 1964;15:774–784.
16. Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol 1969;12:1–15.
17. Akima M, Nonaka H, Kagesawa M, Tanaka K. A Study on the microvasculature of the cerebral cortex. Fundamental architecture and its senile change in the frontal cortex. Lab Invest 1986;55:482–489.
18. Thore CR, Anstrom JA, Moody DM, et al. Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exper Neurol 2007;66:337–345.
19. Challa VR, Bell MA, Moody DM. A combined hematoxylin–eosin, alkaline phosphatase and high-resolution microradiographic study of lacunes. Clin Neuropathol 1990;9:196–204.
20. Tanoi Y, Okeda R, Budka H. Binswanger’s encephalopathy: serial sections and morphometry of the cerebral arteries. Acta Neuropathol 2000;100:347–355.
21. Pollock H, Hutchings M, Weller RO, Zhang E-T. Perivascular spaces in the basal ganglia of the human brain: their relation to lacunes. J Anat 1997;191:337–346.
22. Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987;18:311–324.
23. Revesz T, Holton JL, Lashley T, et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009;118:115–30.
24. Attems J, Jellinger K, Thal DR, Van Nostrand W. Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2011;37:75–93.
25. Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 2011;7:1–9.
26. Vinters HV, Gilbert JJ. Cerebral amyloid angiopathy: incidence and complications in the aging brain. II. The distribution of amyloid vascular changes. Stroke 1983;14:924–928.
27. Weller RO, Massey A, Tracey A, et al. Cerebral amyloid angiopathy. Amyloid β accumulates in putative interstitial fluid drainage pathways in Alzheimer’s disease. Am J Pathol 1998;153:725–733.
28. Richard E, Carrano A, Hoozemans JJ, et al. Characteristics of dyshoric capillary cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2010;69:1158–1167.
29. Vonsattel JPG, Myers RH, Hedley-Whyte ET, et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 1991;30:637–649.
30. Ly JV, Rowe CC, Villemagne VL, et al. Cerebral β-amyloid detected by Pittsburgh compound B positron emission topography predisposes to recombinant tissue plasminogen activator-related hemorrhage. Ann Neurol 2010;68:959–962.
31. Rosand J, Hylek EM, O’Donnell HC, Greenberg SM. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study. Neurology 2000;55:947–951.
32. Biffi A, Halpin A, Towfighi A, et al. Aspirin and recurrent intracerebral hemorrhage in cerebral amyloid angiopathy. Neurology 2010;75:693–698.
33. Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds. The Rotterdam Scan Study. Neurology 2008;70:1208–1214.
34. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a field guide to their detection and interpretation. Lancet Neurol 2009;8:165–174.
35. Greenberg SM, Eng JA, Ning M, Smith EE, Rosand J. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:1415–1420.
36. Lovelock CE, Cordonnier C, Naka H, et al. Antithrombotic drug use, cerebral microbleeds, and intracerebral hemorrhage: a systematic review of published and unpublished studies. Stroke 2010;41:1222–1228.
37. Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20;637–642.
38. Schrag M, McAuley G, Pomakian J, et al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010;119:291–302.
39. Feldman HH, Maia LF, Mackenzie IRA, et al. Superficial siderosis. A potential diagnostic marker of cerebral amyloid angiopathy in Alzheimer disease. Stroke 2008;39:2894–2897.
40. Linn J, Herms J, Dichgans M, et al. Subarachnoid hemosiderosis and superficial cortical hemosiderosis in cerebral amyloid angiopathy. AJNR Am J Neuroradiol 2008;29:184–186.
41. Vernooij MW, Ikram MA, Hofman A, Krestin GP, Breteler MMB. Superficial siderosis in the general population. Neurology 2009;73:202–205.
42. Hachinski V, Iadecola C, Petersen RC, et al. National Institute of Neurological Disorders and Stroke–Canadian Stroke Network vascular cognitive impairment harmonization standards. Stroke 2006;37:2220–2241.
43. Smith EE, Schneider JA, Wardlaw JM, Greenberg SM. Cerebral microinfarcts: the invisible lesions. Lancet Neurol 2012;11:272–282.
44. Zhu YC, Chabriat H, Godin O, et al. Distribution of white matter hyperintensity in cerebral hemorrhage and healthy aging. J Neurol 2012;259:530–536.
45. Holland CM, Smith EE, Csapo I, et al. Spatial distribution of white-matter hyperintensities in Alzheimer disease, cerebral amyloid angiopathy, and healthy aging. Stroke 2008;39:1127–1133.
46. Thal DR, Ghebremedhin E, Orantes M, Wiestler OD. Vascular pathology in Alzheimer disease: correlation of cerebral amyloid angiopathy and arteriosclerosis/lipohyalinosis with cognitive decline. J Neuropathol Exp Neurol 2003;62:1287–1301.
47. Dumas A, Dierksen GA, Gurol ME, et al. Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. Ann Neurol 2012;72:76–81.
48. Roher AE, Kuo YM, Esh C, et al. Cortical and leptomeningeal cerebrovascular amyloid and white matter pathology in Alzheimer’s disease. Mol Med 2003;9:112–122.
49. Eng JA, Frosch MP, Choi K, Rebeck GW, Greenberg SM. Clinical manifestations of cerebral amyloid angiopathy-related inflammation. Ann Neurol 2004;55:250–256.
50. Scolding NJ, Joseph F, Kirby PA, et al. Aβ-related angiitis: primary angiitis of the central nervous system associated with cerebral amyloid angiopathy. Brain 2005;128:500–515.

References

1. Roman GC. On the history of lacunes, ètat criblé and the white matter lesions of vascular dementia. Cerebrovasc Dis 2002;13(Suppl 2):1–6.
2. Tomlinson BE, Blessed G, Roth M. Observations on the brains of demented old people. J Neurol Sci 1970;11:205–242.
3. Hachinski VC, Lassen NA, Marschall J. Multi-infarct dementia. A cause of mental deterioration in the elderly. J Amer Geriatr Soc 1974;2:207–210.
4. Tatemichi TK. How acute brain failure becomes chronic. A view of the mechanisms and syndromes of dementia related to stroke. Neurology 1990;40:1652–1659.
5. Brun A. Pathology and pathophysiology of cerebrovascular dementia: pure subgroups of obstructive and hypoperfusive etiology. Dementia 1994;5:145–147.
6. Knopman DS, Parisi JE, Boeve BF, et al. Vascular dementia in a population-based autopsy study. Arch Neurol 2003;60:569–575.
7. Alafuzoff I, Gelpi E, Al-Sarraj S, et al. The need to unify neuropathological assessments of vascular alterations in the ageing brain: multicentre survey by the BrainNet Europe consortium. Exp Gerontol 2012;47:825–833.
8. Pantoni L, Sarti C, Alafuzoff I, et al. Postmortem examination of vascular lesions in cognitive impairment: a survey among neuropathological services. Stroke 2006;37:1005–1009.
9. Pantoni L, Poggesi A, Inzitari D. Cognitive decline and dementia related to cerebrovascular diseases: some evidence and concepts. Cerebrovasc Dis 2009;27(Suppl 1):191–196.
10. Schneider JA, Bennett DA. Where vascular meets neurodegenerative disease. Stroke 2010;41(Suppl):S144–S146.
11. Braak H, Alafuzoff I, Arzberger T, Kretzschmar H, Del Tredici K. Staging of Alzheimer disease-associated neurofibrillary pathology using paraffin sections and immunohistochemistry. Acta Neuropathol 2006;112:389–404.
12. Gold G, Kövari E, Herrmann FR, et al. Cognitive consequences of thalamic, basal ganglia and deep white matter lacunes in brain aging and dementia. Stroke 2005;36:1184–1188.
13. Strozyk D, Dickson DW, Lipton RB, et al. Contribution of vascular pathology to the clinical expression of dementia. Neurobiol Aging 2010;31:1710–1720.
14. Mitchinson MJ. The hypotensive stroke. Lancet 1980;1(8162):244–246.
15. Zuccalà G, Onder G, Pedone C, et al. Hypotension and cognitive impairment. Selective association in patients with heart failure. Neurology 2001;57:1986–1992.
16. Duggal N, Lach B. Selective vulnerability of the lumbosacral spinal cord after cardiac arrest and hypotension. Stroke 2001;33:116–121.
17. Verbrugge SJ, Klinek M, Klein J. A cerebral watershed infarction after general anaesthesia in a patient with increased anti-cardiolipin antibody level. Anesthesist 2004;53:341–346.
18. Wang CJ, Cheng KI, Soo LY, Tang CS. Intraoperative stroke under epidural anesthesia for bipolar hemiarthroplasty in a patient with multiple myeloma: a case report. Kaohsiung J Med Sci 2001;17:55–59.
19. Esiri MM, Chance SA. Cognitive reserve, cortical plasticity and resistance to Alzheimer’s disease. Alzheimers Res Ther 2012;4:7.
20. Cadavid D, Mena H, Koeller K, Frommelt RA. Cerebral β amyloid angiopathy is a risk factor for cerebral ischemic infarction. A case control study in human brain biopsies. J Neuropathol Exp Neurol 2000;59:768–773.
21. Greenberg SM. Cerebral amyloid angiopathy and vessel dysfunction. Cerebrovasc Dis 2002;13 (Suppl 2):42–47.
22. Haglund M, Passant U, Sjöbeck M, Ghebremedin E, Englund E. Cerebral amyloid angiopathy and cortical microinfarcts as putative substrates of vascular dementia. Int J Geriatr Psychiatry 2006;21:681–687.
23. Kövari E, Hermann FR, Hof PR, Bouras C. The relationship between cerebral amyloid angiopathy and cortical microinfarcts in brain ageing and Alzheimer’s disease. Neuropathol Appl Neurobiol 2013;39:498–509.
24. Englund E. Neuropathology of white matter lesions in vascular cognitive impairment. Cerebrovasc Dis 2002;13(Suppl) :11–15.
25. Olsson Y, Brun A, Englund E. Fundamental pathological lesions in vascular dementia. Acta Neurol Scand 1996;168(Suppl):31–38.
26. Sjöbeck M, Englund E. Glial levels determine severity of white matter changes in Alzheimer’s disease: a neuropathological study of glial changes. Neuropathol Appl Neurobiol 2003;29:159–169.
27. Ihara M, Polvikoski TM, Hall R, et al. Quantification of myelin loss in frontal lobe white matter in vascular dementia, Alzheimer’s disease and dementia with Lewy bodies. Acta Neuropathol 2010;119:579–589.
28. Sjöbeck M, Haglund M, Englund E. White matter mapping in Alzheimer’s disease. A neuropathological study. Neurobiol Aging 2006;27:673–680.
29. Haglund M, Englund E. Cerebral amyloid angiopathy, white matter lesions and Alzheimer encephalopathy – a histopathological assessment. Dement Geriatr Cogn Disord 2002;14:161–166.
30. Schmidt R, Schmidt H, Haybeaeck J, et al. Heterogeneity in age-related white matter changes. Acta Neuropathol 2011;122:171–185.
31. Roman GC. Vascular dementia may be the most common form of dementia in the elderly. J Neurol Sci 2002;203:7–10.
32. Pulsinelli WA, Brierley JB, Plum F. Temporal profile of neuronal damage in a model of transient forebrain ischemia. Ann Neurol 1982;11:491–498.
33. Petito CK, Feldmann E, Pulsinelli WA, Plum F. Delayed hippocampal damage in humans following cardiorespiratory arrest. Neurology 1987;37:1281–1286.
34. Björklund E, Lindberg E, Rundgren M, et al. Ischemic brain damage after cardiac arrest and therapeutic hypothermia – a systematic description of selective neuronal death. Resuscitation 2013, Dec 6 [Epub ahead of print].
35. Rosenberg GA, Haaland RY. Cardiogenic dementia. Lancet 1981;318:368–372.
36. O’Sullivan M. Imaging small vessel disease: lesion topography, networks and cognitive deficits investigated with MRI. Stroke 2010;41(Suppl):S154–158.
37. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701.
38. Snowdon DA, Greiner LH, Mortimer JA, et al. Brain infarction and the clinical expression of Alzheimer disease. The Nun Study. JAMA 1997;277: 813–817.
39. Esiri MM, Nagy Z, Smith MZ, Barnetson L, Smith AD. Cerebrovascular disease and threshold for dementia in the early stages of Alzheimer’s disease. Lancet 1999;354(9182):919–920.
40. Lee JH, Olichney JM, Hansen LA, Hofstetter CR, Thal LJ. Small concomitant vascular lesions do not influence rates of cognitive decline in patients with Alzheimer’s disease. Arch Neurol 2000;57:1474–1479.
41. Neuropathology Group. Medical Research Council Cognitive Function and Aging Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 2001;357:169–175.
42. Schneider JA, Wilson RS, Bienias JL, Evans DA, Bennett DA. Cerebral infarctions and the likelihood of dementia from Alzheimer disease pathology. Neurology 2004;62:1148–1455.
43. Bennett DA, Schneider JA, Bienias JL, Evans DA, Wilson RS. Mild cognitive impairment is related to Alzheimer disease pathology and cerebral infarctions. Neurology 2005;64:834–841.
44. Petrovitch H, Ross GW, Steinhorn SC, et al. AD lesions and infarcts in demented and non-demented Japanese-American men. Ann Neurol 2005;57:98–103.
45. Chui HC, Zarow C, Mack WJ, et al. Cognitive impact of subcortical vascular and Alzheimer’s disease pathology. Ann Neurol 2006;60:677–687.
46. Sonnen JA, Larson EB, Crane PK, et al. Pathological correlates of dementia in a longitudinal, population-based sample of aging. Ann Neurol 2007;62:406–413.
47. Schneider JA, Arvanitakis Z, Bang W, Bennett DA. Mixed brain pathologies account for most dementia cases in community-dwelling older persons. Neurology 2007;69:2197–2204.
48. Smallwood A, Oulhaj A, Joachim C, et al. Cerebral subcortical vessel disease and its relation to cognition in elderly subjects: a pathological study in the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort. Neuropathol Appl Neurobiol 2012;38:337–343.
49. Nasreddine ZS, Phillips NA, Bédirian V, et al. The Montreal Cognitive Assessment, MoCA: a brief screening tool for mild cognitive impairment. J Am Geriatr Soc 2005;53:695–699.
50. Erkinjuntti T. Subcortical vascular dementia. Cerebrovasc Dis 2002;13(Suppl 2):58–60.
51. Frisoni GB. Dementia: important advances in research in 2006. Lancet Neurol 2007;6:4–5.
52. Lee AY. Vascular dementia. Chonnam Med J 2011;47:66–71.

