Skip to main content Accessibility help
  • Get access
    Check if you have access via personal or institutional login
  • Cited by 3
  • Print publication year: 2011
  • Online publication date: July 2011

Chapter 3 - Susceptibility-weightedimaging

from Section 1 - Historical aspects, detection and interpretation


1. HaackeE, SongL, YablonskiyDA. In vivo validation of the bold mechanism: a review of signal changes in gradient echo functional MRI in the presence of flow. Int J Imaging Syst Technol 1995;6:153–63.
2. ReichenbachR, VenkatesanR, SchillingerDJ, KidoDK, HaackeEM. Small vessels deoxyhemoglobin in the human MR venography as an intrinsic contrast agent. Radiology 1997;204:272–7.
3. WangY, YuY, LiDet al. Artery and vein separation using susceptibility-dependent phase in contrastenhanced MRA. Radiology 2000;670:661–70.
4. HaackeEM, XuY, ChengYN, ReichenbachR. Susceptibility weighted imaging (SWI). Magn Reson Med 2004;618:612–18.
5. AyazM, BoikovAS, HaackeEM, KidoDK, KirschWM. Imaging cerebral microbleeds using susceptibility weighted imaging: one step toward detecting vascular dementia. J Magn Reson Imaging 2010;31:142–8.
6. FanYH, ZhangL, LamWWet al. Cerebral microbleeds as a risk factor for subsequent intracerebral hemorrhages among patients with acute ischemic stroke. Stroke 2003;34:2459–62.
7. ImaizumiT, HoritaY, HashimotoY, NiwaJ. Dotlike hemosiderin spots on T2*-weighted magnetic resonance imaging as a predictor of stroke recurrence: a prospective study. J Neurosurg 2004;101:915–20.
8. GreenbergSM, EngJA, NingMet al. Hemorrhage burden predicts recurrent intracerebral hemorrhage after lobar hemorrhage. Stroke 2004;35:1415–20.
9. GreenbergSM, VernooijMW, CordonnierCet al. Cerebral microbleeds: a guide to detection and interpretation. Lancet Neurol 2009;8:165–74.
10. VernooijMW, van der LugtA, IkramMAet al. Prevalence and risk factors of cerebral microbleeds: the Rotterdam Scan Study. Neurology 2008;70:1208–14.
11. WalkerDA, BroderickDF, KotsenasAL. Routine use of GRE MRI to screen for cerebral amyloid angiopathy in elderly patients. AJR Am J Roentgenol 2004;182:1547–50.
12. RoobG, SchmidtR, KapellerPet al. MRI evidence of past cerebral microbleeds in a healthy elderly population. Neurology 1999;52:991–4.
13. GaaschJA, LockmanPR, GeldenhuysWJ, AllenÆD, SchyfCJ. Brain iron toxicity: differential responses of astrocytes, neurons, and endothelial cells. Neurochem Res 2007;32:1196–1208.
14. FazekasF, KleinertR, RoobGet al. Histopathologic analysis of foci of signal loss on GRE T2*-weighted MR images in patients with spontaneous intracerebral hemorrhage: evidence of microangiopathy-related microbleeds. AJNR Am J Neuroradiol 1999;20:637–42.
15. GregoireSM, WerringDJ, ChaudharyUJet al. Choice of echo time on GRE T2*-weighted MRI influences the classification of brain microbleeds. Clin Radiol 2010;65:391–4.
16. NandigamR, ViswanathanA, DelgadoPet al. MR imaging detection of cerebral microbleeds: effect of susceptibility-weighted imaging, section thickness, and field strength. AJNR Am J Neuroradiol 2009;30:338–43.
17. TongKA, AshwalS, HolshouserBAet al. Radiology hemorrhagic shearing lesions in children and adolescents with posttraumatic diffuse axonal injury: improved detection and initial results. Radiology 2003;227:332–9.
18. CordonnierC, PotterGM, JacksonCAet al. Development of the brain observer microbleed scale (BOMBS). Stroke 2009;40:94–9.
19. GregoireSM, ChaudharyUJ, BrownMMet al. The Microbleed Anatomical Rating Scale (MARS): reliability of a tool to map brain microbleeds. Neurology 2009;73:1759–66.
20. ImaizumiT, HonmaT, HoritaYet al. Clinical investigation dynamics of dot-like hemosiderin spots on T2*-weighted MRIs associated with stroke recurrence. J Neuroimaging 2007;17:204–10.
21. GreenbergSM, NandigamRN, DelgadoPet al. Microbleeds versus macrobleeds: evidence for distinct entities. Stroke 2009;40:2382–6.
22. van RoodenSV, Maat-SchiemanML, NabuursRJet al. Cerebral amyloidosis: postmortem detection with human 7.0-T MR imaging system. Radiology 2009;253:788–96.
23. ChamberlainR, ReyesD, CurranGLet al. Comparison of amyloid plaque contrast generated by T2-weighted, T* imaging methods in transgenic mouse models of Alzheimer's disease. Magn Reson Med 2009;253:1158–64.