References

1. Smallwood A, Oulhaj A, Joachim C, et al. Cerebral subcortical small vessel disease and its relation to cognition in elderly subjects: a pathological study in the Oxford Project to Investigate Memory and Ageing (OPTIMA) cohort. Neuropathol Appl Neurobiol 2012;38:337–343.
2. Tanskanen M, Makela M, Myllykangas L, et al. Intracerebral hemorrhage in the oldest old: a population-based study (Vantaa 85+). Front Neurol 2012;3:103.
3. Seo SW, Hwa Lee B, et al. Clinical significance of microbleeds in subcortical vascular dementia. Stroke 2007;38:1949–1951.
4. Esiri MM, Joachim C, Sloan C, et al. Cerebral subcortical small vessel disease in subjects with pathologically confirmed Alzheimer’s disease: a clinicopathological study in the Oxford Project to Investigate Memory and Ageing (OPTIMA). Alzheimer Dis Assoc Disord 2013, Jul 8 [Epub ahead of print].
5. Zekry D, Duyckaerts C, Belmin J, et al. Cerebral amyloid angiopathy in the elderly: vessel wall changes and relationship with dementia. Acta Neuropathol 2003;106:367–373.
6. Ferrer I, Kaste M, Kalimo H. Vascular diseases. In Love S, Louis DN, Ellison DW, eds. Greenfield’s Neuropathology, 8th edn. London: Hodder Arnold; 2008: pp. 121–240.
7. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701.
8. Rosand J, Muzikansky A, Kumar A, et al. Spatial clustering of hemorrhages in probable cerebral amyloid angiopathy. Ann Neurol 2005;58:459–462.
9. Vinters HV. Cerebral amyloid angiopathy. A critical review. Stroke 1987;18:311–324.
10. Attems J, Jellinger K, Thal DR, Van Nostrand W. Review: sporadic cerebral amyloid angiopathy. Neuropathol Appl Neurobiol 2011;37:75–93.
11. Vonsattel JP, Myers RH, Hedley-Whyte ET, et al. Cerebral amyloid angiopathy without and with cerebral hemorrhages: a comparative histological study. Ann Neurol 1991;30:637–649.
12. Neuropathology Group. Medical Research Council Cognitive Function and Ageing Study. Pathological correlates of late-onset dementia in a multicentre, community-based population in England and Wales. Lancet 2001;357:169–175.
13. Attems J, Lauda F, Jellinger KA. Unexpectedly low prevalence of intracerebral hemorrhages in sporadic cerebral amyloid angiopathy: an autopsy study. J Neurol 2008;255:70–76.
14. Biffi A, Sonni A, Anderson CD, et al. Variants at ApoE influence risk of deep and lobar intracerebral hemorrhage. Ann Neurol 2010;68:934–943.
15. McCarron MO, Nicoll JA. High frequency of apolipoprotein E ε2 allele is specific for patients with cerebral amyloid angiopathy-related haemorrhage. Neurosci Lett 1998;247:45–48.
16. Olichney JM, Hansen LA, Hofstetter CR, et al. Association between severe cerebral amyloid angiopathy and cerebrovascular lesions in Alzheimer disease is not a spurious one attributable to apolipoprotein E ε4. Arch Neurol 2000;57:869–874.
17. Jellinger KA, Lauda F, Attems J. Sporadic cerebral amyloid angiopathy – no frequent cause of spontaneous brain haemorrhage. Neuropathol App Neurobiol 2008;34:S1–14.
18. Jellinger KA, Lauda F, Attems J. Sporadic cerebral amyloid angiopathy is not a frequent cause of spontaneous brain hemorrhage. Eur J Neurol 2007;14:923–928.
19. Chen YW, Gurol ME, Rosand J, et al. Progression of white matter lesions and hemorrhages in cerebral amyloid angiopathy. Neurology 2006;67:83–87.
20. Smith EE, Schneider JA, Wardlaw JM, Greenberg SM. Cerebral microinfarcts: the invisible lesions. Lancet Neurol 2012;11:272–282.
21. Gregoire SM, Charidimou A, Gadapa N, et al. Acute ischaemic brain lesions in intracerebral haemorrhage: multicentre cross-sectional magnetic resonance imaging study. Brain 2011;134:2376–2386.
22. Arima H, Tzourio C, Anderson C, et al. Effects of perindopril-based lowering of blood pressure on intracerebral hemorrhage related to amyloid angiopathy: the PROGRESS trial. Stroke 2010;41:394–396.
23. Revesz T, Holton JL, Lashley T, et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009;118:115–130.
24. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 2011;10:241–252.
25. Greenberg SM, Rebeck GW, Vonsattel JP, Gomez-Isla T, Hyman BT. Apolipoprotein E ε4 and cerebral hemorrhage associated with amyloid angiopathy. Ann Neurol 1995;38:254–259.
26. Greenberg SM, Vonsattel JP, Segal AZ, et al. Association of apolipoprotein E ε2 and vasculopathy in cerebral amyloid angiopathy. Neurology 1998;50:961–965.
27. McCarron MO, Nicoll JA, Stewart J, et al. The apolipoprotein E ε2 allele and the pathological features in cerebral amyloid angiopathy-related hemorrhage. J Neuropathol Exp Neurol 1999;58:711–718.
28. Nicoll JA, Burnett C, Love S, et al. High frequency of apolipoprotein E ε2 allele in hemorrhage due to cerebral amyloid angiopathy. Ann Neurol 1997;41:716–721.
29. O’Donnell HC, Rosand J, Knudsen KA, et al. Apolipoprotein E genotype and the risk of recurrent lobar intracerebral hemorrhage. N Engl J Med 2000;342:240–245.
30. Greenberg SM, Briggs ME, Hyman BT, et al. Apolipoprotein E ε4 is associated with the presence and earlier onset of hemorrhage in cerebral amyloid angiopathy. Stroke 1996;27:1333–1337.
31. Biffi A, Anderson CD, Jagiella JM, et al. APOE genotype and extent of bleeding and outcome in lobar intracerebral haemorrhage: a genetic association study. Lancet Neurol 2011;10:702–709.
32. Montaner J. Genetics of intracerebral haemorrhage: a tsunami effect of APOE ε2 genotype on brain bleeding size? Lancet Neurol 2011;10:673–675.
33. Charidimou A, Gang Q, Werring DJ. Sporadic cerebral amyloid angiopathy revisited: recent insights into pathophysiology and clinical spectrum. J Neurol Neurosurg Psychiatry 2012;83:124–137.
34. Sumii T, Lo EH. Involvement of matrix metalloproteinase in thrombolysis-associated hemorrhagic transformation after embolic focal ischemia in rats. Stroke 2002;33:831–836.
35. Hernandez-Guillamon M, Mawhirt S, Fossati S, et al. Matrix metalloproteinase 2 (MMP-2) degrades soluble vasculotropic amyloid-β e22q and l34v mutants, delaying their toxicity for human brain microvascular endothelial cells. J Biol Chem 2010;285:27144–27158.
36. Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 2009;8:205–216.
37. Lee JM, Yin KJ, Hsin I, et al. Matrix metalloproteinase-9 and spontaneous hemorrhage in an animal model of cerebral amyloid angiopathy. Ann Neurol 2003;54:379–382.
38. Del Zoppo GJ. Bleeding in the brain: amyloid-β may keep clots away. Nat Med 2009;15:1132–1133.
39. Xu F, Previti ML, Nieman MT, et al. Aβ APP/APLP2 family of Kunitz serine proteinase inhibitors regulate cerebral thrombosis. J Neurosci 2009;29:5666–5670.
40. Flaherty ML, Kissela B, Woo D, et al. The increasing incidence of anticoagulant-associated intracerebral hemorrhage. Neurology 2007;68:116–121.
41. Lovelock CE, Cordonnier C, Naka H, et al. Antithrombotic drug use, cerebral microbleeds, and intracerebral hemorrhage: a systematic review of published and unpublished studies. Stroke 2010;41:1222–1228.
42. Rosand J, Hylek EM, O’Donnell HC, Greenberg SM. Warfarin-associated hemorrhage and cerebral amyloid angiopathy: a genetic and pathologic study. Neurology 2000;55:947–951.
43. McCarron MO, Nicoll JA. Cerebral amyloid angiopathy and thrombolysis-related intracerebral haemorrhage. Lancet Neurol 2004;3:484–492.
44. Sloan MA, Price TR, Petito CK, et al. Clinical features and pathogenesis of intracerebral hemorrhage after RT-PA and heparin therapy for acute myocardial infarction: the Thrombolysis In Myocardial Infarction (TIMI) (ii) pilot and randomized clinical trial combined experience. Neurology 1995;45:649–658.
45. Kalimo H, Miao Q, Tikka S, et al. CADASIL: the most common hereditary subcortical vascular dementia. Future Neurol 2008;3:683–704.
46. Choi JC, Kang SY, Kang JH, Park JK. Intracerebral hemorrhages in CADASIL. Neurology 2006;67:2042–2044.
47. Kumar S, Goddeau RP, Jr., Selim MH, et al. Atraumatic convexal subarachnoid hemorrhage: clinical presentation, imaging patterns, and etiologies. Neurology 2010;74:893–899.
48. Raposo N, Viguier A, Cuvinciuc V, et al. Cortical subarachnoid haemorrhage in the elderly: a recurrent event probably related to cerebral amyloid angiopathy. Eur J Neurol 2011;18:597–603.
49. Linn J, Herms J, Dichgans M, et al. Subarachnoid hemosiderosis and superficial cortical hemosiderosis in cerebral amyloid angiopathy. AJNR Am J Neuroradiol 2008;29:184–186.
50. Cuvinciuc V, Viguier A, Calviere L, et al. Isolated acute nontraumatic cortical subarachnoid hemorrhage. AJNR Am J Neuroradiol 2010;31:1355–1362.
51. Katoh M, Yoshino M, Asaoka K, et al. A restricted subarachnoid hemorrhage in the cortical sulcus in cerebral amyloid angiopathy: could it be a warning sign? Surg Neurol 2007;68:457–460.
52. Karabatsou K, Lecky BR, Rainov NG, Broome JC, White RP. Cerebral amyloid angiopathy with symptomatic or occult subarachnoid haemorrhage. Eur Neurol 2007;57:103–105.
53. Kase CS, Nguyen TN. The clinical conundrum of convexal subarachnoid hemorrhage. Neurology 2010;74:874–875.
54. Linn J, Halpin A, Demaerel P, et al. Prevalence of superficial siderosis in patients with cerebral amyloid angiopathy. Neurology 2010;74:1346–1350.
55. Beitzke M, Gattringer T, Enzinger C, et al. Clinical presentation, etiology, and long-term prognosis in patients with nontraumatic convexal subarachnoid hemorrhage. Stroke 2011;42:3055–3060.
56. Fearnley JM, Stevens JM, Rudge P. Superficial siderosis of the central nervous system. Brain 1995;118 (Pt 4):1051–1066.
57. Kumar N, Cohen-Gadol AA, Wright RA, et al. Superficial siderosis. Neurology 2006;66:1144–1152.
58. Feldman HH, Maia LF, Mackenzie IR, et al. Superficial siderosis: a potential diagnostic marker of cerebral amyloid angiopathy in Alzheimer disease. Stroke 2008;39:2894–2897.
59. Vernooij MW, Ikram MA, Hofman A, et al. Superficial siderosis in the general population. Neurology 2009;73:202–205.
60. Levy M, Turtzo C, Llinas RH. Superficial siderosis: a case report and review of the literature. Nat Clin Pract Neurol 2007;3:54–58; quiz 59.
61. Greenberg SM, Vernooij MW, Cordonnier C, et al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–174.
62. Haacke EM, DelProposto ZS, Chaturvedi S, et al. Imaging cerebral amyloid angiopathy with susceptibility-weighted imaging. AJNR Am J Neuroradiol 2007;28:316–317.
63. Kellner CP, Connolly ES, Jr. Neuroprotective strategies for intracerebral hemorrhage: trials and translation. Stroke 2010;41:S99–S102.
64. Vernooij MW, van der Lugt A, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208–1214.
65. Nandigam RN, Viswanathan A, Delgado P, et al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009;30:338–343.
66. Theysohn JM, Kraff O, Maderwald S, et al. Seven Tesla MRI of microbleeds and white matter lesions as seen in vascular dementia. J Magn Reson Imaging 2011;33:782–791.
67. Conijn MM, Geerlings MI, Luijten PR, et al. Visualization of cerebral microbleeds with dual-echo T2*-weighted magnetic resonance imaging at 7.0 T. J Magn Reson Imaging 2010;32:52–59.
68. De Reuck J, Auger F, Cordonnier C, et al. Comparison of 7.0-T T(2)*-magnetic resonance imaging of cerebral bleeds in postmortem brain sections of Alzheimer patients with their neuropathological correlates. Cerebrovasc Dis 2011;31:511–517.
69. Lee SH, Lee ST, Kim BJ, et al. Dynamic temporal change of cerebral microbleeds: long-term follow-up MRI study. PLoS One 2011;6:e25930.
70. Tsushima Y, Tanizaki Y, Aoki J, Endo K. MR detection of microhemorrhages in neurologically healthy adults. Neuroradiology 2002;44:31–36.
71. Cordonnier C. Brain microbleeds: more evidence, but still a clinical dilemma. Curr Opin Neurol 2011;24:69–74.
72. Loitfelder M, Seiler S, Schwingenschuh P, Schmidt R. Cerebral microbleeds: a review. Panminerva Med 2012;54:149–160.
73. Hofman A, Breteler MM, van Duijn CM, et al. The Rotterdam Study: 2010 objectives and design update. Eur J Epidemiol 2009;24:553–572.
74. Koennecke HC. Cerebral microbleeds on MRI: prevalence, associations, and potential clinical implications. Neurology 2006;66:165–171.
75. Cordonnier C, Al-Shahi Salman R, Wardlaw J. Spontaneous brain microbleeds: systematic review, subgroup analyses and standards for study design and reporting. Brain 2007;130:1988–2003.
76. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. CADASIL. Lancet Neurol 2009;8:643–653.
77. Dichgans M, Holtmannspotter M, Herzog J, et al. Cerebral microbleeds in CADASIL: a gradient-echo magnetic resonance imaging and autopsy study. Stroke 2002;33:67–71.
78. Van den Boom R, Bornebroek M, Behloul F, et al. Microbleeds in hereditary cerebral hemorrhage with amyloidosis-Dutch type. Neurology 2005;64:1288–1289.
79. Sveinbjornsdottir S, Sigurdsson S, Aspelund T, et al. Cerebral microbleeds in the population based ages – Reykjavik study: prevalence and location. J Neurol Neurosurg Psychiatry 2008;79:1002–1006.
80. Poels MM, Vernooij MW, Ikram MA, et al. Prevalence and risk factors of cerebral microbleeds: an update of the Rotterdam Scan Study. Stroke 2010;41:S103–106.
81. Van Es AC, van der Grond J, de Craen AJ, et al. Cerebral microbleeds and cognitive functioning in the PROSPER study. Neurology 2011;77:1446–1452.
82. Henneman WJ, Sluimer JD, Cordonnier C, et al. MRI biomarkers of vascular damage and atrophy predicting mortality in a memory clinic population. Stroke 2009;40:492–498.
83. Altmann-Schneider I, Trompet S, de Craen AJ, et al. Cerebral microbleeds are predictive of mortality in the elderly. Stroke 2011;42:638–644.
84. Fazekas F, Kleinert R, Roob G, et al. Histopathologic analysis of foci of signal loss on gradient-echo T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–642.
85. Tanaka A, Ueno Y, Nakayama Y, Takano K, Takebayashi S. Small chronic hemorrhages and ischemic lesions in association with spontaneous intracerebral hematomas. Stroke 1999;30:1637–1642.
86. Schrag M, McAuley G, Pomakian J, et al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010;119:291–302.
87. Grinberg LT, Thal DR. Vascular pathology in the aged human brain. Acta Neuropathol 2010;119:277–290.
88. Hommet C, Mondon K, Constans T, et al. Review of cerebral microangiopathy and Alzheimer’s disease: relation between white matter hyperintensities and microbleeds. Dement Geriatr Cogn Disord 2011;32:367–378.
89. Shoamanesh A, Kwok CS, Benavente O. Cerebral microbleeds: histopathological correlation of neuroimaging. Cerebrovasc Dis 2011;32:528–534.
90. Greenberg SM, Eng JA, Ning M, Smith EE, Rosand J. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:1415–1420.
91. Knudsen KA, Rosand J, Karluk D, Greenberg SM. Clinical diagnosis of cerebral amyloid angiopathy: validation of the Boston criteria. Neurology 2001;56:537–539.
92. Roob G, Lechner A, Schmidt R, et al. Frequency and location of microbleeds in patients with primary intracerebral hemorrhage. Stroke 2000;31:2665–2669.
93. Thal DR, Ghebremedhin E, Rub U, et al. Two types of sporadic cerebral amyloid angiopathy. J Neuropathol Exp Neurol 2002;61:282–293.
94. Maxwell SS, Jackson CA, Paternoster L, et al. Genetic associations with brain microbleeds: systematic review and meta-analyses. Neurology 2011;77:158–167.
95. Poels MM, Ikram MA, van der Lugt A, et al. Incidence of cerebral microbleeds in the general population: the Rotterdam Scan Study. Stroke 2011;42:656–661.
96. Jeerakathil T, Wolf PA, Beiser A, et al. Cerebral microbleeds: prevalence and associations with cardiovascular risk factors in the Framingham Study. Stroke 2004;35:1831–1835.
97. Nakata-Kudo Y, Mizuno T, Yamada K, et al. Microbleeds in Alzheimer disease are more related to cerebral amyloid angiopathy than cerebrovascular disease. Dement Geriatr Cogn Disord 2006;22:8–14.
98. Charidimou A, Werring DJ. Cerebral microbleeds: detection, mechanisms and clinical challenges. Future Neurol 2011;6:587–611.
99. Cullen KM, Kocsi Z, Stone J. Microvascular pathology in the aging human brain: evidence that senile plaques are sites of microhaemorrhages. Neurobiol Aging 2006;27:1786–1796.
100. Tang WK, Chen YK, Lu JY, et al. Absence of cerebral microbleeds predicts reversion of vascular “cognitive impairment no dementia” in stroke. Int J Stroke 2011;6:498–505.
101. Dierksen GA, Skehan ME, Khan MA, et al. Spatial relation between microbleeds and amyloid deposits in amyloid angiopathy. Ann Neurol 2010;68:545–548.
102. Lee SH, Bae HJ, Kwon SJ, et al. Cerebral microbleeds are regionally associated with intracerebral hemorrhage. Neurology 2004;62:72–76.
103. Charidimou A, Shakeshaft C, Werring DJ. Cerebral microbleeds on magnetic resonance imaging and anticoagulant-associated intracerebral hemorrhage risk. Front Neurol 2012;3:133.
104. Charidimou A, Werring DJ. Cerebral microbleeds and cognition in cerebrovascular disease: an update. J Neurol Sci 2012.
105. Gold G, Kovari E, Herrmann FR, et al. Cognitive consequences of thalamic, basal ganglia, and deep white matter lacunes in brain aging and dementia. Stroke 2005;36:1184–1188.
106. Werring DJ. Cerebral microbleeds: clinical and pathophysiological significance. J Neuroimaging 2007;17:193–203.
107. Grabowski TJ, Cho HS, Vonsattel JP, Rebeck GW, Greenberg SM. Novel amyloid precursor protein mutation in an Iowa family with dementia and severe cerebral amyloid angiopathy. Ann Neurol 2001;49:697–705.
108. Mandybur TI. Cerebral amyloid angiopathy: the vascular pathology and complications. J Neuropathol Exp Neurol 1986;45:79–90.
109. Okoye MI, Watanabe I. Ultrastructural features of cerebral amyloid angiopathy. Hum Pathol 1982;13:1127–1132.
110. Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011;70:871–880.
111. Okazaki S, Sakaguchi M, Hyun B, et al. Cerebral microbleeds predict impending intracranial hemorrhage in infective endocarditis. Cerebrovasc Dis 2011;32:483–488.
112. Gregoire SM, Jager HR, Yousry TA, et al. Brain microbleeds as a potential risk factor for antiplatelet-related intracerebral haemorrhage: hospital-based, case-control study. J Neurol Neurosurg Psychiatry 2010;81:679–684.
113. Vernooij MW, Haag MD, van der Lugt A, et al. Use of antithrombotic drugs and the presence of cerebral microbleeds: the Rotterdam Scan Study. Arch Neurol 2009;66:714–720.
114. Wong KS, Chan YL, Liu JY, Gao S, Lam WW. Asymptomatic microbleeds as a risk factor for aspirin-associated intracerebral hemorrhages. Neurology 2003;60:511–513.
115. Charidimou A, Kakar P, Fox Z, Werring DJ. Cerebral microbleeds and the risk of intracerebral haemorrhage after thrombolysis for acute ischaemic stroke: systematic review and meta-analysis. J Neurol Neurosurg Psychiatry 2013;84:277–280.
116. Shoamanesh A, Kwok CS, Lim PA, Benavente OR. Postthrombolysis intracranial hemorrhage risk of cerebral microbleeds in acute stroke patients: a systematic review and meta-analysis. Int J Stroke 2013;8:348–356.
117. Cordonnier C, van der Flier WM. Brain microbleeds and Alzheimer’s disease: innocent observation or key player? Brain 2011;134:335–344.

References

1. Hainsworth AH, Markus HS. Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab 2008;28:1877–1891.
2. Imai H, Masayasu H, Dewar D, et al. Ebselen protects both gray and white matter in a rodent model of focal cerebral ischemia. Stroke 2001;32:2149–2154.
3. Sarti C, Pantoni L. Experimental models of vascular dementia: a focus on white matter disease and incomplete infarction. In Bowler JV, Hachinski V, eds. Vascular Cognitive Impairment: Preventable Dementia. Oxford: Oxford University Press; 2003: pp. 76–92.
4. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701.
5. Boiten J, Lodder J, Kessels F. Two clinically distinct lacunar infarct entities? A hypothesis. Stroke 1993;24:652–656.
6. Fisher CM. The arterial lesions underlying lacunes. Acta Neuropathol 1968;12:1–15.
7. Khan U, Porteous L, Hassan A, Markus HS. Risk factor profile of cerebral small vessel disease and its subtypes. J Neurol Neurosurg Psychiatry 2007;78:702–706.
8. O’Sullivan M, Lythgoe DJ, Pereira AC, et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology 2002;59:321–326.
9. Terborg C, Gora F, Weiller C, Rother J. Reduced vasomotor reactivity in cerebral microangiopathy: a study with near-infrared spectroscopy and transcranial Doppler sonography. Stroke 2000;31:924–929.
10. Fernando MS, Simpson JE, Matthews F, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 2006;37:1391–1398.
11. Hassan A, Hunt BJ, O’Sullivan M, et al. Markers of endothelial dysfunction in lacunar infarction and ischaemic leukoaraiosis. Brain 2003;126:424–432.
12. Wardlaw JM, Sandercock PA, Dennis MS, Starr J. Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003;34:806–812.
13. Giwa MO, Williams J, Elderfield K, et al. Neuropathologic evidence of endothelial changes in cerebral small vessel disease. Neurology 2012;78:167–174.
14. Kaposzta Z, Young E, Bath PM, Markus HS. Clinical application of asymptomatic embolic signal detection in acute stroke: a prospective study. Stroke 1999;30:1814–1818.
15. Bailey EL, McCulloch J, Sudlow C, Wardlaw JM. Potential animal models of lacunar stroke: a systematic review. Stroke 2009;40:e451–e458.
16. Bailey EL, Wardlaw JM, Graham D, et al. Cerebral small vessel endothelial structural changes predate hypertension in stroke-prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week-old rats. Neuropathol Appl Neurobiol 2011;37:711–726.
17. Jiwa NS, Garrard P, Hainsworth AH. Experimental models of vascular dementia and vascular cognitive impairment. A systematic review. J Neurochem 2010;115:814–828.
18. Sato Y, Chin Y, Kato T, et al. White matter activated glial cells produce BDNF in a stroke model of monkeys. Neurosci Res 2009;65:71–78.
19. Walker EJ, Rosenberg GA. Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 2010;88:764–773.
20. Yamamoto Y, Shioda N, Han F, et al. Nobiletin improves brain ischemia-induced learning and memory deficits through stimulation of CaMKII and CREB phosphorylation. Brain Res 2009;1295:218–229.
21. Lai M, Horsburgh K, Bae SE, et al. Forebrain mineralocorticoid receptor overexpression enhances memory, reduces anxiety and attenuates neuronal loss in cerebral ischaemia. Eur J Neurosci 2007;25:1832–1842.
22. Farkas E, Luiten PG, Bari F. Permanent, bilateral common carotid artery occlusion in the rat: a model for chronic cerebral hypoperfusion-related neurodegenerative diseases. Brain Res Rev 2007;54:162–180.
23. Ohta H, Nishikawa H, Kimura H, Anayama H, Miyamoto M. Chronic cerebral hypoperfusion by permanent internal carotid ligation produces learning impairment without brain damage in rats. Neuroscience 1997;79:1039–1050.
24. Sarti C, Pantoni L, Bartolini L, Inzitari D. Persistent impairment of gait performances and working memory after bilateral common carotid artery occlusion in the adult Wistar rat. Behav Brain Res 2002;136:13–20.
25. Kitamura A, Fujita Y, Oishi N, et al. Selective white matter abnormalities in a novel rat model of vascular dementia. Neurobiol Aging 2012;33:1012–1035.
26. Nishio K, Ihara M, Yamasaki N, et al. A mouse model characterizing features of vascular dementia with hippocampal atrophy. Stroke 2010;41:1278–1284.
27. Shibata M, Ohtani R, Ihara M, Tomimoto H. White matter lesions and glial activation in a novel mouse model of chronic cerebral hypoperfusion. Stroke 2004;35:2598–2603.
28. Shibata M, Yamasaki N, Miyakawa T, et al. Selective impairment of working memory in a mouse model of chronic cerebral hypoperfusion. Stroke 2007;38:2826–2832.
29. Miki K, Ishibashi S, Sun L, et al. Intensity of chronic cerebral hypoperfusion determines white/gray matter injury and cognitive/motor dysfunction in mice. J Neurosci Res 2009;87:1270–1281.
30. Yoshizaki K, Adachi K, Kataoka S, et al. Chronic cerebral hypoperfusion induced by right unilateral common carotid artery occlusion causes delayed white matter lesions and cognitive impairment in adult mice. Exp Neurol 2008;210:585–591.
31. Kitagawa K, Yagita Y, Sasaki T, et al. Chronic mild reduction of cerebral perfusion pressure induces ischemic tolerance in focal cerebral ischemia. Stroke 2005;36:2270–2274.
32. Lecrux C, McCabe C, Weir CJ, et al. Effects of magnesium treatment in a model of internal capsule lesion in spontaneously hypertensive rats. Stroke 2008;39:448–454.
33. Whitehead SN, Hachinski VC, Cechetto DF. Interaction between a rat model of cerebral ischemia and β-amyloid toxicity: inflammatory responses. Stroke 2005;36:107–112.
34. Kemper TL, Blatt GJ, Killiany RJ, Moss MB. Neuropathology of progressive cognitive decline in chronically hypertensive rhesus monkeys. Acta Neuropathol (Berl) 2001;101:145–153.
35. Ndung’u M, Hartig W, Wegner F, et al. Cerebral Aβ42 deposits and microvascular pathology in ageing baboons. Neuropathol Appl Neurobiol 2012;38:487–499.
36. Rhyu IJ, Bytheway JA, Kohler SJ, et al. Effects of aerobic exercise training on cognitive function and cortical vascularity in monkeys. Neuroscience 2010;167:1239–1248.
37. Moss MB, Jonak E. Cerebrovascular disease and dementia: a primate model of hypertension and cognition. Alzheimers Dement 2007;3:S6–S15.
38. Henning EC, Warach S, Spatz M. Hypertension-induced vascular remodeling contributes to reduced cerebral perfusion and the development of spontaneous stroke in aged SHRSP rats. J Cereb Blood Flow Metab 2010;30:827–836.
39. Jalal FY, Yang Y, Thompson J, Lopez AC, Rosenberg GA. Myelin loss associated with neuroinflammation in hypertensive rats. Stroke 2012;43:1115–1122.
40. Schreiber S, Bueche CZ, Garz C, et al. The pathologic cascade of cerebrovascular lesions in SHRSP: is erythrocyte accumulation an early phase? J Cereb Blood Flow Metab 2012;32:278–290.
41. Lee JM, Zhai G, Liu Q, et al. Vascular permeability precedes spontaneous intracerebral hemorrhage in stroke-prone spontaneously hypertensive rats. Stroke 2007;38:3289–3291.
42. Troen AM, Shea-Budgell M, Shukitt-Hale B, et al. B-vitamin deficiency causes hyperhomocysteinemia and vascular cognitive impairment in mice. Proc Natl Acad Sci USA 2008;105:12474–12479.
43. Lee H, Kim JM, Kim HJ, Lee I, Chang N. Folic acid supplementation can reduce the endothelial damage in rat brain microvasculature due to hyperhomocysteinemia. J Nutr 2005;135:544–548.
44. Mikael LG, Wang XL, Wu Q, et al. Hyperhomocysteinemia is associated with hypertriglyceridemia in mice with methylenetetrahydrofolate reductase deficiency. Mol Genet Metab 2009;98:187–194.
45. Baumbach GL, Sigmund CD, Bottiglieri T, Lentz SR. Structure of cerebral arterioles in cystathionine β-synthase-deficient mice. Circ Res 2002;91:931–937.
46. Kamath AF, Chauhan AK, Kisucka J, et al. Elevated levels of homocysteine compromise blood–brain barrier integrity in mice. Blood 2006;107:591–593.
47. Troen AM. The central nervous system in animal models of hyperhomocysteinemia. Prog Neuropsychopharmacol Biol Psychiatry 2005;29:1140–1151.
48. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. CADASIL. Lancet Neurol 2009;8:643–653.
49. Joutel A, Monet-Lepretre M, Gosele C, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 2010;120:433–445.
50. Wallays G, Nuyens D, Silasi-Mansat R, et al. Notch3 Arg170Cys knock-in mice display pathologic and clinical features of the neurovascular disorder cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Arterioscler Thromb Vasc Biol 2011;31:2881–2888.
51. Ayata C. CADASIL: experimental insights from animal models. Stroke 2010;41:S129–S134.
52. Araya R, Noguchi T, Yuhki M, et al. Loss of M5 muscarinic acetylcholine receptors leads to cerebrovascular and neuronal abnormalities and cognitive deficits in mice. Neurobiol Dis 2006;24:334–344.
53. Kitamura N, Araya R, Kudoh M, et al. Beneficial effects of estrogen in a mouse model of cerebrovascular insufficiency. PLoS One 2009;4:e51–e59.
54. Storozheva ZI, Proshin AT, Sherstnev VV, et al. Dicholine salt of succinic acid, a neuronal insulin sensitizer, ameliorates cognitive deficits in rodent models of normal aging, chronic cerebral hypoperfusion, and β-amyloid peptide-(25–35) β-induced amnesia. BMC Pharmacol 2008;8:1.
55. Park L, Anrather J, Girouard H, Zhou P, Iadecola C. Nox2-derived reactive oxygen species mediate neurovascular dysregulation in the aging mouse brain. J Cereb Blood Flow Metab 2007;27:1908–1918.
56. Cummings BJ, Head E, Ruehl W, Milgram NW, Cotman CW. The canine as an animal model of human aging and dementia. Neurobiol Aging 1996;17:259–268.
57. Borras D, Ferrer I, Pumarola M. Age-related changes in the brain of the dog. Vet Pathol 1999;36:202–211.
58. Head E, Mehta R, Hartley J, et al. Spatial learning and memory as a function of age in the dog. Behav Neurosci 1995;109:851–858.
59. Elfenbein HA, Rosen RF, Stephens SL, et al. Cerebral β-amyloid angiopathy in aged squirrel monkeys. Histol Histopathol 2007;22:155–167.
60. LaFerla FM, Green KN. Animal models of Alzheimer disease. Cold Spring Harb Perspect Med 2012;2:a006320.
61. Hamel E, Nicolakakis N, Aboulkassim T, Ongali B, Tong XK. Oxidative stress and cerebrovascular dysfunction in mouse models of Alzheimer’s disease. Exp Physiol 2008;93:116–120.
62. Tsukuda K, Mogi M, Li JM, et al. Amelioration of cognitive impairment in the type-2 diabetic mouse by the angiotensin II type-1 receptor blocker candesartan. Hypertension 2007;50:1099–1105.
63. Takeda S, Sato N, Uchio-Yamada K, et al. Diabetes-accelerated memory dysfunction via cerebrovascular inflammation and Aβ deposition in an Alzheimer mouse model with diabetes. Proc Natl Acad Sci USA 2010;107:7036–7041.
64. Yang C, Devisser A, Martinez JA, et al. Differential impact of diabetes and hypertension in the brain: adverse effects in white matter. Neurobiol Dis 2011;42:446–458.
65. Landis SC, Amara SG, Asadullah K, et al. A call for transparent reporting to optimize the predictive value of preclinical research. Nature 2012;490:187–191.
66. Kilkenny C, Browne WJ, Cuthill IC, Emerson M, Altman DG. Improving bioscience research reporting: the ARRIVE guidelines for reporting animal research. PLoS Biol 2010;8:e1000412.
67. Wang J, Zhang HY, Tang XC. Huperzine a improves chronic inflammation and cognitive decline in rats with cerebral hypoperfusion. J Neurosci Res 2010;88:807–815.
68. Miyamoto N, Tanaka R, Shimura H, et al. Phosphodiesterase III inhibition promotes differentiation and survival of oligodendrocyte progenitors and enhances regeneration of ischemic white matter lesions in the adult mammalian brain. J Cereb Blood Flow Metab 2010;30:299–310.
69. Fujita Y, Lin JX, Takahashi R, Tomimoto H. Cilostazol alleviates cerebral small-vessel pathology and white-matter lesions in stroke-prone spontaneously hypertensive rats. Brain Res 2008;1203:170–176.
70. Dong YF, Kataoka K, Tokutomi Y, et al. Beneficial effects of combination of valsartan and amlodipine on salt-induced brain injury in hypertensive rats. J Pharmacol Exp Ther 2011;339:358–366.
71. Bailey EL, Smith C, Sudlow CL, Wardlaw JM. Is the spontaneously hypertensive stroke prone rat a pertinent model of subcortical ischemic stroke? A systematic review. Int J Stroke 2011;6:434–444.
72. Lammie GA. Hypertensive cerebral small vessel disease and stroke. Brain Pathol 2002;12:358–370.
73. Holland PR, Bastin ME, Jansen MA, et al. MRI is a sensitive marker of subtle white matter pathology in hypoperfused mice. Neurobiol Aging 2011;32:2325–2326.
74. Brittain JF, McCabe C, Khatun H, et al. An MRI-histological study of white matter in stroke-free SHRSP. J Cereb Blood Flow Metab 2013;33:760–763.