24. HaackeEM, AyazM, KhanAet al. Establishing a baseline phase behavior in magnetic resonance imaging to determine normal vs. abnormal iron content in the brain. J Magn Reson Imaging 2007;264:256–64.
25. XuY, HaackeEM. The role of voxel aspect ratio in determining apparent vascular phase behavior in susceptibility weighted imaging. Magn Reson Imaging 2006;24:155–60.
26. SchragM, McAuleyG, PomakianJet al. Correlation of hypointensities in susceptibility-weighted images to tissue histology in dementia patients with cerebral amyloid angiopathy: a postmortem MRI study. Acta Neuropathol 2010;119:291–302.
27. WuZ, MittalS, KishKet al. Identification of calcification with MRI using susceptibility-weighted imaging: a case study. J Magn Reson Imaging 2009;182:177–82.
28. WaldLL, FischlB, RosenBR. High-resolution and microscopic imaging at high field. In RobitailleP-M, BerlinerL (eds.) Ultra High Field Magnetic Resonance Imaging. New York: Springer, 2006, pp. 343–71.
29. GreenbergSM. Cerebral amyloid angiopathy: prospects for clinical diagnosis and treatment. Neurology 1998;51:690–4.
30. GreenbergSM, O’DonnellHC, SchaeferPW, Kraft ME. New hemorrhages: potential marker of progression in cerebral amyloid angiopathy. Neurology 1999;53:1135.
31. LiY, ChenP, Haimovitz-FriedmanA, ReillyRM, WongCS. Endothelial apoptosis initiates acute blood–brain barrier disruption after ionizing radiation. Cancer Res 2003;63:5950–6.
32. NguyenV, GaberMW, SontagcMR, KianiaMF. Late effects of ionizing radiation on the microvascular networks in normal tissue. Radiat Res 2010;154:531–6.
33. BitzerM, TopkaH. Progressive cerebral occlusive disease after radiation therapy. Stroke 1995;26:131–6.
34. DimitrievichG, Fischer-DzogaK, GriemM. Radiosensitivity of vascular tissue. I. Differential radiosensitivity of capillaries: a quantitative in vivo study. Radiat Res 1984;99:511–35.
35. ShobhaN, SmithEE, DemchukAM, WeirNU. Small vessel infarcts and microbleeds associated with radiation exposure. Can J Neurol Sci 2009;36:376–8.
36. YoshiiY, PhillipsTL. Late vascular effects of whole brain X-irradiation in the mouse. Acta Neurochirurg 1982:84:87–102.
37. BrownWR, BlairRM, MoodyDMet al. Capillary loss precedes the cognitive impairment induced by fractionated whole-brain irradiation: a potential rat model of vascular dementia. J Neurolog Sci 2007;257:67–71.
38. McAuley G, Schrag M, SiposPet al. Quantification of punctate iron sources using magnetic resonance phase. Magn Reson Med 2010;63:106–15.
39. ChengY, NeelavalliJ, HaackeE. Limitations of calculating field distributions and magnetic susceptibilities in MRI using a Fourier based method. Physics Med Biol 2009;54:1169–98.
40. de RochefortL, BrownR, PrinceM, WangY. Quantitative MR susceptibility mapping using piece-wise constant regularized inversion of the magnetic field. Magn Reson Med 2008;60:1003–9.
41. HaackeEM, ChengNY, HouseMJet al. Imaging iron stores in the brain using magnetic resonance imaging. Magn Reson Imaging 2005;23:1–25.
42. SalomirR, SennevilleB, MoonenC. A fast calculation method for magnetic field inhomogeneity due to an arbitrary distribution of bulk susceptibility. Concepts Magn Reson 2003;198:26–34.
43. DevilleG, BernierM, DelrieuxJ. NMR multiple echoes observed in solid 3He. Phys Rev 1979;19:5666–88.
44. MarquesJP, BowtellR. Application of a Fourier-based method for rapid calculation of field inhomogeneity due to spatial variation of magnetic susceptibility. Concepts Magn Reson 2005;25:65–78.
45. LaoZ, ShenD, LiuDet al. Computer-assisted segmentation of white matter lesions in 3D MR images using support vector machine 1. Acad Radiol 2008;15:300–13.
46. PasseroS, BurgalassiL, D’AndreaP. Recurrence of bleeding in patients with primary intracerebral hemorrhage. Radiology 2009;253:788–96.
47. HaackeEM, ReichenbachJR (eds.) Susceptibility Weighted Imaging: Basic Concepts and Clinical Applications. Wiley-Blackwell, 2011.
48. HaackeEM, DelPropostoZS, Chaturvedi S et al. Imaging Cerebral Amyloid Angiopathy with Susceptibility-Weighted Imaging. AJNR 2007;28:316–317.