References

1. Wardlaw JM, Smith EE, Biessels GJ, et al. STandards for ReportIng Vascular changes on nEuroimaging (STRIVE v1). Neuroimaging standards for research into small vessel disease and its contribution to ageing and neurodegeneration. Lancet Neurol 2013;12:822–838.
2. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701.
3. Fisher CM. Lacunes: small, deep cerebral infarcts. Neurology 1965;15:774–84.
4. Fisher CM. Lacunar strokes and infarcts: a review. Neurology 1982;32:871–876.
5. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke 1997;28:652–659.
6. Pantoni L. Pathophysiology of age-related cerebral white matter changes. Cerebrovasc Dis 2002;13(Suppl. 2):7–10.
7. Pantoni L, Fierini F, Poggesi A. Thrombolysis in acute stroke patients with cerebral small vessel disease. Cerebrovasc Dis 2014;37:5–13.
8. IST-3 Collaborative Group. The benefits and harms of intravenous thrombolysis with recombinant tissue plasminogen activator within 6 h of acute ischaemic stroke (the Third International Stroke Trial [IST-3]): a randomised controlled trial. Lancet 2012;379:2352–2363.
9. De Reuck J. The human periventricular arterial blood supply and the anatomy of cerebral infarctions. Eur Neurol 1971;5:321–334.
10. Basile AM, Pantoni L, Pracucci G, et al. Age, hypertension, and lacunar stroke are the major determinants of the severity of age-related white matter changes. The LADIS (Leukoaraiosis And DISability in the elderly) study. Cerebrovasc Dis 2006;21:315–22.
11. Folsom AR, Yatsuya H, Mosley TH Jr, Psaty BM, Longstreth WT Jr. Risk of intraparenchymal hemorrhage with magnetic resonance imaging-defined leukoaraiosis and brain infarcts. Ann Neurol 2012;71:552–559.
12. Inzitari D, Cadelo M, Marranci ML, Pracucci G, Pantoni L. Vascular deaths in elderly neurological patients with leukoaraiosis. J Neurol Neurosurg Psychiatry 1997;62:177–181.
13. Fernando MS, Simpson JE, Matthews F, et al.; MRC Cognitive Function and Ageing Neuropathology Study Group. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 2006;37:1391–1398.
14. Pantoni L, Garcia JH, Gutierrez JA. Cerebral white matter is highly vulnerable to ischemia. Stroke 1996;27:1641–1646.
15. Petito CK, Olarte JP, Roberts B, Nowak TS, Jr., Pulsinelli WA. Selective glial vulnerability following transient global ischemia in rat brain. J Neuropathol Exp Neurol 1998;57:231–238.
16. Yao H, Sadoshima S, Ibayashi S, et al. Leukoaraiosis and dementia in hypertensive patients. Stroke 1992;23:1673–1677.
17. Nezu T, Yokota C, Uehara T, et al. Preserved acetazolamide reactivity in lacunar patients with severe white-matter lesions: 15O-labeled gas and H2O positron emission tomography studies. J Cereb Blood Flow Metab 2012;32:844–850.
18. O’Sullivan M, Lythgoe DJ, Pereira AC, et al. Patterns of cerebral blood flow reduction in patients with ischemic leukoaraiosis. Neurology 2002;59:321–326.
19. Brun A, Englund E. A white matter disorder in dementia of the Alzheimer type: a pathoanatomical study. Ann Neurol 1986;19:253–262.
20. Lammie GA, Brannan F, Wardlaw JM. Incomplete lacunar infarction (Type Ib lacunes). Acta Neuropathol 1998;96:163–171.
21. Ma K-C, Olsson Y. Structural and vascular permeability abnormalities associated with lacunes of the human brain. Acta Neurol Scand 1993;88:100–107.
22. Rowbotham GF, Little E. Circulation of the cerebral hemispheres. Brit J Surg 1965;52:8–21.
23. Van den Bergh R, van der Eecken H. Anatomy and embryology of cerebral circulation. Progr Brain Res 1968;30:1–26.
24. Tomura N, Sasaki K, Kidani H, et al. Reduced perfusion reserve in leukoaraiosis demonstrated using acetazolamide challenge 123I-IMP SPECT. J Comput Assist Tomogr 2007;31:884–887.
25. Mayer F, Mayer N, Chinn L, et al. Evolutionary conservation of vertebrate blood–brain barrier chemoprotective mechanisms in Drosophila. J Neurosci 2009;29:3538–3550.
26. Neuwelt E, Abbott NJ, Abrey L, et al. Strategies to advance translational research into brain barriers. Lancet Neurol 2008;7:84–96.
27. Bechmann I, Galea I, Perry VH. What is the blood–brain barrier (not)? Trends Immunol 2007;29:5–11.
28. Abbott NJ. Evidence for bulk flow of brain interstitial fluid: significance for physiology and pathology. Neurochem Int 2004;45:545–552.
29. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer disease. Nat Rev Neurosci 2004;5:347–360.
30. Mooradian AD. Effect of aging on the blood–brain barrier. Neurobiol Aging 1988;9:31–39.
31. Farrall AJ, Wardlaw JM. Blood brain barrier: ageing and microvascular disease – systemic review and meta-analysis. Neurobiol Aging 2007;30:337–352.
32. Bailey EL, McCulloch J, Sudlow C, Wardlaw JM. Potential animal models of lacunar stroke: a systematic review. Stroke 2009;40:e451–e458.
33. Hainsworth AH, Markus HS. Do in vivo experimental models reflect human cerebral small vessel disease? A systematic review. J Cereb Blood Flow Metab 2008;28:1877–1891.
34. Bailey EL, Smith C, Sudlow CLM, Wardlaw JM. Is the spontaneously hypertensive stroke prone rat a pertinent model of subcortical ischaemic stroke? A systematic review. Int J Stroke 2011;6:434–444.
35. Su MY, Head E, Brooks WM, et al. Magnetic resonance imaging of anatomic and vascular characteristics in a canine model of human aging. Neurobiol Aging 1998;19:479–485.
36. Kemper TL, Blatt GJ, Killiany RJ, Moss MB. Neuropathology of progressive cognitive decline in chronically hypertensive rhesus monkeys. Acta Neuropathol 2001;101:145–153.
37. Bailey E, Wardlaw J, Graham D, et al. Cerebral small vessel endothelial structural changes predate hypertension in stroke prone spontaneously hypertensive rats: a blinded, controlled immunohistochemical study of 5- to 21-week old rats. Neuropathol Appl Neurobiol 2011;37:711–726.
38. Sironi L, Guerrini U, Tremoli E, et al. Analysis of pathological events at the onset of brain damage in stroke-prone rats: a proteomics and magnetic resonance imaging approach. J Neurosci Res 2004;78:115–122.
39. Sironi L, Tremoli E, Miller I, et al. Acute-phase proteins before cerebral ischemia in stroke-prone rats: identification by proteomics. Stroke 2001;32:753–760.
40. Bailey EL, McBride MW, Crawford W, et al. Differential gene expression in multiple neurological, inflammatory and connective tissue pathways explains vulnerability to cerebral small vessel disease in a spontaneous model of human disease. Neuropathol Appl Neurobiol, in press.
41. Bailey EL, Smith C, Sudlow CLM, Wardlaw JM. Pathology of lacunar ischaemic stroke in humans – a systematic review. Brain Pathol 2012;22:583–591.
42. Tomimoto H, Akiguchi I, Suenaga T, et al. Alterations of the blood–brain barrier and glial cells in white matter lesions in cerebrovascular and Alzheimer’s disease patients. Stroke 1996;27:2069–2074.
43. Young VG, Halliday GM, Kril JJ. Neuropathologic correlates of white matter hyperintensities. Neurology 2008;71:804–811.
44. Lammie GA, Brannan F, Wardlaw JM. Incomplete lacunar infarction (type 1b lacunes). Acta Neuropathol 1998;96:163–171.
45. Gouw AA, Seewann A, van der Flier WM, et al. Heterogeneity of small vessel disease: a systematic review of MRI and histopathology correlations. J Neurol Neurosurg Psychiatry 2011;82:126–135.
46. Jackson CA, Sudlow CLM. Are lacunar strokes really different? A systematic review of differences in risk factor profiles between lacunar and non-lacunar infarcts. Stroke 2005;36:891–904.
47. Jackson CA, Hutchison A, Dennis MS, et al. Differences between ischemic stroke subtypes in vascular outcomes support a distinct lacunar ischemic stroke arteriopathy. A prospective, hospital-based study. Stroke 2009;40:3679–3684.
48. Jackson CA, Hutchison A, Dennis MS, et al. Differing risk factor profiles of ischemic stroke subtypes: evidence for a distinct lacunar arteriopathy? Stroke 2010;41:624–629.
49. Landau WM, Nassief A. Editorial comment – time to burn the TOAST. Stroke 2005;36:902–904.
50. Lammie GA, Brannan F, Slattery J, Warlow C. Nonhypertensive cerebral small-vessel disease. An autopsy study. Stroke 1997;28:2222–2229.
51. Mead GE, Lewis SC, Wardlaw JM, Dennis MS, Warlow CP. Severe ipsilateral carotid stenosis and middle cerebral artery disease in lacunar ischaemic stroke: innocent bystanders? J Neurol 2002;249:266–271.
52. Potter GM, Doubal FN, Jackson CA, et al. Lack of association of white matter lesions with ipsilateral carotid artery stenosis. Cerebrovasc Dis 2012;33:378–384.
53. Fisher CM. Capsular infarcts: the underlying vascular lesions. Arch Neurol 1979;36:65–73.
54. Lammie GA, Wardlaw JM. Small centrum ovale infarcts – a pathological study. Cerebrovasc Dis 1999;9:82–90.
55. Kang CK, Park CA, Park CW, et al. Lenticulostriate arteries in chronic stroke patients visualised by 7 T magnetic resonance angiography. Int J Stroke 2010;5:374–380.
56. Khan A, Kasner SE, Lynn MJ, Chimowitz MI. Risk factors and outcome of patients with symptomatic intracranial stenosis presenting with lacunar stroke. Stroke 2012;43:1230–1233.
57. Wardlaw JM, Sandercock PA, Dennis MS, Starr J. Is breakdown of the blood–brain barrier responsible for lacunar stroke, leukoaraiosis, and dementia? Stroke 2003;34:806–812.
58. Silberberg DH, Manning MC, Schreiber AD. Tissue culture demyelination by normal human serum. Ann Neurol 1984;15:575–580.
59. Fazekas F, Ropele S, Enzinger C, et al. MRI of white matter hyperintensities. Brain 2005;128:2926–2932.
60. Simpson JE, Wharton SB, Cooper J, et al. Alterations of the blood–brain barrier in cerebral white matter lesions in the ageing brain. Neurosci Lett 2010;486:246–251.
61. Wardlaw JM, Dennis MS, Warlow CP, Sandercock PA. Imaging appearance of the symptomatic perforating artery in patients with lacunar infarction: occlusion or other vascular pathology? Ann Neurol 2001;50:208–215.
62. Doubal FN, MacLullich AM, Ferguson KJ, Dennis MS, Wardlaw JM. Enlarged perivascular spaces on MRI are a feature of cerebral small vessel disease. Stroke 2010;41:450–454.
63. Potter GM, Doubal FN, Jackson CA, et al. Enlarged perivascular spaces and cerebral small vessel disease. Int J Stroke 2013, May 22 [Epub ahead of print].
64. Wardlaw JM, Smith C, Dichgans M. Mechanisms of sporadic cerebral small vessel disease: insights from neuroimaging. Lancet Neurol 2013;12:483–497.
65. Wardlaw JM, Doubal F, Armitage P, et al. Lacunar stroke is associated with diffuse blood–brain barrier dysfunction. Ann Neurol 2009;65:194–202.
66. Topakian R, Barrick TR, Howe FA, Markus HS. Blood–brain barrier permeability is increased in normal-appearing white matter in patients with lacunar stroke and leucoaraiosis. J Neurol Neurosurg Psychiatry 2010;81:192–197.
67. Taheri S, Gasparovic C, Huisa BN, et al. Blood–brain barrier permeability abnormalities in vascular cognitive impairment. Stroke 2011;42:2158–2163.
68. Starr JM, Wardlaw J, Ferguson K, et al. Increased blood–brain barrier permeability in type II diabetes demonstrated by gadolinium magnetic resonance imaging. J Neurol Neurosurg Psychiatry 2003;74:70–76.
69. Starr JM, Farrall AJ, Armitage P, McGurn B, Wardlaw J. Blood–brain barrier permeability in Alzheimer’s disease: a case-control MRI study. Psychiatry Res 2009;171:232–241.
70. Wahlund LO, Bronge L. Contrast-enhanced MRI of white matter lesions in patients with blood–brain barrier dysfunction. Ann N Y Acad Sci 2000;903:477–481.
71. Weller RO, Djuanda E, Yow HY, Carare RO. Lymphatic drainage of the brain and the pathophysiology of neurological disease. Acta Neuropathol 2009;117:1–14.
72. Taheri S, Gasparovic C, Shah NJ, Rosenberg GA. Quantitative measurement of blood–brain barrier permeability in human using dynamic contrast-enhanced MRI with fast T1 mapping. Magn Reson Med 2011;65:1036–1042.
73. Armitage PA, Farrall AJ, Carpenter TK, Doubal FN, Wardlaw JM. Use of dynamic contrast-enhanced MRI to measure subtle blood–brain barrier abnormalities. Magn Reson Imaging 2011;29:305–314.
74. Skoog I, Wallin A, Fredman P, et al. A population study on blood–brain barrier function in 85-year-olds: relation to Alzheimer’s disease and vascular dementia. Neurology 1998;50:966–971.
75. Wardlaw JM, Doubal FN, Valdes-Hernandez MC, et al. Blood–brain barrier permeability and long term clinical and imaging outcomes in cerebral small vessel disease. Stroke 2013;44:525–527.
76. Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173–185.
77. Abbott NJ. Inflammatory mediators and modulation of blood–brain barrier permeability. Cell Mol Neurobiol 2000;20:131–147.
78. Huber JD, Witt KA, Hom S, et al. Inflammatory pain alters blood–brain barrier permeability and tight junctional protein expression. Am J Physiol Heart Circ Physiol 2001;280:H1241–H1248.
79. The SPS3 Investigators. Effects of clopidogrel added to aspirin in patients with recent lacunar stroke. N Engl J Med 2012;367:817–825.
80. Moody DM, Brown WR, Challa VR, Anderson RL. Periventricular venous collagenosis: association with leukoaraiosis. Radiology 1995;194:469–476.
81. Bateman GA. Pulse-wave encephalopathy: a comparative study of the hydrodynamics of leukoaraiosis and normal-pressure hydrocephalus. Neuroradiology 2002;44:740–748.
82. Henry Feugeas MC, De Marco G, Peretti II, et al. Age-related cerebral white matter changes and pulse-wave encephalopathy: observations with three-dimensional MRI. Magn Reson Imaging 2005;23:929–937.
83. Chung CP, Wang PN, Wu YH, et al. More severe white matter changes in the elderly with jugular venous reflux. Ann Neurol 2011;69:553–559.
84. Sierra C, de la Sierra A, Chamorro A, et al. Cerebral hemodynamics and silent cerebral white matter lesions in middle-aged essential hypertensive patients. Blood Press 2004;13:304–309.
85. Lee KY, Sohn YH, Baik JS, Kim GW, Kim JS. Arterial pulsatility as an index of cerebral microangiopathy in diabetes. Stroke 2000;31:1111–1115.
86. Webb AJ, Simoni M, Mazzucco S, et al. Increased cerebral arterial pulsatility in patients with leukoaraiosis: arterial stiffness enhances transmission of aortic pulsatility. Stroke 2012;43:2631–2636.
87. Poels MM, Zaccai K, Verwoert GC, et al. Arterial stiffness and cerebral small vessel disease: the Rotterdam Scan Study. Stroke 2012;43:2637–2642.
88. Mok V, Ding D, Fu J, et al. Transcranial Doppler ultrasound for screening cerebral small vessel disease: a community study. Stroke 2012;43:2791–2793.
89. Brown WR, Moody DM, Challa VR, Thore CR, Anstrom JA. Apoptosis in leukoaraiosis lesions. J Neurol Sci 2002;203:169–171.

References

1. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. CADASIL. Lancet Neurol 2009;8:643–653.
2. Viswanathan A, Godin O, Jouvent E, et al. Impact of MRI markers in subcortical vascular dementia: a multi-modal analysis in CADASIL. Neurobiol Aging 2010;31:1629–1636.
3. Duering M, Righart R, Csanadi E, et al. Incident subcortical infarcts induce focal thinning in connected cortical regions. Neurology 2012;79:2025–2028.
4. Ruchoux MM, Guerouaou D, Vandenhaute B, et al. Systemic vascular smooth muscle cell impairment in cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy. Acta Neuropathol (Berl) 1995;89:500–512.
5. Joutel A, Vahedi K, Corpechot C, et al. Strong clustering and stereotyped nature of Notch3 mutations in CADASIL patients. Lancet 1997;350:1511–1515.
6. Peters N, Opherk C, Bergmann T, et al. Spectrum of mutations in biopsy-proven CADASIL: implications for diagnostic strategies. Arch Neurol 2005;62:1091–1094.
7. Joutel A, Andreux F, Gaulis S, et al. The ectodomain of the NOTCH3 receptor accumulates within the cerebrovasculature of CADASIL patients. J Clin Invest 2000;105:597–605.
8. Domenga V, Fardoux P, Lacombe P, et al. NOTCH3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 2004;18:2730–2735.
9. Belin de Chantemele EJ, Retailleau K, Pinaud F, et al. NOTCH3 is a major regulator of vascular tone in cerebral and tail resistance arteries. Arterioscler Thromb Vasc Biol 2008;28:2216–2224.
10. Arboleda-Velasquez JF, Zhou Z, Shin HK, et al. Linking NOTCH signaling to ischemic stroke. Proc Natl Acad Sci USA 2008;105:4856–4861.
11. Kopan R, Ilagan MX. The canonical NOTCH signaling pathway: unfolding the activation mechanism. Cell 2009;137:216–233.
12. Fouillade C, Baron-Menguy C, Domenga-Denier V, et al. Transcriptome analysis for NOTCH3 target genes identifies GRIP2 as a novel regulator of myogenic response in the cerebrovasculature. Arterioscler Thromb Vasc Biol 2013;33:76–86.
13. Monet M, Domenga V, Lemaire B, et al. The archetypal R90C CADASIL-NOTCH3 mutation retains NOTCH3 function in vivo. Hum Mol Genet 2007;16:982–992.
14. Monet-Lepretre M, Bardot B, Lemaire B, et al. Distinct phenotypic and functional features of CADASIL mutations in the NOTCH3 ligand binding domain. Brain 2009;132:1601–1612.
15. Peters N, Opherk C, Zacherle S, et al. CADASIL-associated NOTCH3 mutations have differential effects both on ligand binding and ligand-induced NOTCH3 receptor signaling through RBP-J. Exp Cell Res 2004;299:454–464.
16. Arboleda-Velasquez JF, Manent J, Lee JH, et al. Hypomorphic NOTCH 3 alleles link notch signaling to ischemic cerebral small-vessel disease. Proc Natl Acad Sci U S A 2011;108:E128–135.
17. Duering M, Karpinska A, Rosner S, et al. Co-aggregate formation of CADASIL-mutant NOTCH3: a single-particle analysis. Hum Mol Genet 2011;20:3256–3265.
18. Ishiko A, Shimizu A, Nagata E, et al. NOTCH3 ectodomain is a major component of granular osmiophilic material (GOM) in CADASIL. Acta Neuropathol 2006;112:333–339.
19. Joutel A, Monet-Lepretre M, Gosele C, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 2010;120:433–445.
20. Joutel A. Pathogenesis of CADASIL: transgenic and knock-out mice to probe function and dysfunction of the mutated gene, NOTCH3, in the cerebrovasculature. Bioessays 2011;33:73–80.
21. Eikermann-Haerter K, Yuzawa I, Dilekoz E, et al. Cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy syndrome mutations increase susceptibility to spreading depression. Ann Neurol 2011;69:413–418.
22. Fukutake T. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 2011;20:85–93.
23. Oide T, Nakayama H, Yanagawa S, et al. Extensive loss of arterial medial smooth muscle cells and mural extracellular matrix in cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL). Neuropathology 2008;28:132–142.
24. Hara K, Shiga A, Fukutake T, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 2009;360:1729–1739.
25. Chamberland A, Wang E, Jones AR, et al. Identification of a novel HtrA1-susceptible cleavage site in human aggrecan: evidence for the involvement of HtrA1 in aggrecan proteolysis in vivo. J Biol Chem 2009;284:27352–27359.
26. Grau S, Richards PJ, Kerr B, et al. The role of human HtrA1 in arthritic disease. J Biol Chem 2006;281:6124–6129.
27. Kim GY, Kim HY, Kim HT, et al. HtrA1 is a novel antagonist controlling fibroblast growth factor (FGF) signaling via cleavage of FGF8. Mol Cell Biol 2012;32:4482–4492.
28. Shiga A, Nozaki H, Yokoseki A, et al. Cerebral small-vessel disease protein HTRA1 controls the amount of TGF-β1 via cleavage of proTGF-β1. Hum Mol Genet 2011;20:1800–1810.
29. Truebestein L, Tennstaedt A, Monig T, et al. Substrate-induced remodeling of the active site regulates human HTRA1 activity. Nat Struct Mol Biol 2011;18:386–388.
30. Hadfield KD, Rock CF, Inkson CA, et al. HtrA1 inhibits mineral deposition by osteoblasts: requirement for the protease and PDZ domains. J Biol Chem 2008;283:5928–5938.
31. Tiaden AN, Breiden M, Mirsaidi A, et al. Human serine protease HTRA1 positively regulates osteogenesis of human bone marrow-derived mesenchymal stem cells and mineralization of differentiating bone-forming cells through the modulation of extracellular matrix protein. Stem Cells 2012;30:2271–2282.
32. Oka C, Tsujimoto R, Kajikawa M, et al. HtrA1 serine protease inhibits signaling mediated by TGFβ family proteins. Development 2004;131:1041–1053.
33. Zhang L, Lim SL, Du H, et al. High temperature requirement factor A1 (HTRA1) gene regulates angiogenesis through transforming growth factor-β family member growth differentiation factor 6. J Biol Chem 2012;287:1520–1526.
34. Richards A, van den Maagdenberg AM, Jen JC, et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 2007;39:1068–1070.
35. Weil S, Reifenberger G, Dudel C, et al. Cerebroretinal vasculopathy mimicking a brain tumor: a case of a rare hereditary syndrome. Neurology 1999;53:629–631.
36. Grand MG, Kaine J, Fulling K, et al. Cerebroretinal vasculopathy. A new hereditary syndrome. Ophthalmology 1988;95:649–659.
37. Jen J, Cohen AH, Yue Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology 1997;49:1322–1330.
38. Terwindt GM, Haan J, Ophoff RA, et al. Clinical and genetic analysis of a large Dutch family with autosomal dominant vascular retinopathy, migraine and Raynaud’s phenomenon. Brain 1998;121(Pt 2):303–316.
39. Khajavi M, Inoue K, Lupski JR. Nonsense-mediated mRNA decay modulates clinical outcome of genetic disease. Eur J Hum Genet 2006;14:1074–1081.
40. Yang YG, Lindahl T, Barnes DE. TREX1 exonuclease degrades ssDNA to prevent chronic checkpoint activation and autoimmune disease. Cell 2007;131:873–886.
41. Stetson DB, Ko JS, Heidmann T, Medzhitov R. TREX1 prevents cell-intrinsic initiation of autoimmunity. Cell 2008;134:587–598.
42. Hoss M, Robins P, Naven TJ, et al. A human DNA editing enzyme homologous to the Escherichia coli DnaQ/MutD protein. EMBO J 1999;18:3868–3875.
43. Morita M, Stamp G, Robins P, et al. Gene-targeted mice lacking the TREX1 (DNase III) 3′–>5′ DNA exonuclease develop inflammatory myocarditis. Mol Cell Biol 2004;24:6719–6727.
44. Crow YJ, Hayward BE, Parmar R, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi–Goutières syndrome at the AGS1 locus. Nat Genet 2006;38:917–920.
45. Rice G, Patrick T, Parmar R, et al. Clinical and molecular phenotype of Aicardi–Goutières syndrome. Am J Hum Genet 2007;81:713–725.
46. Rice G, Newman WG, Dean J, et al. Heterozygous mutations in TREX1 cause familial chilblain lupus and dominant Aicardi–Goutières syndrome. Am J Hum Genet 2007;80:811–815.
47. Chowdhury D, Beresford PJ, Zhu P, et al. The exonuclease TREX1 is in the SET complex and acts in concert with NM23-H1 to degrade DNA during Granzyme A-mediated cell death. Mol Cell 2006;23:133–142.
48. Viswanathan A, Greenberg SM. Cerebral amyloid angiopathy in the elderly. Ann Neurol 2011;70:871–880.
49. Revesz T, Holton JL, Lashley T, et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009;118:115–130.
50. Garringer HJ, Murrell J, D’Adamio L, Ghetti B, Vidal R. Modeling familial British and Danish dementia. Brain Struct Funct 2010;214:235–244.
51. Levy E, Lopez-Otin C, Ghiso J, Geltner D, Frangione B. Stroke in Icelandic patients with hereditary amyloid angiopathy is related to a mutation in the cystatin C gene, an inhibitor of cysteine proteases. J Exp Med 1989;169:1771–1778.
52. Plante-Bordeneuve V, Said G. Familial amyloid polyneuropathy. Lancet Neurol 2011;10:1086–1097.
53. Solomon JP, Page LJ, Balch WE, Kelly JW. Gelsolin amyloidosis: genetics, biochemistry, pathology and possible strategies for therapeutic intervention. Crit Rev Biochem Mol Biol 2012;47:282–296.
54. Rostagno A, Holton JL, Lashley T, Revesz T, Ghiso J. Cerebral amyloidosis: amyloid subunits, mutants and phenotypes. Cell Mol Life Sci 2010;67:581–600.
55. De Strooper B. Proteases and proteolysis in Alzheimer disease: a multifactorial view on the disease process. Physiol Rev 2010;90:465–494.
56. Iliff JJ, Wang M, Liao Y, et al. A paravascular pathway facilitates CSF flow through the brain parenchyma and the clearance of interstitial solutes, including amyloid β. Sci Transl Med 2012;4:147.
57. Deane R, Bell RD, Sagare A, Zlokovic BV. Clearance of amyloid-β peptide across the blood–brain barrier: implication for therapies in Alzheimer’s disease. CNS Neurol Disord Drug Targets 2009;8:16–30.
58. Lee J, Culyba EK, Powers ET, Kelly JW. Amyloid-β forms fibrils by nucleated conformational conversion of oligomers. Nat Chem Biol 2011;7:602–609.
59. Kim J, Onstead L, Randle S, et al. Aβ40 inhibits amyloid deposition in vivo. J Neurosci 2007;27:627–633.
60. Levy E, Prelli F, Frangione B. Studies on the first described Alzheimer’s disease amyloid β mutant, the Dutch variant. J Alzheimers Dis 2006;9:329–339.
61. De Jonghe C, Esselens C, Kumar-Singh S, et al. Pathogenic APP mutations near the γ-secretase cleavage site differentially affect Aβ secretion and APP C-terminal fragment stability. Hum Mol Genet 2001;10:1665–1671.
62. Citron M, Oltersdorf T, Haass C, et al. Mutation of the β-amyloid precursor protein in familial Alzheimer’s disease increases β-protein production. Nature 1992;360:672–674.
63. Chavez-Gutierrez L, Bammens L, Benilova I, et al. The mechanism of γ-secretase dysfunction in familial Alzheimer disease. EMBO J 2012;31:2261–2274.
64. Herzig MC, Winkler DT, Burgermeister P, et al. Aβ is targeted to the vasculature in a mouse model of hereditary cerebral hemorrhage with amyloidosis. Nat Neurosci 2004;7:954–960.
65. Calhoun ME, Burgermeister P, Phinney AL, et al. Neuronal overexpression of mutant amyloid precursor protein results in prominent deposition of cerebrovascular amyloid. Proc Natl Acad Sci USA 1999;96:14088–14093.
66. Castano EM, Prelli F, Soto C, et al. The length of amyloid-β in hereditary cerebral hemorrhage with amyloidosis, Dutch type. Implications for the role of amyloid-β1–42 in Alzheimer’s disease. J Biol Chem 1996;271:32185–32191.
67. McGowan E, Pickford F, Kim J, et al. Aβ42 is essential for parenchymal and vascular amyloid deposition in mice. Neuron 2005;47:191–199.
68. Verghese PB, Castellano JM, Holtzman DM. Apolipoprotein E in Alzheimer’s disease and other neurological disorders. Lancet Neurol 2011;10:241–252.
69. Fryer JD, Taylor JW, DeMattos RB, et al. Apolipoprotein E markedly facilitates age-dependent cerebral amyloid angiopathy and spontaneous hemorrhage in amyloid precursor protein transgenic mice. J Neurosci 2003;23:7889–7896.
70. Fryer JD, Simmons K, Parsadanian M, et al. Human apolipoprotein E4 alters the amyloid-β 40 : 42 ratio and promotes the formation of cerebral amyloid angiopathy in an amyloid precursor protein transgenic model. J Neurosci 2005;25:2803–2810.
71. Choi SH, Leight SN, Lee VM, et al. Accelerated Aβ deposition in APPswe/PS1deltaE9 mice with hemizygous deletions of TTR (transthyretin). J Neurosci 2007;27:7006–7010.
72. Kaeser SA, Herzig MC, Coomaraswamy J, et al. Cystatin C modulates cerebral β-amyloidosis. Nat Genet 2007;39:1437–1439.
73. Coomaraswamy J, Kilger E, Wolfing H, et al. Modeling familial Danish dementia in mice supports the concept of the amyloid hypothesis of Alzheimer’s disease. Proc Natl Acad Sci USA 2010;107:7969–7974.
74. Iadecola C, Zhang F, Niwa K, et al. SOD1 rescues cerebral endothelial dysfunction in mice overexpressing amyloid precursor protein. Nat Neurosci 1999;2:157–161.
75. Park L, Anrather J, Zhou P, et al. NADPH-oxidase-derived reactive oxygen species mediate the cerebrovascular dysfunction induced by the amyloid β peptide. J Neurosci 2005;25:1769–1777.
76. Shin HK, Jones PB, Garcia-Alloza M, et al. Age-dependent cerebrovascular dysfunction in a transgenic mouse model of cerebral amyloid angiopathy. Brain 2007;130:2310–2319.
77. Dumas A, Dierksen GA, Gurol ME, et al. Functional magnetic resonance imaging detection of vascular reactivity in cerebral amyloid angiopathy. Ann Neurol 2012;72:76–81.
78. Schenk D, Barbour R, Dunn W, et al. Immunization with amyloid-β attenuates Alzheimer-disease-like pathology in the PDAPP mouse. Nature 1999;400:173–177.
79. Pfeifer M, Boncristiano S, Bondolfi L, et al. Cerebral hemorrhage after passive anti-Aβ immunotherapy. Science 2002;298:1379.
80. Boche D, Zotova E, Weller RO, et al. Consequence of Aβ immunization on the vasculature of human Alzheimer’s disease brain. Brain 2008;131:3299–3310.
81. Khoshnoodi J, Pedchenko V, Hudson BG. Mammalian collagen IV. Microsc Res Tech 2008;71:357–370.
82. Gould DB, Phalan FC, Breedveld GJ, et al. Mutations in Col4a1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005;308:1167–1171.
83. Gould DB, Phalan FC, van Mil SE, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006;354:1489–1496.
84. Kuo DS, Labelle-Dumais C, Gould DB. COL4A1 and COL4A2 mutations and disease: insights into pathogenic mechanisms and potential therapeutic targets. Hum Mol Genet 2012;21:R97–R110.
85. Meuwissen ME, de Vries LS, Verbeek HA, et al. Sporadic COL4A1 mutations with extensive prenatal porencephaly resembling hydranencephaly. Neurology 2011;76:844–846.
86. Yoneda Y, Haginoya K, Arai H, et al. De novo and inherited mutations in COL4A2, encoding the type IV collagen alpha-2 chain cause porencephaly. Am J Hum Genet 2012;90:86–90.
87. Yoneda Y, Haginoya K, Kato M, et al. Phenotypic spectrum of COL4A1 mutations: porencephaly to schizencephaly. Ann Neurol 2013;73:48–57.
88. Alamowitch S, Plaisier E, Favrole P, et al. Cerebrovascular disease related to COL4A1 mutations in HANAC syndrome. Neurology 2009;73:1873–1882.
89. Plaisier E, Gribouval O, Alamowitch S, et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med 2007;357:2687–2695.
90. Verbeek E, Meuwissen ME, Verheijen FW, et al. COL4A2 mutation associated with familial porencephaly and small-vessel disease. Eur J Hum Genet 2012;20:844–851.
91. Parkin JD, San Antonio JD, Pedchenko V, et al. Mapping structural landmarks, ligand binding sites, and missense mutations to the collagen IV heterotrimers predicts major functional domains, novel interactions, and variation in phenotypes in inherited diseases affecting basement membranes. Hum Mutat 2011;32:127–143.
92. Poschl E, Schlotzer-Schrehardt U, Brachvogel B, et al. Collagen IV is essential for basement membrane stability but dispensable for initiation of its assembly during early development. Development 2004;131:1619–1628.
93. Gould DB, Marchant JK, Savinova OV, Smith RS, John SW. Col4a1 mutation causes endoplasmic reticulum stress and genetically modifiable ocular dysgenesis. Hum Mol Genet 2007;16:798–807.
94. Labelle-Dumais C, Dilworth DJ, Harrington EP, et al. COL4A1 mutations cause ocular dysgenesis, neuronal localization defects, and myopathy in mice and Walker–Warburg syndrome in humans. PLoS Genet 2011;7:e1002062.
95. Favor J, Gloeckner CJ, Janik D, et al. Type IV procollagen missense mutations associated with defects of the eye, vascular stability, the brain, kidney function and embryonic or postnatal viability in the mouse, Mus musculus: an extension of the Col4a1 allelic series and the identification of the first two Col4a2 mutant alleles. Genetics 2007;175:725–736.
96. Van Agtmael T, Schlotzer-Schrehardt U, McKie L, et al. Dominant mutations of Col4a1 result in basement membrane defects which lead to anterior segment dysgenesis and glomerulopathy. Hum Mol Genet 2005;14:3161–3168.
97. Weng YC, Sonni A, Labelle-Dumais C, et al. COL4A1 mutations in patients with sporadic late-onset intracerebral hemorrhage. Ann Neurol 2012;71:470–477.
98. Forlino A, Cabral WA, Barnes AM, Marini JC. New perspectives on osteogenesis imperfecta. Nat Rev Endocrinol 2012;7:540–557.
99. Lemmens R, Maugeri A, Niessen HW, et al. Novel COL4A1 mutations cause cerebral small vessel disease by haploinsufficiency. Hum Mol Genet 2013; 22:391–397.

References

1. Dichgans M. Genetics of ischaemic stroke. Lancet Neurol 2007;6:149–161.
2. Joutel A, Corpechot C, Ducros A, et al. Notch3 mutations in CADASIL, a hereditary adult-onset condition causing stroke and dementia. Nature 1996;383:707–710.
3. Narayan SK, Gorman G, Kalaria RN, Ford GA, Chinnery PF. The minimum prevalence of CADASIL in northeast England. Neurology 2012;78:1025–1027.
4. Dong Y, Hassan A, Zhang Z, et al. Yield of screening for CADASIL mutations in lacunar stroke and leukoaraiosis. Stroke 2003;34:203–205.
5. Chabriat H, Joutel A, Dichgans M, Tournier-Lasserve E, Bousser MG. CADASIL. Lancet Neurol 2009;8:643–653.
6. Opherk C, Peters N, Herzog J, Luedtke R, Dichgans M. Long-term prognosis and causes of death in CADASIL: a retrospective study in 411 patients. Brain 2004;127:2533–2539.
7. Gunda B, Herve D, Godin O, et al. Effects of gender on the phenotype of CADASIL. Stroke 2012;43:137–141.
8. Yamamoto Y, Ihara M, Tham C, et al. Neuropathological correlates of temporal pole white matter hyperintensities in CADASIL. Stroke 2009;40:2004–2011.
9. Opherk C, Peters N, Holtmannspotter M, et al. Heritability of MRI lesion volume in CADASIL: evidence for genetic modifiers. Stroke 2006;37:2684–2689.
10. Domenga V, Fardoux P, Lacombe P, et al. Notch3 is required for arterial identity and maturation of vascular smooth muscle cells. Genes Dev 2004;18:2730–2735.
11. Peters N, Opherk C, Bergmann T, et al. Spectrum of mutations in biopsy-proven CADASIL: implications for diagnostic strategies. Arch Neurol 2005;62:1091–1094.
12. Joutel A, Monet M, Domenga V, Riant F, Tournier-Lasserve E. Pathogenic mutations associated with cerebral autosomal dominant arteriopathy with subcortical infarcts and leukoencephalopathy differently affect Jagged1 binding and Notch3 activity via the RBP/JK signaling pathway. Am J Hum Genet 2004;74:338–347.
13. Monet M, Domenga V, Lemaire B, et al. The archetypal r90c CADASIL-notch3 mutation retains notch3 function in vivo. Hum Mol Genet 2007;16:982–992.
14. Peters N, Ebert A, Freilinger T, et al. Postoperative amnesic state with impairment of static visual perception. Eur J Neurol 2008;15:e44–45.
15. Duering M, Karpinska A, Rosner S, et al. Co-aggregate formation of CADASIL-mutant notch3: a single-particle analysis. Hum Mol Genet 2011;20:3256–3265.
16. Dichgans M, Markus HS, Salloway S, et al. Donepezil in patients with subcortical vascular cognitive impairment: a randomised double-blind trial in CADASIL. Lancet Neurol 2008;7:310–318.
17. Fukutake T. Cerebral autosomal recessive arteriopathy with subcortical infarcts and leukoencephalopathy (CARASIL): from discovery to gene identification. J Stroke Cerebrovasc Dis 2011;20:85–93.
18. Arima K, Yanagawa S, Ito N, Ikeda S. Cerebral arterial pathology of CADASIL and CARASIL (Maeda syndrome). Neuropathology 2003;23:327–334.
19. Mendioroz M, Fernandez-Cadenas I, Del Rio-Espinola A, et al. A missense HTRA1 mutation expands CARASIL syndrome to the Caucasian population. Neurology 2010;75:2033–2035.
20. Hara K, Shiga A, Fukutake T, et al. Association of HTRA1 mutations and familial ischemic cerebral small-vessel disease. N Engl J Med 2009;360:1729–1739.
21. Brady RO, Schiffmann R. Clinical features of and recent advances in therapy for Fabry disease. JAMA 2000;284:2771–2775.
22. Moore DF, Herscovitch P, Schiffmann R. Selective arterial distribution of cerebral hyperperfusion in Fabry disease. J Neuroimaging 2001;11:303–307.
23. Rolfs A, Bottcher T, Zschiesche M, et al. Prevalence of Fabry disease in patients with cryptogenic stroke: a prospective study. Lancet 2005;366:1794–1796.
24. Parenti G. Treating lysosomal storage diseases with pharmacological chaperones: from concept to clinics. EMBO Mol Med 2009;1:268–279.
25. Roach ES, Golomb MR, Adams R, et al. Management of stroke in infants and children: Scientific Statement from a Special Writing Group of the American Heart Association Stroke Council and the Council on Cardiovascular Disease in the Young. Stroke 2008;39:2644–2691.
26. Yamamoto Y, Craggs L, Baumann M, Kalimo H, Kalaria RN. Review: molecular genetics and pathology of hereditary small vessel diseases of the brain. Neuropath Applied Neurobiol 2011;37:94–113.
27. Gould DB, Phalan FC, Breedveld GJ, et al. Mutations in COL4A1 cause perinatal cerebral hemorrhage and porencephaly. Science 2005;308:1167–1171.
28. Vahedi K, Kubis N, Boukobza M, et al. COL4A1 mutation in a patient with sporadic, recurrent intracerebral hemorrhage. Stroke 2007;38:1461–1464.
29. Sibon I, Coupry I, Menegon P, et al. COL4A1 mutation in Axenfeld–Rieger anomaly with leukoencephalopathy and stroke. Ann Neurol 2007;62:177–184.
30. Plaisier E, Gribouval O, Alamowitch S, et al. COL4A1 mutations and hereditary angiopathy, nephropathy, aneurysms, and muscle cramps. N Engl J Med 2007;357:2687–2695.
31. Jen J, Cohen AH, Yue Q, et al. Hereditary endotheliopathy with retinopathy, nephropathy, and stroke (HERNS). Neurology 1997;49:1322–1330.
32. Terwindt GM, Haan J, Ophoff RA, et al. Clinical and genetic analysis of a large Dutch family with autosomal dominant vascular retinopathy, migraine and Raynaud’s phenomenon. Brain 1998;121(Pt 2):303–316.
33. Ophoff RA, DeYoung J, Service SK, et al. Hereditary vascular retinopathy, cerebroretinal vasculopathy, and hereditary endotheliopathy with retinopathy, nephropathy, and stroke map to a single locus on chromosome 3p21.1-p21.3. Am J Hum Genet 2001;69:447–453.
34. Richards A, van den Maagdenberg AM, Jen JC, et al. C-terminal truncations in human 3′-5′ DNA exonuclease TREX1 cause autosomal dominant retinal vasculopathy with cerebral leukodystrophy. Nat Genet 2007;39:1068–1070.
35. Crow YJ, Hayward BE, Parmar R, et al. Mutations in the gene encoding the 3′-5′ DNA exonuclease TREX1 cause Aicardi–Goutieres syndrome at the AGS1 locus. Nat Genet 2006;38:917–920.
36. Biffi A, Greenberg SM. Cerebral amyloid angiopathy: a systematic review. J Clin Neurol 2011;7:1–9.
37. Revesz T, Holton JL, Lashley T, et al. Genetics and molecular pathogenesis of sporadic and hereditary cerebral amyloid angiopathies. Acta Neuropathol 2009;118:115–130.
38. Maat-Schieman M, Roos R, van Duinen S. Hereditary cerebral hemorrhage with amyloidosis–Dutch type. Neuropathology 2005;25:288–297.
39. Natte R, Maat-Schieman ML, Haan J, et al. Dementia in hereditary cerebral hemorrhage with amyloidosis–Dutch type is associated with cerebral amyloid angiopathy but is independent of plaques and neurofibrillary tangles. Ann Neurol 2001;50:765–772.
40. Bornebroek M, Haan J, van Buchem MA, et al. White matter lesions and cognitive deterioration in presymptomatic carriers of the amyloid precursor protein gene codon 693 mutation. Arch Neurol 1996;53:43–48.
41. Holton JL, Lashley T, Ghiso J, et al. Familial Danish dementia: a novel form of cerebral amyloidosis associated with deposition of both amyloid-Dan and amyloid-β. J Neuropathol Exp Neurol 2002;61:254–267.
42. Mead S, James-Galton M, Revesz T, et al. Familial British dementia with amyloid angiopathy: early clinical, neuropsychological and imaging findings. Brain 2000;123(Pt 5):975–991.
43. Revesz T, Holton JL, Lashley T, et al. Sporadic and familial cerebral amyloid angiopathies. Brain Pathol 2002;12:343–357.
44. Freudenberger P, Schmidt R, Schmidt H. Genetics of age-related white matter lesions from linkage to genome wide association studies. J Neurol Sci 2012;322:82–86.
45. Carmelli D, DeCarli C, Swan GE, et al. Evidence for genetic variance in white matter hyperintensity volume in normal elderly male twins. Stroke 1998;29:1177–1181.
46. Atwood LD, Wolf PA, Heard-Costa NL, et al. Genetic variation in white matter hyperintensity volume in the Framingham Study. Stroke 2004;35:1609–1613.
47. Turner ST, Jack CR, Fornage M, et al. Heritability of leukoaraiosis in hypertensive sibships. Hypertension 2004;43:483–487.
48. Turner ST, Fornage M, Jack CR, Jr., et al. Genomic susceptibility loci for brain atrophy, ventricular volume, and leukoaraiosis in hypertensive sibships. Arch Neurol 2009;66:847–857.
49. Cuenco KT, Green RC, Zhang J, et al. Magnetic resonance imaging traits in siblings discordant for Alzheimer disease. J Neuroimaging 2008;18:268–275.
50. Bevan S, Traylor M, Adib-Samii P, et al. Genetic heritability of ischemic stroke and the contribution of previously reported candidate gene and genomewide associations. Stroke 2012;43:3161–3167.
51. DeStefano AL, Atwood LD, Massaro JM, et al. Genome-wide scan for white matter hyperintensity: the Framingham Heart Study. Stroke 2006;37:77–81.
52. Paternoster L, Chen W, Sudlow CL. Genetic determinants of white matter hyperintensities on brain scans: a systematic assessment of 19 candidate gene polymorphisms in 46 studies in 19 000 subjects. Stroke 2009;40:2020–2026.
53. Fornage M, Debette S, Bis JC, et al. Genome-wide association studies of cerebral white matter lesion burden: the charge consortium. Ann Neurol 2011;69:928–939.
54. Taylor WD, Steffens DC, Ashley-Koch A, et al. Angiotensin receptor gene polymorphisms and two-year change in hyperintense lesion volume in men. Mol Psychiatry 2010;15:816–822.
55. Van Rijn MJ, Bos MJ, Isaacs A, et al. Polymorphisms of the renin–angiotensin system are associated with blood pressure, atherosclerosis and cerebral white matter pathology. J Neurol Neurosurg Psychiatry 2007;78:1083–1087.
56. Schmidt H, Zeginigg M, Wiltgen M, et al. Genetic variants of the NOTCH3 gene in the elderly and magnetic resonance imaging correlates of age-related cerebral small vessel disease. Brain 2011;134:3384–3397.
57. Verhaaren BF, de Boer R, Vernooij MW, et al. Replication study of chr17q25 with cerebral white matter lesion volume. Stroke 2011;42:3297–3299.

References

1. Chobanian AV, Bakris GL, Black HR, et al. The Seventh Report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA;289:2560–2572.
2. O’Rourke MF, Safar ME. Relationship between aortic stiffening and microvascular disease in brain and kidney: cause and logic of therapy. Hypertension 2005;46:200–204.
3. Scuteri A, Sgorbini L, Leggio F, Brancati AM. Aortic correlates of clinical markers of large artery structure and function. Effects of aging and hypertension. Aging Clin Exp Res 2006;18:452–461.
4. Scuteri A, Chen CH, Yin FCP, et al. Functional correlates of central arterial geometric phenotypes. Hypertension 2001;38:1471–1475.
5. Scuteri A, Manolio TA, Marino EK, Arnold AM, Lakatta EG. Prevalence of specific variant carotid geometric patterns and incidence of cardiovascular events in older persons. The Cardiovascular Health Study. J Am Coll Cardiol 2004;43:187–193.
6. Fornieri C, Quaglino D, Mori G. Role of the extracellular matrix in age-related modifications of the rat aorta. Arterioscler Thromb 1992;12:1008–1016.
7. Rosenquist TH, Beall AC, Modis L, Fishman R. Impaired elastic matrix development in the great arteries after ablation of the cardiac neural crest. Anat Rec 1990;226:347–359.
8. Davidson JM, Hill KE, Mason ML, Giro MG. Longitudinal gradients of collagen and elastin gene expression in the porcine aorta. J Biol Chem 1985;260:1901–1908.
9. Barton M, Cosentino F, Brandes RF, et al. Anatomic heterogeneity of vascular aging. Role of nitric oxide and endothelin. Hypertension 1997;30:817–824.
10. Najjar SS, Scuteri A, Lakatta EG. Arterial aging: is it an immutable cardiovascular risk factor? Hypertension 2005;46:454–462.
11. Scuteri A, Nilsson PM, Tzourio C, Redon J, Laurent S. Microvascular brain damage with aging and hypertension: pathophysiological consideration and clinical implications. J Hypertens 2011;29:1469–1477.
12. Gorelick PB, Scuteri A, Black SE, et al. Vascular contributions to cognitive impairment and dementia. A statement for healthcare professionals from the American Heart Association/American Stroke Association. Stroke 2011;42:2672–2713.
13. Chen S, Li G, Zhang W, et al. Ischemia-induced brain damage is enhanced in human renin and angiotensinogen double-transgenic mice. Am J Physiol Regul Integr Comp Physiol 2009;297:R1526–R1531.
14. Pantoni L, Garcia JH. Pathogenesis of leukoaraiosis: a review. Stroke 1997;28:652–659.
15. Mulvany MJ. Small artery structure: time to take note? Am J Hypertens 2007;20:853–854.
16. Baumbach GL. Effects of increased pulse pressure on cerebral arterioles. Hypertension 1996;27:159–167.
17. James MA, Watt PA, Potter JF, Thurston H, Swales JD. Pulse pressure and resistance artery structure in the elderly. Hypertension 1996;26:301–306.
18. Joutel A, Monet-Lepretre M, Gosele C, et al. Cerebrovascular dysfunction and microcirculation rarefaction precede white matter lesions in a mouse genetic model of cerebral ischemic small vessel disease. J Clin Invest 2010;120:433–445.
19. Scuteri A, Modestino A, Frattari A, Di Daniele N, Tesauro M. Occurrence of hypotension in older participants. Which 24-hour ABPM parameter better correlates? J Gerontol A Biol Sci Med Sci 2012;67:804–810.
20. Fernando MS, Simpson JE, Matthews F, et al. White matter lesions in an unselected cohort of the elderly: molecular pathology suggests origin from chronic hypoperfusion injury. Stroke 2006;37:1391–1398.
21. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–697.
22. Scuteri A, Brancati AM, Gianni W, Assisi A, Volpe M. Arterial stiffness is an independent risk factor for cognitive impairment in the elderly: a pilot study. J Hypertens 2005;23:1211–1216.
23. Poels MM, van Oijen M, Mattace-Raso FU, et al. Arterial stiffness, cognitive decline, and risk of dementia: the Rotterdam Study. Stroke 2007;38:888–892.
24. Scuteri A, Tesauro M, Appolloni S, et al. Arterial stiffness as an independent predictor of longitudinal changes in cognitive function in the older individual. J Hypertens 2007;25:1035–1040.
25. Waldstein SR, Rice SC, Thayer JF, et al. Pulse pressure and pulse wave velocity are related to cognitive decline in the Baltimore Longitudinal Study of Aging. Hypertension 2008;51:99–104.
26. Muller M, van der Graaf Y, Visseren FL, et al. Blood pressure, cerebral blood flow, and brain volumes. The SMART–MR study. J Hypertens 2010;28:1498–1505.
27. Kim CK, Lee S-H, Kim BJ, Ryu W-S, Yoon B-W. Age-independent association of pulse pressure with cerebral white matter lesions in asymptomatic elderly individuals. J Hypertension 2011;29:325–329.
28. Nagai M, Hoshide S, Ishikawa J, Shimada K, Kario K. Visit-to-visit blood pressure variations: new independent determinants for cognitive function in the elderly at high risk of cardiovascular disease. J Hypertension 2012;30:1556–1563.
29. Kearney-Schwartz A, Rossignol P, Bracard S, et al. Vascular structure and function is correlated to cognitive performance and white matter hyperintensities in older hypertensive patients with subjective memory complaints. Stroke 2009;40:1229–1236.
30. Scuteri A, Cacciafesta M, Di Bernardo MG, et al. Pulsatile versus steady-state component of blood pressure in elderly females:an independent risk factor for cardiovascular disease? J Hypertens 1995;13:185–191.
31. Parati G, Pomidossi G, Albini F, Malaspina D, Mancia G. Relationship of 24-hour blood pressure mean and variability to severity of target organ damage in hypertension. J Hypertens 1987;5:93–98.
32. Scuteri A, Coluccia R, Castello L, et al. Left ventricular mass increase is associated with cognitive decline and dementia in the elderly independently of blood pressure. Eur Heart J 2009;30:1525–1529.
33. Henskens LH, Kroon AA, van Oostenbrugge RJ, et al. Associations of ambulatory blood pressure levels with white matter hyperintensity volumes in hypertensive patients. J Hypertension 2009;27:1446–1452.
34. Henskens LH, Kroon AA, van Oostenbrugge RJ, et al. Increased aortic pulse wave velocity is associated with silent cerebral small-vessel disease in hypertensive patients. Hypertension 2008;52:1120–1126.
35. Scuteri A, Tesauro M, Guglini L et al. Aortic stiffness and hypotension episodes are associated with impaired cognitive function in older subjects with subjective complains of memory loss. Int J Cardiol 2013;169:371–377.
36. Stern MP. Diabetes and cardiovascular disease. The “common soil” hypothesis. Diabetes 1995;44:369–374.
37. Gould DB, Phalan FC, van Mil SE, et al. Role of COL4A1 in small-vessel disease and hemorrhagic stroke. N Engl J Med 2006;354:1489–1496.
38. Tarasov KV, Sanna S, Scuteri A, et al. COL4A1 is associated with arterial stiffness by genome-wide association scan. Circ Cardiovasc Genet 2009;2:151–158.
39. Scuteri A, Tesauro M, Rizza S, et al. Endothelial function and arterial stiffness in normotensive normoglycemic first-degree relatives of diabetic patients are independent of the metabolic syndrome. Nutr Metab Cardiovasc Dis 2008;18:349–356.
40. Modrick ML, Didion SP, Sigmund CD, Faraci FM. Role of oxidative stress and AT1 receptors in cerebral vascular dysfunction with aging. Am J Physiol Heart Circ Physiol 2009;296:H1914–H1919.
41. Niwa, K. et al. Aβ1–40 related reduction in functional hyperemia in mouse neocortex during somatosensory activation. Proc Natl Acad Sci USA 2000;97:9735–9740.
42. Lazarov O, Mattson MP, Peterson DA, Pimplikar SW, van Praag H. When neurogenesis encounters aging and disease. Trends Neurosci 2010;33:569–579.
43. Austin SA, Santhanam AV, Katusic ZS. Endothelial nitric oxide modulates expression and processing of amyloid precursor protein. Circ Res 2010;107:1498–1502.
44. Wang M, Khazan B, Lakatta EG. Central arterial aging and angiotensin II signaling. Curr Hypertens Rev 2010;6:266–281.
45. Basso N, Cini Pietrelli AR, Ferder L, Terragno NA, Inserra F. Protective effect of long-term angiotensin II inhibition. Am J Physiol Heart Circ Physiol 2007;293:H1351–H1358.
46. Miller AA, Drummond GR, Schmidt HH, Sobey CG. NADPH oxidase activity and function are profoundly greater in cerebral versus systemic arteries. Circ Res 2005;97:1055–1062.
47. Chen S, Li G, Zhang W, et al. Ischemia-induced brain damage is enhanced in human renin and angiotensinogen double-transgenic mice. Am J Physiol Regul Integr Comp Physiol 2009;297:R1526–R1531.
48. Capone C, Faraco G, Park L, et al. The cerebrovascular dysfunction induced by slow pressor doses of angiotensin II precedes the development of hypertension. Am J Physiol Heart Circ Physiol 2011;300:H397–H407.
49. Takeda S, Sato N, Takeuchi D, et al. Angiotensin receptor blocker prevented β-amyloid induced cognitive impairment associated with recovery of neurovascular coupling. Hypertension 2009;54:1345–1352.
50. Asanuma K, Magid R, Johnson C, Nerem RM, Galis ZS. Uniaxial strain upregulates matrix-degrading enzymes produced by human vascular smooth muscle cells. Am J Physiol Heart Circ Physiol 2003;284:H1778–1784.
51. Wang M, Takagi G, Asai K, et al. Aging increases aortic MMP-2 activity and angiotensin II in nonhuman primates. Hypertension 2003;41:1308–1316.
52. Rosenberg GA. Matrix metalloproteinases and their multiple roles in neurodegenerative diseases. Lancet Neurol 2009;8:205–216.
53. Chow N, Bell RD, Deane R, et al. Serum response factor and myocardin mediate arterial hypercontractility and cerebral blood flow dysregulation in Alzheimer’s phenotype. Proc Natl Acad Sci USA 2007;104:823–828.
54. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004;5:347–360.
55. Yan P, Hu X, Song H, et al. Matrix metalloproteinase-9 degrades amyloid-β fibrils in vitro and compact plaques in situ. J Biol Chem 2006;281:24566–24574.
56. Yin KJ, Cirrito JR, Yan P, et al. Matrix metalloproteinases expressed by astrocytes mediate extracellular amyloid-β peptide catabolism. J Neurosci 2006;26:10939–10948.
57. Backstrom JR, Lim GP, Cullen MJ, Tokes ZA. Matrix metalloproteinase-9 (MMP-9) is synthesized in neurons of the human hippocampus and is capable of degrading the amyloid-β peptide (1–40). J Neurosci 1996;16:7910–7919.
58. Thore CR, Anstrom JA, Moody DM, et al. Morphometric analysis of arteriolar tortuosity in human cerebral white matter of preterm, young, and aged subjects. J Neuropathol Exp Neurol 2007;66:337–345.

References

1. Pantoni L. Cerebral small vessel disease: from pathogenesis and clinical characteristics to therapeutic challenges. Lancet Neurol 2010;9:689–701.
2. Del Zoppo GJ, Sharp FR, Heiss W-D, Albers GW. Heterogeneity in the penumbra. J Cereb Blood Flow Metab 2011;31:1836–1851.
3. del Zoppo GJ. The neurovascular unit in the setting of stroke. J Intern Med 2010;267:156–171.
4. Bär T. The vascular system of the cerebral cortex. Adv Anat Embryol Cell Biol 1980;59:1–62.
5. Bär T. Morphometric evaluation of capillaries in different laminae of rat cerebral cortex by automatic image analysis: changes during development and aging. In Cervos-Navarro J, ed. Advances in Neurology, 20th edn. New York, NY: Raven Press; 1978: pp. 1–9.
6. Bär T. Patterns of vascularization in the developing cerebral cortex. In Nugent J and O’Connor M., eds. Ciba Foundation Symposium 100 – Development of the Vascular System. Chichester, UK: John Wiley and Sons; 2008: pp. 20–36.
7. Mabuchi T, Lucero J, Feng A, Koziol JA, del Zoppo GJ. Focal cerebral ischemia preferentially affects neurons distant from their neighboring microvessels. J Cereb Blood Flow Metab 2005;25:257–266.
8. Fenstermacher J, Nakata H, Tajima A, et al. Functional variations in parenchymal microvascular systems within the brain. Magn Reson Med 1991;19:217–220.
9. Heiss WD. Ischemic penumbra: evidence from functional imaging in man. J Cereb Blood Flow Metab 2000;20:1276–1293.
10. Heiss WD. Experimental evidence of ischemic thresholds and functional recovery. Stroke 1992;23:1668–1672.
11. Heiss WD, Graf R, Wienhard K, et al. Dynamic penumbra demonstrated by sequential multitracer PET after middle cerebral artery occlusion in cats. J Cereb Blood Flow Metab 1994;14:892–902.
12. Zülch K-J. The Cerebral Infarct: Pathology, Pathogenesis, and Computed Tomography. Berlin: Springer-Verlag; 1985: pp. 4–5.
13. Edvinsson L, MacKenzie ET, McCulloch J. General and comparative anatomy of the cerebral circulation. In Edvinsson L, MacKenzie ET, McCulloch J, eds. Cerebral Blood Flow and Metabolism. New York, NY: Raven Press; 1993: pp. 3–39.
14. Edvinsson L, MacKenzie ET, McCulloch J. Cerebral Blood Flow and Metabolism. New York, NY: Raven Press; 1993.
15. Garcion E, Halilagic A, Faissner A, French-Constant C. Generation of an environmental niche for neural stem cell development by the extracellular matrix molecule tenascin C. Development 2004;131:3423–3432.
16. del Zoppo GJ. Inflammation and the neurovascular unit in the setting of focal cerebral ischemia. Neuroscience 2009;158:972–982.
17. del Zoppo GJ. The neurovascular unit, matrix proteases, and innate inflammation. Ann NY Acad Sci 2010;1207:46–49.
18. del Zoppo GJ. Toward the neurovascular unit: a journey in clinical translation. 2012 Thomas Willis lecture. Stroke 2013;44:263–269.
19. Spatz M, Bacic F, McCarron RM, et al. Human cerebromicrovascular endothelium: studies in vitro. J Cereb Blood Flow Metab 1989;9:S393.
20. Spatz M, Micic D, Mrsulja BB, Klatzo I. Cerebral microvessels as mediators of cerebral transport. Adv Neurol 1978;20:189–196.
21. Micic D, Swink M, Micic J, Klatzo I, Spatz M. The ischemic and postischemic effect on the uptake of neutral amino acids in isolated cerebral capillaries. Experientia 1993;15:625–626.
22. McCarron RM, Merkel N, Bembry J, Spatz M. Cerebrovascular endothelium in vitro: studies related to blood–brain barrier function. Proceedings of the XIst International Congress of Neuropathy 1991;(Suppl. 4):785–787.
23. Macdonald JA, Murugesan N, Pachter JS. Endothelial cell heterogeneity of blood–brain barrier gene expression along the cerebral microvasculature. J Neurosci Res 2010;88:1457–1474.
24. Haring H-P, Akamine P, Habermann R, Koziol JA, del Zoppo GJ. Distribution of integrin-like immunoreactivity on primate brain microvasculature. J Neuropathol Exp Neurol 1996;55:236–245.
25. Milner R, Hung S, Wang X, Spatz M, del Zoppo GJ. The rapid decrease in astrocyte-associated dystroglycan expression by focal cerebral ischemia is protease-dependent. J Cereb Blood Flow Metab 2008;28:812–823.
26. Milner R, Hung S, Wang X, et al. Responses of endothelial cell and astrocyte matrix-integrin receptors to ischemia mimic those observed in the neurovascular unit. Stroke 2008;39:191–197.
27. del Zoppo GJ, Milner R. Integrin–matrix interactions in the cerebral microvasculature. Arterioscler Thromb Vasc Biol 2006;26:1966–1975.
28. Hawkins BT, Davis TP. The blood–brain barrier/neurovascular unit in health and disease. Pharmacol Rev 2005;57:173–185.
29. Osada T, Gu Y-H, Kanazawa M, et al. Interendothelial claudin-5 expression depends upon cerebral endothelial cell–matrix adhesion by β1-integrins. J Cereb Blood Flow Metab 2011;31:1972–1985.
30. Dejana E, Orsenigo F, Lampugnani MG. The role of adherens junctions and VE-cadherin in the control of vascular permeability. J Cell Sci 2008;121:2115–2122.
31. Pardridge WM. Introduction to the Blood–Brain Barrier. Methodology, Biology and Pathology. Cambridge: Cambridge University Press; 1998.
32. Okada Y, Copeland BR, Mori E, et al. P-selectin and intercellular adhesion molecule-1 expression after focal brain ischemia and reperfusion. Stroke 1994;25:202–211.
33. Haring H-P, Berg EL, Tsurushita N, Tagaya M, del Zoppo GJ. E-selectin appears in non-ischemic tissue during experimental focal cerebral ischemia. Stroke 1996;27:1386–1392.
34. Bernstein JJ, Getz R, Jefferson M, Kelemen M. Astrocytes secrete basal lamina after hemisection of rat spinal cord. Brain Res 1985;327:135–141.
35. Hurwitz AA, Berman JW, Rashbaum WK, Lyman WD. Human fetal astrocytes induce the expression of blood–brain barrier specific proteins by autologous endothelial cells. Brain Res 1993;625:238–243.
36. Webersinke G, Bauer H, Amberger A, Zach O, Bauer HC. Comparison of gene expression of extracellular matrix molecules in brain microvascular endothelial cells and astrocytes. Biochem Biophys Res Commun 1992;189:877–884.
37. Kaizuka M, Yamabe H, Osawa H, Okumura K, Fujimoto N. Thrombin stimulates synthesis of type IV collagen and tissue inhibitor of metalloproteinase-1 by cultured human mesangial cells. J Am Soc Nephrol 1999;10:1516–1523.
38. Takano T, Tian GF, Peng W, et al. Astrocyte-mediated control of cerebral blood flow. Nat Neurosci 2006;9:260–267.
39. Oberheim NA, Wang X, Goldman S, Nedergaard M. Astrocytic complexity distinguishes the human brain. Trends Neurosci 2006;29:547–553.
40. Panickar KS, Norenberg MD. Astrocytes in cerebral ischemic injury: morphological and general considerations. GLIA 2005;50:287–298.
41. Anderson CM, Nedergaard M. Astrocyte-mediated control of cerebral microcirculation. Trends Neurosci 2003;26:340–344.
42. Wagner S, Tagaya M, Koziol JA, Quaranta V, del Zoppo GJ. Rapid disruption of an astrocyte interaction with the extracellular matrix mediated by integrin α6β4 during focal cerebral ischemia/reperfusion. Stroke 1997;28:858–865.
43. Koehler RC, Roman RJ, Harder DR. Astrocytes and the regulation of cerebral blood flow. Trends Neurosci 2009;32:160–169.
44. Itoh Y, Suzuki N. Control of brain capillary blood flow. J Cereb Blood Flow Metab 2012;32:1167–1176.
45. Simard M, Nedergaard M. The neurobiology of glia in the context of water and ion homeostasis. Neuroscience 2004;129:877–896.
46. Hawkins BT, Gu YH, Izawa Y, del Zoppo GJ. Disruption of dystroglycan–laminin interactions modulates water uptake by astrocytes. Brain Res 2013.
47. Dore-Duffy P, Katychev A, Wang X, Van BE. CNS microvascular pericytes exhibit multipotential stem cell activity. J Cereb Blood Flow Metab 2006;26:613–624.
48. Peppiatt CM, Howarth C, Mobbs P, Attwell D. Bidirectional control of CNS capillary diameter by pericytes. Nature 2006;443:700–704.
49. Zozulya A, Weidenfeller C, Galla HJ. Pericyte–endothelial cell interaction increases MMP-9 secretion at the blood–brain barrier in vitro. Brain Res 2008;1189:1–11.
50. Thanabalasundaram G, Pieper C, Lischper M, Galla HJ. Regulation of the blood–brain barrier integrity by pericytes via matrix metalloproteinases mediated activation of vascular endothelial growth factor in vitro. Brain Res 2010;1347:1–10.
51. Fisher M. Pericyte signaling in the neurovascular unit. Stroke 2009;40:S13–S15.
52. Silver R, Silverman AJ, Vitkovic L, Lederhendler I. Mast cells in the brain: evidence and functional significance. Trends Neurosci 1996;19:25–31.
53. Strbian D, Kovanen PT, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ. An emerging role of mast cells in cerebral ischemia and hemorrhage. Ann Med 2009;41:438–450.
54. Strbian D, Karjalainen-Lindsberg ML, Tatlisumak T, Lindsberg PJ. Cerebral mast cells regulate early ischemic brain swelling and neutrophil accumulation. J Cereb Blood Flow Metab 2006;26:605–612.
55. Strbian D, Tatlisumak T, Ramadan UA, Lindsberg PJ. Mast cell blocking reduces brain edema and hematoma volume and improves outcome after experimental intracerebral hemorrhage. J Cereb Blood Flow Metab 2007;27:795–802.
56. Tchougounova E, Lundequist A, Fajardo I, et al. A key role for mast cell chymase in the activation of pro-matrix metalloprotease-9 and pro-matrix metalloprotease-2. J Biol Chem 2005;280:9291–9296.
57. Lohi J, Harvima I, Keski-Oja J. Pericellular substrates of human mast cell tryptase: 72 000 dalton gelatinase and fibronectin. J Cell Biochem 1992;50:337–349.
58. Aloisi F, Ambrosini E, Columba-Cabezas S, Magliozzi R, Serafini B. Intracerebral regulation of immune responses. Ann Med 2001;33:510–515.
59. Aloisi F. Immune function of microglia. GLIA 2001;36:165–179.
60. Mabuchi T, Kitagawa K, Ohtsuki T, et al. Contribution of microglia/macrophages to expansion of infarction and response of oligodendrocytes after focal cerebral ischemia in rats. Stroke 2000;31:1735–1743.
61. Heo JH, Lucero J, Abumiya T, et al. Matrix metalloproteinases increase very early during experimental focal cerebral ischemia. J Cereb Blood Flow Metab 1999;19:624–633.
62. Fukuda S, Fini CA, Mabuchi T, et al. Focal cerebral ischemia induces active proteases that degrade microvascular matrix. Stroke 2004;35:998–1004.
63. Chang DI, Hosomi N, Lucero J, et al. Activation systems for latent matrix metalloproteinase-2 are upregulated immediately after focal cerebral ischemia. J Cereb Blood Flow Metab 2003;23:1408–1419.
64. Reese TS, Karnovsky MJ. Fine structural localization of a blood–brain barrier to exogenous peroxidase. J Cell Biol 1967;34:207–217.
65. Miller DS. Regulation of P-glycoprotein and other ABC drug transporters at the blood–brain barrier. Trends Pharmacol Sci 2010;31:246–254.
66. Stewart PA, Wiley MJ. Developing nervous tissue induces formation of blood–brain barrier characteristics in invading endothelial cells: a study using quail–chicken transplantation chimeras. Dev Biol 1981;84:183–192.
67. Willis CL, Leach L, Clarke GJ, Nolan CC, Ray DE. Reversible disruption of tight junction complexes in the rat blood–brain barrier, following transitory focal astrocyte loss. GLIA 2004;48:1–13.
68. Cohen-Kashi Malina K, Cooper I, Teichberg VI. Closing the gap between the in-vivo and in-vitro blood–brain barrier tightness. Brain Res 2009;1284:12–21.
69. Saunders NR, Knott GW, Dziegielewska KM. Barriers in the immature brain. Cell Mol Neurobiol 2000;20:29–40.
70. Daneman R, Zhou L, Kebede AA, Barres BA. Pericytes are required for blood–brain barrier integrity during embryogenesis. Nature 2010;468:562–566.
71. Kalaria RN, Stockmeier CA, Harik SI. Brain microvessels are innervated by locus ceruleus noradrenergic neurons. Neurosci Lett 1989;97:203–208.
72. Kalinin S, Feinstein DL, Xu HL, et al. Degeneration of noradrenergic fibres from the locus coeruleus causes tight-junction disorganisation in the rat brain. Eur J Neurosci 2006;24:3393–3400.
73. Yarnitsky D, Gross Y, Lorian A, et al. Blood–brain barrier opened by stimulation of the parasympathetic sphenopalatine ganglion: a new method for macromolecule delivery to the brain. J Neurosurg 2004;101:303–309.
74. Iadecola C. Neurovascular regulation in the normal brain and in Alzheimer’s disease. Nat Rev Neurosci 2004;5:347–360.
75. del Zoppo GJ. Stroke and neurovascular protection. N Engl J Med 2006;354:553–555.
76. Iadecola C, Nedergaard M. Glial regulation of the cerebral microvasculature. Nat Neurosci 2007;10:1369–1376.
77. del Zoppo GJ, Schmid-Schönbein GW, Mori E, Copeland BR, Chang CM. Polymorphonuclear leukocytes occlude capillaries following middle cerebral artery occlusion and reperfusion in baboons. Stroke 1991;22:1276–1283.
78. Okada Y, Copeland BR, Fitridge R, Koziol JA, del Zoppo GJ. Fibrin contributes to microvascular obstructions and parenchymal changes during early focal cerebral ischemia and reperfusion. Stroke 1994;25:1847–1853.
79. Tagaya M, Liu KF, Copeland B, et al. DNA scission after focal brain ischemia. Temporal differences in two species. Stroke 1997;28:1245–1254.
80. Garcia JH, Conger KA. Light and electron-microscopic features of brain ischemia. In Wood JH, ed. Cerebral Blood Flow. Physiologic and Clinical Aspects. New York, NY: McGraw-Hill; 1987: pp. 75–91.
81. Garcia JH, Lowry SL, Briggs L, et al. Brain capillaries expand and rupture in areas of ischemia and reperfusion. In Reivich M, Hurtig HI, eds. Cerebrovascular Diseases. New York, NY: Raven Press; 1983: pp. 169–182.
82. Kwon I, Kim EH, del Zoppo GJ, Heo JH. Ultrastructural and temporal changes of the microvascular basement membrane and astrocyte interface following focal cerebral ischemia. J Neurosci Res 2009;87:668–676.
83. Heo JH, Han SW, Lee SK. Free radicals as triggers of brain edema formation after stroke. Free Radic Biol Med 2005;39:51–70.
84. Hamann GF, Okada Y, Fitridge R, del Zoppo GJ. Microvascular basal lamina antigens disappear during cerebral ischemia and reperfusion. Stroke 1995;26:2120–2126.
85. Hamann GF, Okada Y, del Zoppo GJ. Hemorrhagic transformation and microvascular integrity during focal cerebral ischemia/reperfusion. J Cereb Blood Flow Metab 1996;16:1373–1378.
86. Garcia JH, Liu KF, Yoshida Y, et al. Influx of leukocytes and platelets in an evolving brain infarct (Wistar rat). Am J Pathol 1994;144:188–199.
87. Wang X, Yue T-L, Barone FC, et al. Concomitant cortical expression of TNF-α and IL-1β mRNA following transient focal ischemia. Mol Chem Neuropathol 1994;23:103–114.
88. Quistorff B, Chance B, Hunding A. An experimental model of the Krogh tissue cylinder: two dimensional quantitation of the oxygen gradient. Adv Exp Med Biol 1977;94:127–136.
89. del Zoppo GJ. Relationship of neurovascular elements to neuron injury during ischemia. Cerebrovasc Dis 2009;27(Suppl 1):65–76.
90. Tagaya M, Haring H-P, Stuiver I, et al. Rapid loss of microvascular integrin expression during focal brain ischemia reflects neuron injury. J Cereb Blood Flow Metab 2001;21:835–846.
91. Asahi M, Wang X, Mori T, et al. Effects of matrix metalloproteinase-9 gene knock-out on the proteolysis of blood–brain barrier and white matter components after cerebral ischemia. J Neurosci 2001;21:7724–7732.
92. Cheng T, Petraglia AL, Li Z, et al. Activated protein C inhibits tissue plasminogen activator-induced brain hemorrhage. Nat Med 2006;12:1278–1285.
93. Yamashita T, Kamiya T, Deguchi K, et al. Dissociation and protection of the neurovascular unit after thrombolysis and reperfusion in ischemic rat brain. J Cereb Blood Flow Metab 2009;29:715–725.
94. Barr TL, Latour LL, Lee KY, et al. Blood–brain barrier disruption in humans is independently associated with increased matrix metalloproteinase-9. Stroke 2010;41:e123–e128.
95. Montaner J, Alvarez-Sabin J, Molina CA, et al. Matrix metalloproteinase expression is related to hemorrhagic transformation after cardioembolic stroke. Stroke 2001;32:2762–2667.
96. del Zoppo GJ, Milner R, Mabuchi T, et al. Microglial activation and matrix protease generation during focal cerebral ischemia. Stroke 2007;38:646–651.
97. del Zoppo GJ, Frankowski H, Gu YH, et al. Microglial cell activation is a source of metalloproteinase generation during hemorrhagic transformation. J Cereb Blood Flow Metab 2012;32:919–932.
98. Luissint AC, Artus C, Glacial F, Ganeshamoorthy K, Couraud PO. Tight junctions at the blood brain barrier: physiological architecture and disease-associated dysregulation. Fluids Barriers CNS 2012;9:23.
99. Iadecola C. Neurogenic control of the cerebral microcirculation: is dopamine minding the store? Nat Neurosci 1998;1:263–265.
100. Raichle ME, Hartman BK, Eichling JO, Sharpe LG. Central noradrenergic regulation of cerebral blood flow and vascular permeability. Proc Natl Acad Sci USA 1975;72:3726–3730.
101. del Zoppo GJ, Copeland BR, Harker LA, et al. Experimental acute thrombotic stroke in baboons. Stroke 1986;17:1254–1265.
102. Kahle KT, Simard JM, Staley KJ, et al. Molecular mechanisms of ischemic cerebral edema: role of electroneutral ion transport. Physiology (Bethesda) 2009;24:257–265.
103. del Zoppo GJ, Poeck K, Pessin MS, et al. Recombinant tissue plasminogen activator in acute thrombotic and embolic stroke. Ann Neurol 1992;32:78–86.
104. del Zoppo GJ. Bleeding in the brain: amyloid-β may keep clots away. Nat Med 2009;15:1132–1133.
105. Yu F, Kamada H, Niizuma K, Endo H, Chan PH. Induction of MMP-9 expression and endothelial injury by oxidative stress after spinal cord injury. J Neurotrauma 2008;25:184–195.
106. Dencoff JE, Rosenberg GA, Harry GJ. Trimethyltin induces gelatinase B and urokinase in rat brain. Neurosci Lett 1997;228:147–150.
107. Katsu M, Niizuma K, Yoshioka H, et al. Hemoglobin-induced oxidative stress contributes to matrix metalloproteinase activation and blood–brain barrier dysfunction in vivo. J Cereb Blood Flow Metab 2010;30:1939–1950.
108. Copin JC, Merlani P, Sugawara T, Chan PH, Gasche Y. Delayed matrix metalloproteinase inhibition reduces intracerebral hemorrhage after embolic stroke in rats. Exp Neurol 2008;213:196–201.
109. Kamada H, Yu F, Nito C, Chan PH. Influence of hyperglycemia on oxidative stress and matrix metalloproteinase-9 activation after focal cerebral ischemia/reperfusion in rats: relation to blood–brain barrier dysfunction. Stroke 2007;38:1044–1049.
110. Walker EJ, Rosenberg GA. Divergent role for MMP-2 in myelin breakdown and oligodendrocyte death following transient global ischemia. J Neurosci Res 2010;88:764–773.
111. Abilleira S, Montaner J, Molina CA, et al. Matrix metalloproteinase-9 concentration after spontaneous intracerebral hemorrhage. J Neurosurg 2003;99:65–70.
112. Rosell A, Ortega-Aznar A, Alvarez-Sabin J, et al. Increased brain expression of matrix metalloproteinase-9 after ischemic and hemorrhagic human stroke. Stroke 2006;37:1399–1406.
113. Montaner J, Molina CA, Monasterio J, et al. Matrix metalloproteinase-9 pretreatment level predicts intracranial hemorrhagic complications after thrombolysis in human stroke. Circulation 2003;107:598–603.
114. Ames A, Wright LW, Kowada M, Thurston JM, Majors G. Cerebral ischemia. II. The no-reflow phenomenon. Am J Pathol 1968;52:437–453.
115. Sundt TM, Jr., Grant WC, Garcia JH. Restoration of middle cerebral artery flow in experimental infarction. J Neurosurg 1969;31:311–322.
116. Mori E, del Zoppo GJ, Chambers JD, Copeland BR, Arfors KE. Inhibition of polymorphonuclear leukocyte adherence suppresses no-reflow after focal cerebral ischemia in baboons. Stroke 1992;23:712–718.
117. Thomas WS, Mori E, Copeland BR, et al. Tissue factor contributes to microvascular defects following cerebral ischemia. Stroke 1993;24:847–853.
118. Abumiya T, Fitridge R, Mazur C, et al. Integrin α(IIb)β(3) inhibitor preserves microvascular patency in experimental acute focal cerebral ischemia. Stroke 2000;31:1402–1410.
119. Bostwick JS, Kasiewski CJ, Chu V, et al. Anti-thrombotic activity of RG13965, a novel platelet fibrinogen receptor antagonist. Thromb Res 1996;82:495–507.
120. Wardlaw JM. Blood–brain barrier and cerebral small vessel disease. J Neurol Sci 2010;299:66–71.
121. Chobanian AV, Bakris GL, Black HR, et al. The seventh report of the Joint National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure: the JNC 7 report. JAMA 2003;289:2560–2572.